首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Syrian Cardiomyopathic Hamster (BIO‐14.6/53.58 strains) model of cardiac failure, resulting from naturally occurring deletion at the SGCD (delta‐sarcoglycan) locus, displays widespread disturbances in catecholamine metabolism. Rare Mendelian myopathy disorders of human SGCD occur, although common naturally occurring SGCD genetic variation has not been evaluated for effects on human norepinephrine (NE) secretion. This study investigated the effect of SGCD genetic variation on control of NE secretion in healthy twin pairs. Genetic associations profiled SNPs across the SGCD locus. Trait heritability (h2) and genetic covariance (pleiotropy; shared h2) were evaluated. Sympathochromaffin exocytosis in vivo was probed in plasma by both catecholamines and Chromogranin B (CHGB). Plasma NE is substantially heritable (p = 3.19E‐16, at 65.2 ± 5.0% of trait variance), sharing significant (< 0.05) genetic determination with circulating and urinary catecholamines, CHGB, eGFR, and several cardio‐metabolic traits. Participants with higher pNE showed significant (< 0.05) differences in several traits, including increased BP and hypertension risk factors. Peak SGCD variant rs1835919 predicted elevated systemic vascular compliance, without changes in specifically myocardial traits. We used a chimeric‐regulated secretory pathway photoprotein (CHGA‐EAP) to evaluate the effect of SGCD on the exocytotic pathway in transfected PC12 cells; in transfected cells, expression of SGCD augmented CHGA trafficking into the exocytotic regulated secretory pathway. Thus, our investigation determined human NE secretion to be a highly heritable trait, influenced by common genetic variation within the SGCD locus. Circulating NE aggregates with BP and hypertension risk factors. In addition, coordinate NE and CHGB elevation by rs1835919 implicates exocytosis as the mechanism of release.  相似文献   

2.
Despite extensive research of genetic determinants of human adult height, the genes identified up until now allow to predict only a small proportion of the trait’s variance. To identify new genes we analyzed 2,486 genotyped and phenotyped individuals in a large pedigree including 23,612 members in 18 generations. The pedigree was derived from a young genetically isolated Dutch population, where genetic heterogeneity is expected to be low and linkage disequilibrium has been shown to be increased. Complex segregation analysis confirmed high heritability of adult height, and suggested mixed model of height inheritance in this population. The estimates of the model parameters obtained from complex segregation analysis were used in parametric linkage analysis, which highlighted three genome-wide significant and additionally at least four suggestive loci involved in height. Significant peaks were located at the chromosomal regions 1p32 (LOD score = 3.35), 2p16 (LOD score = 3.29) and 16q24 (LOD score = 3.94). For the latter region, a strong association signal (FDR q < 0.05) was obtained for 19 SNPs, 17 of them were located in the CDH13 (cadherin 13) gene of which one (rs1035569) explained 1.5% of the total height variance.  相似文献   

3.
4.
Plant species aboveground allometry can be viewed as a functional trait that reflects the evolutionary trade‐off between above‐ and belowground resources. In forest trees, allometry is related to productivity and resilience in different environments, and it is tightly connected with a compromise between efficiency‐safety and competitive ability. A better understanding on how this trait varies within and across species is critical to determine the potential of a species/population to perform along environmental gradients. We followed a hierarchical framework to assess tree height‐diameter allometry variation within and across four common European Pinus species. Tree height‐diameter allometry variation was a function of solely genetic components –approximated by either population effects or clinal geographic responses of the population's site of origin– and differential genetic plastic responses –approximated by the interaction between populations and two climatic variables of the growing sites (temperature and precipitation)–. Our results suggest that, at the species level, climate of the growing sites set the tree height‐diameter allometry of xeric and mesic species (Pinus halepensis, P. pinaster and P. nigra) apart from the boreal species (P. sylvestris), suggesting a weak signal of their phylogenies in the tree height‐diameter allometry variation. Moreover, accounting for interpopulation variability within species for the four pine species aided to: (1) detect genetic differences among populations in allometry variation, which in P. nigra and P. pinaster were linked to gene pools –genetic diversity measurements–; (2) reveal the presence of differential genetic variation in plastic responses along two climatic gradients in tree allometry variation. In P. sylvestris and P. nigra, genetic variation was the result of adaptive patterns to climate, while in P. pinaster and P. halepensis, this signal was either weaker or absent, respectively; and (3) detect local adaptation in the exponent of the tree height‐diameter allometry relationship in two of the four species (P. sylvestris and P. nigra), as it was a function of populations' latitude and altitude variables. Our findings suggest that the four species have been subjected to different historical and climatic constraints that might have driven their aboveground allometry and promoted different life strategies.  相似文献   

