首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heparin causes increased synthesis of fibronectin and thrombospondin by human vascular smooth muscle cells as assessed by immunoprecipitation and ELISA techniques. More fibronectin and thrombospondin were immunoprecipitated from the medium of cells treated with 180 micrograms/ml heparin than from that of control cells. Heparin did not effect levels of fibronectin and thrombospondin immunoprecipitated from the cell-matrix fractions. By ELISA, heparin was found to cause a 1.7 fold increase in medium fibronectin levels/cell and a 10 fold increase in medium thrombospondin levels/cell. Concomitantly, smooth muscle cells treated with 180 g/ml heparin for 48 h exhibited 55% decrease in proliferation relative to controls.  相似文献   

2.
We compared the effects of endothelial-synthesized matrix and purified matrix molecules on pericyte (PC) and aortic smooth muscle cell (SMC) growth, heparin sensitivity, and contractile phenotype in vitro. When PC are plated on endothelial-synthesized (EC) matrix, cell number is, on average, 3.1-fold higher than identical populations grown on plastic. Under the same conditions, SMC proliferation is stimulated 1.6-fold. Purified matrix molecules, such as collagen type IV (COLL) or fibronectin (FN), both major components of the EC matrix, stimulate PC/SMC growth 1.2–1.7-fold. Heparin (100 μg/ml), which inhibits the growth of early passage SMC by 60%, inhibits PC growth ~50%, when cells were plated on plastic. However, PC plated on EC matrix in the presence of heparin (100 μg/ml) grow as well as parallel cultures grown on plastic (in the absence of heparin). Concomitant with matrix-stimulated proliferation, we observed a marked reduction in PC containing alpha vascular smooth muscle actin (αVSMA), as seen by immunofluorescence using affinity-purified antibodies (173/615 positive pericytes on DOC matrix (28%) vs. 221/285 (77%) positive on glass). SMC respond similarly. Whereas αVSMA protein is markedly altered when PC and SMC are cultured on EC matrix, similar reductions in mRNA are not observed. However, Northern blotting does reveal that PC contain 17–30 times the steady-state levels of αVSMA mRNA compared to SMC. When SMC and PC cultures on plastic are treated with heparin, the steady-state levels of vascular smooth muscle actin mRNA increase 5 and 1.5 fold, respectively. Similarly, heparin treatment of PC grown on plastic induces a 1.8 fold increase in nonmuscle actin mRNA. These heparin-induced alterations in isoactin mRNA levels are not seen when PC are cultured on EC matrix. We also observed reductions in αVSMA and β actin mRNA levels when PC are plated on FN, where they maintain a ratio of 13:1 (α:β). Similar ratios are found in SMC present in rat and bovine aortae in vivo. These steady-state isoactin mRNA ratios are slightly different from those seen in cultured PC (8–10:1; α:β). These results suggest that selective synthesis and remodelling of the endothelial basal lamina may signal alterations in pericyte growth and contractile phenotype during normal vascular morphogenesis, angiogenesis, or during the microvascular remodelling that accompanies hypertensive onset. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Collagen VI expression was studied in cultured human skin fibroblasts and mouse 3T3 cells using cDNA probes specific for alpha 1(VI), alpha 2(VI), and alpha 3(VI) chains. A 2-3-fold increase of these mRNAs was observed when fibroblasts were grown at increasing densities while only minimal changes occurred for the mRNA levels of collagens I and III, fibronectin, and beta-actin. Changes in mRNA correlated well with an increased production of corresponding proteins as determined by immunological assays. A comparable increase of alpha 1(VI) and alpha 2(VI) but not of alpha 3(VI) chain mRNAs was found for fibroblasts grown in a three-dimensional collagen gel after gel contraction. These conditions resulted, however, in a decrease of steady-state levels of collagens I and III and actin mRNAs. Transformation of 3T3 cells by phorbol ester did not change collagen VI mRNAs but caused a 3-5-fold reduction in mRNA levels for the other extracellular matrix proteins. These data strongly imply different regulatory mechanisms for the expression of collagen VI compared with collagens I and III and fibronectin. The differences may be correlated to changes in cell shape and reflect the requirement for collagen VI as a cell-binding protein.  相似文献   

