首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
3.
Emerging evidence suggests that plant cell-wall-modifying enzymes induced by root-parasitic nematodes play important roles in feeding cell formation. We previously identified a tobacco endo-β-1,4-glucanase (cellulase) gene, NtCel7 , that was strongly induced in both root-knot and cyst nematode feeding cells. To characterize further the developmental and nematode-responsive regulation of NtCel7 , we isolated the NtCel7 promoter and analysed its expression over a time course of nematode infection and in response to auxin, gibberellin, ethylene and sucrose in soybean and tomato hairy roots and in Arabidopsis containing the NtCel7 promoter fused to the β-glucuronidase (GUS) reporter gene. Histochemical analyses of transgenic plant materials revealed that the NtCel7 promoter exhibited a unique organ-specific expression pattern during plant development suggestive of important roles for NtCel7 in both vegetative and reproductive growth. In all plant species tested, strong GUS expression was observed in root tips and lateral root primordia of uninfected roots with weaker expression in the root vasculature. Further analyses of transgenic Arabidopsis plants revealed expression in shoot and root meristems and the vasculature of most organs during plant development. We also determined that the NtCel7 promoter was induced by auxin, but not gibberellin, ethylene or sucrose. Moreover, strong GUS activity was observed in both cyst and root-knot nematode-induced feeding sites in transgenic roots of soybean, tomato and Arabidopsis. The conserved developmental and nematode-responsive expression of the NtCel7 promoter in heterologous plants indicates that motifs of this regulatory element play a fundamental role in regulating NtCel7 gene expression within nematode feeding sites and that this regulation may be mediated by auxin.  相似文献   

4.
5.
Phytoparasitic nematodes secrete an array of effector proteins to modify selected recipient plant cells into elaborate and essential feeding sites. The biological function of the novel 30C02 effector protein of the soybean cyst nematode, Heterodera glycines, was studied using Arabidopsis thaliana as host and the beet cyst nematode, Heterodera schachtii, which contains a homologue of the 30C02 gene. Expression of Hg30C02 in Arabidopsis did not affect plant growth and development but increased plant susceptibility to infection by H. schachtii. The 30C02 protein interacted with a specific (AT4G16260) host plant β-1,3-endoglucanase in both yeast and plant cells, possibly to interfere with its role as a plant pathogenesis-related protein. Interestingly, the peak expression of 30C02 in the nematode and peak expression of At4g16260 in plant roots coincided at around 3-5 d after root infection by the nematode, after which the relative expression of At4g16260 declined significantly. An Arabidopsis At4g16260 T-DNA mutant showed increased susceptibility to cyst nematode infection, and plants that overexpressed At4g16260 were reduced in nematode susceptibility, suggesting a potential role of host β-1,3-endoglucanase in the defence response against H. schachtii infection. Arabidopsis plants that expressed dsRNA and its processed small interfering RNA complementary to the Hg30C02 sequence were not phenotypically different from non-transformed plants, but they exhibited a strong RNA interference-mediated resistance to infection by H. schachtii. The collective results suggest that, as with other pathogens, active suppression of host defence is a critical component for successful parasitism by nematodes and a vulnerable target to disrupt the parasitic cycle.  相似文献   

6.
In the quest for plant regulatory sequences capable of driving nematode-triggered effector gene expression in feeding structures, we show that promoter tagging is a valuable tool. A large collection of transgenic Arabidopsis plants was generated. They were transformed with a beta-glucuronidase gene functioning as a promoter tag. Three T-DNA constructs, pGV1047, p delta gusBin19, and pMOG553, were used. Early responses to nematode invasion were of primary interest. Six lines exhibiting beta-glucuronidase activity in syncytia induced by the beet cyst nematode were studied. Reporter gene activation was also identified in galls induced by root knot and ectoparasitic nematodes. Time-course studies revealed that all six tags were differentially activated during the development of the feeding structure. T-DNA-flanking regions responsible for the observed responses after nematode infection were isolated and characterized for promoter activity.  相似文献   