5.
Modern plant breeding can benefit from the allelic variation that exists in natural populations of crop wild relatives that evolved under natural selection in varying pedoclimatic conditions. In this study, next‐generation sequencing was used to generate 1.3 million genome‐wide single nucleotide polymorphisms (SNPs) on ex situ collections of Triticum urartu L., the wild donor of the Au subgenome of modern wheat. A set of 75 511 high‐quality SNPs were retained to describe 298 T. urartu accessions collected throughout the Fertile Crescent. Triticum urartu showed a complex pattern of genetic diversity, with two main genetic groups distributed sequentially from west to east. The incorporation of geographical information on sampling points showed that genetic diversity was correlated to the geographical distance (R2 = 0.19) separating samples from Jordan and Lebanon, from Syria and southern Turkey, and from eastern Turkey, Iran and Iraq. The wild emmer genome was used to derive the physical positions of SNPs on the seven chromosomes of the Au subgenome, allowing us to describe a relatively slow decay of linkage disequilibrium in the collection. Outlier loci were described on the basis of the geographic distribution of the T. urartu accessions, identifying a hotspot of directional selection on chromosome 4A. Bioclimatic variation was derived from grid data and related to allelic variation using a genome‐wide association approach, identifying several marker–environment associations (MEAs). Fifty‐seven MEAs were associated with altitude and temperature measures while 358 were associated with rainfall measures. The most significant MEAs and outlier loci were used to identify genomic loci with adaptive potential (some already reported in wheat), including dormancy and frost resistance loci. We advocate the application of genomics and landscape genomics on ex situ collections of crop wild relatives to efficiently identify promising alleles and genetic materials for incorporation into modern crop breeding.  相似文献   

6.
7.
Commiphora wightii is a medicinally important endangered species endemic to the Thar Desert of Rajasthan, India and adjoining areas of Pakistan. The populations of this species are declining sharply because of its extensive use as a natural herb. Random amplified polymorphic DNA analysis was conducted to find the genetic variation among 7 populations of C. wightii. Of the 100 random primers screened, 44 primers yielded 220 loci. Statistical analysis indicated low genetic diversity (H pop = 0.0958; I = 0.1498; mean polymorphic loci = 14.28%), and high genetic differentiation among the populations (G ST = 0.3990; AMOVA Φ ST of 0.3390; Bayesian θ (II) = 0.3002). The low genetic diversity may be due to geographic isolation and restricted gene flow (N m = 0.7533) between the fragmented populations. Unsustainable utilization of the plant has fragmented the population continuum which served the purpose of genetic exchange between populations. Mantel’s test was performed which revealed a highly significant positive correlation between genetic and geographic distance (r 2 = 0.614, P = 0.023) among the populations studied. Low variation can also be attributed to poor seed setting and the slow growth pattern of the species, which is also an apomict. In UPGMA dendrogram the Commiphora wightii samples were divided into two major and one minor cluster. These findings can serve as a guide to preserving the genetic resources of this medicinal plant species.  相似文献   