4.
Quiescent smooth muscle cells (SMC) in normal artery express a pattern of actin isoforms with alpha-smooth muscle (alpha SM) predominance that switches to beta predominance when the cells are proliferating. We have examined the relationship between the change in actin isoforms and entry of SMC into the growth cycle in an in vivo model of SMC proliferation (balloon injured rat carotid artery). alpha SM actin mRNA declined and cytoplasmic (beta + gamma) actin mRNAs increased in early G0/G1 (between 1 and 8 h after injury). In vivo synthesis and in vitro translation experiments demonstrated that functional alpha SM mRNA is decreased 24 h after injury and is proportional to the amount of mRNA present. At 36 h after injury, SMC prepared by enzymatic digestion were sorted into G0/G1 and S/G2 populations; only the SMC committed to proliferate (S/G2 fraction) showed a relative slight decrease in alpha SM actin and, more importantly, a large decrease in alpha SM actin mRNA. A switch from alpha SM predominance to beta predominance was present in the whole SMC population 5 d after injury. To determine if the change in actin isoforms was associated with proliferation, we inhibited SMC proliferation by approximately 80% with heparin, which has previously been shown to block SMC in late G0/G1 and to reduce the growth fraction. The switch in actin mRNAs and synthesis at 24 h was not prevented; however, alpha SM mRNA and protein were reinduced at 5 d in the heparin-treated animals compared to saline-treated controls. These results suggest that in vivo the synthesis of actin isoforms in arterial SMC depends on the mRNA levels and changes after injury in early G0/G1 whether or not the cells subsequently proliferate. The early changes in actin isoforms are not prevented by heparin, but they are eventually reversed if the SMC are kept in the resting state by the heparin treatment.  相似文献   

5.
Studies to eludicate the effect of heparin on the synthesis of extracellular matrix components by cultured human umbilical vein endothelial cells (EC) were conducted. Using pulse-labeling and ELISA techniques, we found that EC grown in the presence of heparin (90 micrograms/ml) and endothelial cell growth factor (ECGF) synthesized 50% less fibronectin (FN) than did ECGF-treated control cultures. No change in the synthesis of thrombospondin (TSP) was induced by heparin. The effect of heparin on EC FN synthesis was independent of whether the cells were cultivated on plastic or gelatin substrates. However, ECGF modulates the effect of heparin on EC synthesis of FN. RNA slot-blot analysis demonstrated that heparin treatment specifically decreased the steady-state mRNA levels for both FN and TSP in the cells. Steady-state levels of mRNA for two intracellular proteins, actin and tubulin, were unchanged. These data suggest that heparin decreases EC expression of FN at least in part by decreasing the amount of FN mRNA available for translation. The failure of heparin to inhibit TSP expression, although it reduces TSP mRNA levels, points to the possibility that the rate of EC synthesis of TSP is translationally or post-translationally regulated.  相似文献   

6.
Smooth muscle cell migration, proliferation, and deposition of extracellular matrix are key events in atherogenesis and restenosis development. To explore the mechanisms that regulate smooth muscle cell function, we have investigated whether perlecan, a basement membrane heparan sulfate proteoglycan, modulates interaction between smooth muscle cells and other matrix components. A combined substrate of fibronectin and perlecan showed a reduced adhesion of rat aortic smooth muscle cells by 70-90% in comparison to fibronectin alone. In contrast, perlecan did not interfere with cell adhesion to laminin. Heparinase treated perlecan lost 60% of its anti-adhesive effect. Furthermore, heparan sulfate as well as heparin reduced smooth muscle cell adhesion when combined with fibronectin whereas neither hyaluronan nor chondroitin sulfate had any anti-adhesive effects. Addition of heparin as a second coating to a preformed fibronectin matrix did not affect cell adhesion. Cell adhesion to the 105- and 120 kDa cell-binding fragments of fibronectin, lacking the main heparin-binding domains, was also inhibited by heparin. In addition, co-coating of fibronectin and (3)H-heparin showed that heparin was not even incorporated in the substrate. Morphologically, smooth muscle cells adhering to a substrate prepared by co-coating of fibronectin and perlecan or heparin were small, rounded, lacked focal contacts, and showed poorly developed stress fibers of actin. The results show that the heparan sulfate chains of perlecan lead to altered interactions between smooth muscle cells and fibronectin, possibly due to conformational changes in the fibronectin molecule. Such interactions may influence smooth muscle cell function in atherogenesis and vascular repair processes.  相似文献   