7.
Our laboratory has demonstrated previously that Bacillus thuringiensis (Bt) crystal (Cry) proteins present in the Cry5 and Cry6 subclades intoxicate free-living nematodes. In this study, we tested whether the expression of nematicidal Cry6A in transgenic plants provided protection against plant-parasitic nematodes. As bacterial codon usage is incompatible with expression in plants, two different codon-modified cry6A genes were synthesized for expression in plants. One was designed by maintaining codon diversity whilst removing codons not common in plants, and the other was designed by selecting the optimal codon for each amino acid based on the Arabidopsis genome. Both versions of the cry6A gene, driven by the constitutive cauliflower mosaic virus 35S promoter, were introduced into tomato roots via Agrobacterium rhizogenes . Although both were found to express Cry6A protein, the codon diversity gene generated superior expression. These Cry6A-expressing roots were then challenged with root-knot nematode, Meloidogyne incognita . Three different infection parameters were compared between Cry6A-expressing roots and control roots transformed with empty vector or green fluorescent protein (GFP). These data demonstrated that M. incognita was able to ingest the 54-kDa Cry6A, and that Cry6A intoxicated the parasitic nematode, as indicated by a decrease in progeny production of up to fourfold. These results indicate, for the first time, that a Bt Cry protein can confer plant resistance to an endoparasitic nematode, and that Cry proteins have the potential to control plant-parasitic nematodes in transgenic plants.  相似文献   

8.
9.
Three glycine-rich protein genes of Arabidopsis thaliana (Atgrp-6, Atgrp-7, and Atgrp-8) that correspond to putative genes coding for pollenins (AtolnB;2, AtolnB;3, and AtolnB;4, respectively) are expressed predominantly in the anthers and, more specifically, in the tapetum layer. Tapetal cells are responsible for nutrition of developing pollen grains and show some functional similarities to nematode feeding sites (NFS) induced in plant roots by sedentary parasitic nematodes. The aim of this study was to analyze promoter activity of the Atgrp genes in NFS. Transformed Arabidopsis plants containing a promoter-ß-glucuronidase (gus) fusion of the Atgrp-7 gene were inoculated with the root-knot nematode Meloidogyne incognita and the cyst nematode Heterodera schachtii. GUS assays were performed at different time points after infection. Histochemical analysis revealed an up-regulation of Atgrp-7-gus expression 3 days after inoculation in the feeding sites of both nematodes. Maximal Atgrp-7-gus staining levels in NFS were observed 1 week after nematode infection.  相似文献   

10.
Sedentary plant-parasitic nematodes are able to induce specialized feeding structures in the root system of their host plants by triggering a series of dramatic cellular responses. These changes presumably are accompanied by a reprogramming of gene expression. To monitor such changes, a variety of promoter— gus A fusion constructs were introduced into Arabidopsis and tobacco. Transgenic plants were analysed histochemically for GUS activity in the nematode feeding structures after infection with either Heterodera schachtii or Meloidogyne incognita . Promoters of the Cauliflower Mosaic Virus 35S gene, the bacterial nopaline synthase, rooting loci ( rol ) and T- cyt genes and the plant-derived phenylalanine ammonia-lyase I gene, which are highly active in non-infected roots, were all downregulated in the feeding structures as indicated by the strong decrease of GUS activity inside these structures. Less stringent down-regulation was observed with chimeric gus A fusion constructs harbouring truncated rol B and rol C promoter sequences. Similar observations were made with transgenic Arabidopsis lines that carried randomly integrated promoterless gus A constructs to identify regulatory sequences in the plant genome. Most of the lines that were selected for expression in the root vascular cylinder demonstrated local down-regulation in feeding structures after infection with H. schachtii . The reverse pattern of GUS activity, a blue feeding structure amidst unstained root cells, was also found in several lines. However, GUS activity that was entirely specific for the feeding structures was not observed. Our data show that the expression of a large number of genes is influenced during the development of the nematode feeding structures.  相似文献   