8.
Variations in species richness and diversity at a local scale are affected by a number of complex and interacting variables, including both natural environmental factors and human-made changes to the local environment. Here we identified the most important determinants of woody species richness and diversity at different growth stages (i.e. adult, sapling and seedling) in a bamboo–deciduous forest in northeast Thailand. A total of 20 environmental and human disturbance variables were used to determine the variation in species richness and diversity. In total, we identified 125 adult, 111 sapling (within fifty 20 × 20-m plots) and 89 seedling species (within one hundred and twenty 1 × 1-m subplots). Overall results from stepwise multiple regression analyses showed that environmental variables were by far the most important in explaining the variation in species richness and diversity. Forest structure (i.e. number of bamboo clumps and canopy cover) was important in determining the adult species richness and diversity (R 2 = 0.48, 0.30, respectively), while topography (i.e. elevation) and human disturbance (i.e. number of tree stumps) were important in determining the sapling species richness and diversity (R 2 = 0.55, 0.39, respectively). Seedling species richness and diversity were negatively related to soil phosphorus. Based on our results, we suggest that the presence of bamboos should be incorporated in management strategies for maintaining woody species richness and diversity in these forest ecosystems. Specifically, if bamboos cover the forest floor at high densities, it may be necessary to actively control these species for successful tree establishment.  相似文献   

9.
10.
Brassica napus (AnAnCnCn) is an important worldwide oilseed crop, but it is a young allotetraploid with a short evolutionary history and limited genetic diversity. To significantly broaden its genetic diversity and create a novel heterotic population for sustainable rapeseed breeding, this study reconstituted the genome of B. napus by replacing it with the subgenomes from 122 accessions of Brassica rapa (ArAr) and 74 accessions of Brassica carinata (BcBcCcCc) and developing a novel gene pool of B. napus through five rounds of extensive recurrent selection. When compared with traditional B. napus using SSR markers and high‐throughput SNP/Indel markers through genotyping by sequencing, the newly developed gene pool and its homozygous progenies exhibited a large genetic distance, rich allelic diversity, new alleles and exotic allelic introgression across all 19 AC chromosomes. In addition to the abundant genomic variation detected in the AC genome, we also detected considerable introgression from the eight chromosomes of the B genome. Extensive trait variation and some genetic improvements were present from the early recurrent selection to later generations. This novel gene pool produced equally rich phenotypic variation and should be valuable for rapeseed genetic improvement. By reconstituting the genome of B. napus by introducing subgenomic variation within and between the related species using intense selection and recombination, the whole genome could be substantially reorganized. These results serve as an example of the manipulation of the genome of a young allopolyploid and provide insights into its rapid genome evolution affected by interspecific and intraspecific crosses.  相似文献   

11.
Hair morphology is a highly divergent phenotype among human populations. We recently reported that a nonsynonymous SNP in the ectodysplasin A receptor (EDAR 1540T/C) is associated with head hair fiber thickness in an ethnic group in Thailand (Thai-Mai) and an Indonesian population. However, these Southeast Asian populations are genetically and geographically close, and thus the genetic contribution of EDAR to hair morphological variation in the other Asian populations has remained unclear. In this study, we examined the association of 1540T/C with hair morphology in a Japanese population (Northeast Asian). As observed in our previous study, 1540T/C showed a significant association with hair cross-sectional area (P = 2.7 × 10−6) in Japanese. When all populations (Thai-Mai, Indonesian, and Japanese) were combined, the association of 1540T/C was stronger (P = 3.8 × 10−10) than those of age, sex, and population. These results indicate that EDAR is the genetic determinant of hair thickness as well as a strong contributor to hair fiber thickness variation among Asian populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Knowledge of the genetic basis of sexual ornaments is essential to understand their evolution through sexual selection. Although carotenoid‐based ornaments have been instrumental in the study of sexual selection, given the inability of animals to synthesize carotenoids de novo, they are generally assumed to be influenced solely by environmental variation. However, very few studies have directly estimated the role of genes and the environment in shaping variation in carotenoid‐based traits. Using long‐term individual‐based data, we here explore the evolutionary potential of a dynamic, carotenoid‐based ornament (namely skin coloration), in male and female common kestrels. We first estimate the amount of genetic variation underlying variation in hue, chroma and brightness. After correcting for sex differences, the chroma of the orange‐yellow eye ring coloration was significantly heritable (h2 ± SE = 0.40 ± 0.17), whereas neither hue (h2 = 0) nor brightness (h2 = 0.02) was heritable. Second, we estimate the strength and shape of selection acting upon chromatic (hue and chroma) and achromatic (brightness) variation and show positive and negative directional selection on female but not male chroma and hue, respectively, whereas brightness was unrelated to fitness in both sexes. This suggests that different components of carotenoid‐based signals traits may show different evolutionary dynamics. Overall, we show that carotenoid‐based coloration is a complex and multifaceted trait. If we are to gain a better understanding of the processes responsible for the generation and maintenance of variation in carotenoid‐based coloration, these complexities need to be taken into account.  相似文献   