7.
8.
We have studied the effect of transforming growth factor beta 1 (TGF-beta 1) on vascular smooth muscle cell (SMC) mitogenesis and expression of thrombospondin and other growth related genes. We found that TGF-beta 1 treatment of vascular SMC induced a prolonged increase in steady-state mRNA levels of thrombospondin as well as alpha 1 (IV) collagen. The increase began at approximately 2 h, peaked by 24 h, and remained considerably elevated 48 h after growth factor addition. There was a corresponding increase in thrombospondin protein as well as increased expression of several other secreted polypeptides. The increase in thrombospondin contrasted sharply with that observed for platelet-derived growth factor (PDGF) which induced a rapid and transient increase in thrombospondin mRNA level. Although TGF-beta 1 was able to directly enhance expression of thrombospondin as well as the growth-related genes c-fos and c-myc, and induced c-fos expression with identical kinetics as PDGF, it was unable to elicit [3H]thymidine incorporation into DNA in three independent smooth muscle cell strains. However, TGF-beta 1 was able to strongly increase the mitogenic response of SMC to PDGF. Addition of both TGF-beta 1 and PDGF to SMC also caused a synergistic increase in the expression of thrombospondin as well as c-myc. Interestingly, in one other smooth muscle cell strain, a weak and delayed mitogenic response to TGF-beta 1 alone was observed. Our results strongly suggest that induction of thrombospondin expression by TGF-beta 1 and by PDGF occurs by distinct mechanisms. In addition, that TGF-beta 1 can enhance PDGF-induced mitogenesis may be due to the ability of TGF-beta 1 to directly induce the expression of thrombospondin, c-fos, c-myc, and the PDGF beta-receptor.  相似文献   

9.
Fucoidan, a sulfated fucopolysaccharide of marine algae is able to inhibit the proliferation of arterial smooth muscle cells half maximally at a concentration of 80 to 100 micrograms/ml culture medium. In comparable concentrations heparin was significantly less active than the fucopolysaccharide. Sulfation of fucoidan was found to be essential for expression of antiproliferative activity. The inhibitory effect of fucoidan is a time-dependent event with highest effectiveness during the first 6 h. Fucoidan does not influence the overall rate of synthesis of cell proteins and glycoconjugates, but led to substantial alterations in the synthesis and secretion of fibronectin and thrombospondin. Immunoprecipitation and quantitation revealed that the incorporation of [35S]methionine into fibronectin is reduced whereas thrombospondin synthesis was increased. The effect on fibronectin was not shared by heparin. Desulfation of the fucopolysaccharide abolished the observed modulation. Binding experiments with [125I]fucoidan indicate a saturable binding and a maximum of 2.8 x 10(6) bound molecules per cell. Fucoidan binding sites can be only partly displaced by heparin. The results suggest that both heparin and the structurally unrelated sulfated fucopolysaccharide act as an antiproliferative agent but differ in their modulation of cell metabolism.  相似文献   

10.
11.
Strategies for the tissue-engineering of living cardiac valve replacements are limited by a lack of appropriate scaffold materials that both permit cell viability and actively contribute to the growth of functional tissues. Components of the extracellular matrix can localize and modify growth factor signals, and by doing so impart instructional stimuli for direction of cell phenotype. Fibronectin, collagen I, and heparin were explored as affinity matrices for sequestering and presenting soluble signaling molecules to control differentiation of valvular interstitial cells (VICs) to myofibroblasts. VIC differentiation is commonly characterized by expression of stress fibers containing alpha smooth muscle actin (alpha-SMA), and transforming growth factor-beta1 (TGF-beta1) is a central mediator of this transition. Both fibronectin and heparin, which are known to possess TGF-beta1 binding interactions, were found to increase VIC alpha-SMA expression (120% and 258% of expression in controls), while VICs cultured on collagen I-modified substrates had diminished alpha-SMA expression (66% of control). Heparin treatment significantly stimulated VIC production of TGF-beta1 at all concentrations tested (50 to 400 mug/ml). Heparin-modified substrates were found to alter cell morphology through increased adsorption of serum proteins, specifically TGF-beta1. In sum, heparin produced alpha-SMA-positive myofibroblasts through both the de novo production of TGF-beta1, and its localization in the pericellular environment. The addition of heparin to fibronectin-modified substrates led to a synergistic increase in VIC alpha-SMA expression, produced by the reciprocal binding of fibronectin, heparin, cell-produced TGF-beta1. The characterization of molecules, both soluble and insoluble, that control VIC activation will be important for the development of tailored 3D culture environments for tissue-engineering applications.  相似文献   