11.
Opine synthesis in wild-type plant tissue   总被引:8,自引:3,他引:5       下载免费PDF全文
Opine production is associated with crown gall tissue, a neoplastic growth caused by infection of dicotyledonous plants with Agrobacterium tumefaciens. Recent publications have claimed that tissues of certain monocotyledonous plants can also be infected by Agrobacterium. Following infection, a part of the Agrobacterium Ti plasmid, T-DNA, is integrated into the chromosome of the infected plant. T-DNA, which codes for opine-synthesizing enzymes, is now used to add foreign genes to plants. A number of laboratories have used opine production in plant tissue, often after arginine feeding or preincubation as evidence for plant transformation by T-DNA vectors. In this report we provide microbiological, chromatographic, spectroscopic and chemical evidence indicating that opines can be formed in normal callus and plant tissue as a result of arginine metabolism. Therefore, researchers studying T-DNA should be aware of the capability of plant tissue to metabolize arginine to opines. Opine production following infection with T-DNA may not always be sufficient evidence to indicate transformation by the Agrobacterium Ti plasmid.  相似文献   

12.
13.
Agrobacterium rhizogenes induces root formation and inserts a fragment of its plasmid into the genome of infected plants. A part of the transferred region (TL-region) of the Ri plasmid of A. rhizogenes strain A4 was cloned in pBR322. Insertions of the Escherichia coli lacZ coding region into the hybrid plasmids were made in vivo using mini-Mu-duction. Two mini-Mus were used, one with the Mu A and B transposase genes (MudII1681) and the other without (MudII1734). Two inserts which result in E. coli lacZ expression where shown to be located in the T-DNA region. This indicates that portions of the T-DNA are capable of expression in bacteria. When these two hybrid plasmids were transformed into Agrobacterium only the one harboring MudII1734 insert gave transformants which correspond to homologous recombination. These results indicate that gene fusion and insertion directed mutagenesis can be simultaneously obtained with this mini-Mu and could be used to study Agrobacterium gene expression.  相似文献   

14.
During the process of crown gall tumorigenesis, Agrobacterium tumefaciens transfers part of the tumor-inducing (Ti) plasmid, the T-DNA, to a plant cell where it eventually becomes stably integrated into the plant genome. Directly repeated DNA sequences, called T-DNA borders, define the left and the right ends of the T-DNA. The T-DNA can be physically separated from the remainder of the Ti-plasmid, creating a 'binary vector' system; this system is frequently used to generate transgenic plants. Scientists initially thought that only those sequences located between T-DNA left and right borders transferred to the plant. More recently, however, several reports have appeared describing the integration of the non-T-DNA binary vector 'backbone' sequences into the genome of transgenic plants. In order to investigate this phenomenon, we constructed T-DNA binary vectors containing a nos-nptll gene within the T-DNA and a mas2'-gusA (β-glucuronidase) gene outside the T-DNA borders. We regenerated kanamycin-resistant transgenic tobacco plants and analyzed these plants for the expression of the vector-localized gusA gene and for the presence of binary vector backbone sequences. Approximately one-fifth of the plants expressed detectable GUS activity. PCR analysis indicated that approximately 75% of the plants contained the gusA gene. Southern blot analysis indicated that the vector backbone sequences could integrate into the tobacco genome linked either to the left or to the right T-DNA border. The vector backbone sequences could also integrate into the plant genome independently of (unlinked to) the T-DNA. Although we could readily detect T-strands containing the T-DNA within the bacterium, we could not detect T-strands containing only the vector backbone sequences or these vector sequences linked to the T-DNA.  相似文献   