12.
The effect of low-molecular-weight heparin fragments (CY222) on the biosynthetic phenotype of porcine aortic smooth muscle cells (SMC) was investigated in vitro on overconfluent cell cultures. Addition of increasing concentrations of CY222 to the culture medium of early passage SMC resulted in a dose-dependent decrease of type III to type I collagen ratio without change in total collagen biosynthesis. In the same range of concentrations CY222 did not affect the biosynthesis of fibronectin. However, heparin fragments decreased the proportion of the freshly synthesized pericellular form of fibronectin with a concomitant increase of neosynthesized intracellular fibronectin, indicating an inhibitory effect of CY222 on fibronectin secretion. Our results demonstrate that the biosynthetic phenotype of SMC in vitro can be modulated by low-molecular-weight heparin fragments and confirm also that interactions between cells and extracellular matrix molecules can modify the biosynthetic pattern of mesenchymal cells.  相似文献   

13.
14.
Thrombospondin-1 (TSP-1) is an extracellular matrix glycoprotein that may play important roles in the morphogenesis and repair of skeletal muscle. To begin to explore the role of thrombospondin-1 in this tissue, we have examined the interactions of three rodent skeletal muscle cell lines, C2C12, G8, and H9c2, with platelet TSP-1. The cells secrete thrombospondin and incorporate it into the cell layer in a distribution distinct from that of fibronectin. Myoblasts attach and spread on fibronectin- or thrombospondin-coated substrates with similar time and concentration dependencies. Whereas cells adherent on fibronectin organize actin stress fibers, cells adherent on TSP-1 display prominent membrane ruffles and lamellae that contain radial actin microspikes. Attachment to thrombospondin-1 or the 140-kDa tryptic fragment is mediated by interactions with the type 1 repeats and the carboxy-terminal globular domain. Attachment is not inhibited by heparin, GRGDSP peptide, or VTCG peptide but is inhibited by chondroitin sulphate A. Integrins of the beta 1 or alpha V subgroups do not appear to be involved in myoblast attachment to TSP-1; instead, this process depends in part on cell surface chondroitin sulphate proteoglycans. Whereas the central 70-kDa chymotryptic fragment of TSP-1 does not support myoblast attachment, the carboxy-terminal domain of TSP-1 expressed as a fusion protein in the bacterial expression vector, pGEX, supported myoblast attachment to 30% the level of intact TSP-1. Thrombospondin-4 (TSP-4) is also present in skeletal muscle and a fusion protein containing the carboxy-terminal domain of TSP-4 also supported myoblast adhesion, although this protein was less active on a molar basis than the TSP-1 fusion protein. Thus, the carboxyterminal domain of TSP-1 appears to contain a primary attachment site for myoblasts, and this activity is present in a second member of the thrombospondin family.  相似文献   

15.
The spreading of freshly isolated arterial smooth muscle cells on a substrate of fibronectin is mediated by an integrin receptor on the cell surface. It is associated with organization of actin filaments in stress fibers and marked changes in cell morphology and function, collectively referred to as a transition from a contractile to a synthetic phenotype. To study further how extracellular matrix components affect smooth muscle phenotype, we have analyzed the expression and organization of smooth-muscle-specific alpha-actin in freshly isolated rat aortic smooth muscle cells cultured on a substrate of fibronectin under serum-free conditions. Northern-blot analysis showed that the expression of mRNA for smooth muscle alpha-actin, but not for nonmuscle actin, was strongly repressed during primary culture. On the other hand, the cellular content of alpha-actin was only moderately changed during the same period. Indirect immunofluorescence staining revealed that nonmuscle actin was rapidly organized in stress fibers, which did not stain with a monoclonal antibody against smooth muscle alpha-actin. Filament bundles containing alpha-actin were most prominent in the central parts of the cytoplasm and gradually disappeared as the spreading of the cells progressed. In contrast to the situation with nonmuscle actin, there was no apparent overlap in the staining for alpha-actin and the fibronectin receptor (alpha 5 beta 1), indicating that this receptor interacted with nonmuscle actin during the initial spreading process. Taken together, the results show that the expression and organization of smooth muscle alpha-actin are changed during interaction of the cells with fibronectin early in primary culture. They support the notion that integrin-mediated interactions between extracellular matrix components and arterial smooth muscle cells take part in the control of smooth muscle phenotype.  相似文献   