15.
 In comparison with the production of transgenic plants, the generation of hairy roots has the advantage that more independent transgenic lines can be produced in a shorter period of time. Therefore, we wanted to combine this approach with the promoter-trapping strategy to identify nematode-induced plant promoters. For the efficient production and culture of transgenic hairy root lines of Arabidopsis thaliana, the standard Agrobacterium rhizogenes transformation procedure was modified to avoid rapid callusing of the hairy roots. An average of 0.72 independent kanamycin-resistant (KmR) roots were obtained per leaf piece. However, a much lower frequency of reporter gene activation was obtained than expected from experiments with the same vectors in Agrobacterium tumefaciens: of more than 700 independent KmR hairy roots tested, only 8 were β-glucuronidase (GUS) positive. DNA hybridization was done on ten hairy root lines, of which one had a single truncated T-DNA and the others multiple copies of T-DNA that led to complex hybridization patterns. In a parallel analysis of A. thaliana plants transformed with the same vectors using A. tumefaciens, relatively simple T-DNA integration patterns were obtained. The low occurrence of GUS-positive hairy root lines in our experiments could be explained by the multiple T-DNA copies, especially in inverted array, that result in high frequencies of gene inactivation. Received: 11 August 1998 / Revision received: 17 February 1999 / Accepted: 18 March 1999  相似文献   

16.
17.
We determined whether T-DNA molecules introduced into plant cells using Agrobacterium are suitable substrates for homologous recombination. For the detection of such recombination events different mutant versions of a NPTII construct were used. In a first set of experiments protoplasts of Nicotiana tabacum SR1 were cocultivated with two Agrobacterium tumefaciens strains. Each strain contained a different T-DNA, one carrying a 5' deleted NPTII gene and the other a NPTII gene with a 3' deletion. A restored NPTII gene was found in 1-4% of the protoplasts that had been cotransformed with both T-DNAs. Restoration of the NPTII gene could only be the consequence of homologous recombination between the two different T-DNAs in the plant cell, since the possibility of recombination in Agrobacterium was excluded in control experiments. In subsequent experiments was investigated the potential use of Agrobacterium for gene targeting in plants. A transgenic tobacco line with a T-DNA insertion carrying a defective NPTII gene with a 3' deletion was transformed via Agrobacterium with a T-DNA containing a defective NPTII repair gene. Several kanamycin resistant plant lines were obtained with an intact NPTII gene integrated in their genome. In one of these lines the defective NPTII gene at the target locus had been properly restored. Our results show that in plants recombination can occur between a chromosomal locus and a homologous T-DNA introduced via A. tumefaciens. This opens the possibility of using the Agrobacterium transformation system for site directed mutagenesis of the plant genome.  相似文献   

18.
The Agrobacterium vacuum infiltration method has made it possible to transform Arabidopsis thaliana without plant tissue culture or regeneration. In the present study, this method was evaluated and a substantially modified transformation method was developed. The labor-intensive vacuum infiltration process was eliminated in favor of simple dipping of developing floral tissues into a solution containing Agrobacterium tumefaciens, 5% sucrose and 500 microliters per litre of surfactant Silwet L-77. Sucrose and surfactant were critical to the success of the floral dip method. Plants inoculated when numerous immature floral buds and few siliques were present produced transformed progeny at the highest rate. Plant tissue culture media, the hormone benzylamino purine and pH adjustment were unnecessary, and Agrobacterium could be applied to plants at a range of cell densities. Repeated application of Agrobacterium improved transformation rates and overall yield of transformants approximately twofold. Covering plants for 1 day to retain humidity after inoculation also raised transformation rates twofold. Multiple ecotypes were transformable by this method. The modified method should facilitate high-throughput transformation of Arabidopsis for efforts such as T-DNA gene tagging, positional cloning, or attempts at targeted gene replacement.  相似文献   

19.
20.
Nicotiana protoplasts and Arabidopsis leaf discs or roots were co-cultivated with two Agrobacterium strains each carrying a different T-DNA. Co-transformed plants were selected and the integration of the different T-DNAs was analysed at the genetic and genomic level. Genetic analysis showed that the T-DNAs derived from different bacteria were frequently integrated at the same locus, independent of the plant species or transformation method used. Southern analysis revealed that 12 out of 27 Arabidopsis transformants contained the co-transferred T-DNAs linked to each other in all possible configurations but with a preference for those with at least one right border involved in linkage. Overall, our data support the hypothesis that ligation of separate T-DNAs is a dominant mechanism in formation of the frequently observed repeats of identical T-DNAs. We propose a scheme which could explain the formation of T-DNA repeats and the preferential involvement of right borders in T-DNA linkages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号