16.
Altered airway smooth muscle (ASM) function and enrichment of the extracellular matrix (ECM) with interstitial collagen and fibronectin are major pathological features of airway remodeling in asthma. We have previously shown that these ECM components confer enhanced ASM proliferation in vitro, but their action on its newly characterized secretory function is unknown. Here, we examined the effects of fibronectin and collagen types I, III, and V on IL-1beta-dependent secretory responses of human ASM cells, and characterized the involvement of specific integrins. Cytokine production (eotaxin, RANTES, and GM-CSF) was evaluated by ELISA, RT-PCR, and flow cytometry. Function-blocking integrin mAbs and RGD (Arg-Gly-Asp)-blocking peptides were used to identify integrin involvement. IL-1beta-dependent release of eotaxin, RANTES, and GM-CSF was enhanced by fibronectin and by fibrillar and monomeric type I collagen, with similar changes in mRNA abundance. Collagen types III and V had no effect on eotaxin or RANTES release but did modulate GM-CSF. Analogous changes in intracellular cytokine accumulation were found, but in <25% of the total ASM cell population. Function-blocking Ab and RGD peptide studies revealed that alpha2beta1, alpha5beta1, alphavbeta1, and alphavbeta3 integrins were required for up-regulation of IL-1beta-dependent ASM secretory responses by fibronectin, while alpha2beta1 was an important transducer for type I collagen. Thus, fibronectin and type I collagen enhance IL-1beta-dependent ASM secretory responses through a beta1 integrin-dependent mechanism. Enhancement of cytokine release from ASM by these ECM components may contribute to airway wall inflammation and remodeling in asthma.  相似文献   

17.
Increasing evidence supports the idea that the finite proliferative life span of normal fibroblasts is a differentiation-like phenomenon. If this were correct, an ordered sequence of differential gene expression should be associated with the in vitro progression of cells from low passage to high passage (senescence). To define the pattern of expression of fibroblast differentiation-associated genes during this in vitro progression, we have determined the temporal pattern of expression of extracellular matrix (ECM) genes in Syrian hamster dermal fibroblasts as a function of passage level and percentage of proliferative life span in vitro. Steady-state mRNA levels were determined by Northern and dot blot analyses of total cellular RNA hybridized with cDNA probes specific for fibronectin, procollagen alpha 1III, and procollagen alpha 1I. Cells were analyzed at 24 hr postconfluence to minimize the presence of actively proliferating cells, and because maximal levels of fibronectin, alpha 1III, and alpha 1I mRNAs were observed 24 hr postconfluence. Unique, multiphasic patterns of expression of each of these ECM components were observed as the cells progressed from low passage to high passage. As the cells reached midhigh passage, fibronectin mRNA levels increased. This midpassage increase in fibronectin was followed by an increase in the level of alpha 1III mRNA as the cells reached the end of their in vitro proliferative life span, and then alpha 1I when the cells entered the postmitotic senescent phase, at which time the level of fibronectin mRNA also declined. A similar overlapping cascade pattern of up-regulation of these genes is seen during development and wound repair. This suggests that as cultured fibroblasts reach the end of their proliferative life span, they reinitiate a gene expression program used in tissue development and repair.  相似文献   

18.
Thrombospondin is a major glycoprotein of the platelet alpha-granule and is secreted during platelet activation. Several protease-resistant domains of thrombospondin mediate its interactions with components of the extracellular matrix including fibronectin, collagen, heparin, laminin, and fibrinogen. Thrombospondin, as well as fibronectin, is composed of several discretely located biologically active domains. We have characterized the thrombospondin binding domains of plasma fibronectin and determined the binding affinities of the purified domains; fibronectin has at least two binding sites for thrombospondin. Thrombospondin bound specifically to the 29-kDa amino-terminal heparin binding domain of fibronectin as well as to the 31-kDa non-heparin binding domain located within the larger 40-kDa carboxy-terminal fibronectin domain generated by chymotrypsin proteolysis. Platelet thrombospondin interacted with plasma fibronectin in a specific and saturable manner in blot binding as well as solid-phase binding assays. These interactions were independent of divalent cations. Thrombospondin bound to the 29-kDa fibronectin heparin binding domain with a Kd of 1.35 x 10(-9) M. The Kd for the 31-kDa domain of fibronectin was 2.28 x 10(-8) M. The 40-kDa carboxy-terminal fragment bound with a Kd of 1.65 x 10(-8) M. Heparin, which binds to both proteins, inhibited thrombospondin binding to the amino-terminal domain of fibronectin by more than 70%. The heparin effect was less pronounced with the non-heparin binding carboxy-terminal domain of fibronectin. By contrast, the binding affinity of the thrombospondin 150-kDa domain, which itself lacked heparin binding, was not affected by the presence of heparin. Based on these data, we conclude that thrombospondin binds with different affinities to two distinct domains in the fibronectin molecule.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号