13.
Height is a classic polygenic trait with high heritability (h2 = 0.8). Recent genome-wide association studies have revealed many independent loci associated with human height. In addition, although many studies have reported an association between copy number variation (CNV) and complex diseases, few have explored the relationship between CNV and height. Recent studies reported that single nucleotide polymorphisms (SNPs) are highly correlated with common CNVs, suggesting that it is warranted to survey CNVs to identify additional genetic factors affecting heritable traits such as height.This study tested the hypothesis that there would be CNV regions (CNVRs) associated with height nearby genes from the GWASs known to affect height. We identified regions containing > 1% copy number deletion frequency from 3667 population-based cohort samples using the Illumina HumanOmni1-Quad BeadChip. Among the identified CNVRs, we selected 15 candidate regions that were located within 1 Mb of 283 previously reported genes. To assess the effect of these CNVRs on height, statistical analyses were conducted with samples from a case group of 370 taller (upper 10%) individuals and a control group of 1828 individuals (lower 50%).We found that a newly identified 17.7 kb deletion at chromosomal position 12q24.33, approximately 171.6 kb downstream of GPR133, significantly correlated with height; this finding was validated using quantitative PCR. These results suggest that CNVs are potentially important in determining height and may contribute to height variation in human populations.  相似文献   

14.
15.
Chronic heart failure (CHF) has poor prognosis and polygenic heritability, and the genetic risk score (GRS) to predict CHF outcome has not yet been researched comprehensively. In this study, we sought to establish GRS to predict the outcomes of CHF. We re‐analysed the proteomics data of failing human heart and combined them to filter the data of high‐throughput sequencing in 1000 Chinese CHF cohort. Cox hazards models were used based on single nucleotide polymorphisms (SNPs) to estimate the association of GRS with the prognosis of CHF, and to analyse the difference between individual SNPs and tertiles of genetic risk. In the cohort study, GRS encompassing eight SNPs harboured in seven genes were significantly associated with the prognosis of CHF (P = 2.19 × 10?10 after adjustment). GRS was used in stratifying individuals into significantly different CHF risk, with those in the top tertiles of GRS distribution having HR of 3.68 (95% CI: 2.40‐5.65 P = 2.47 × 10?10) compared with those in the bottom. We developed GRS and demonstrated its association with first event of heart failure endpoint. GRS might be used to stratify individuals for CHF prognostic risk and to predict the outcomes of genomic screening as a complement to conventional risk and NT‐proBNP.  相似文献   

16.
What shapes variation in genetic structure within a community of codistributed species is a central but difficult question for the field of population genetics. With a focus on the isolated coral reef ecosystem of the Hawaiian Archipelago, we assessed how life history traits influence population genetic structure for 35 reef animals. Despite the archipelago's stepping stone configuration, isolation by distance was the least common type of genetic structure, detected in four species. Regional structuring (i.e. division of sites into genetically and spatially distinct regions) was most common, detected in 20 species and nearly in all endemics and habitat specialists. Seven species displayed chaotic (spatially unordered) structuring, and all were nonendemic generalist species. Chaotic structure also associated with relatively high global FST. Pelagic larval duration (PLD) was not a strong predictor of variation in population structure (R2 = 0.22), but accounting for higher FST values of chaotic and invertebrate species, compared to regionally structured and fish species, doubled the power of PLD to explain variation in global FST (adjusted R2 = 0.50). Multivariate correlation of eight species traits to six genetic traits highlighted dispersal ability, taxonomy (i.e. fish vs. invertebrate) and habitat specialization as strongest influences on genetics, but otherwise left much variation in genetic traits unexplained. Considering that the study design controlled for many sampling and geographical factors, the extreme interspecific variation in spatial genetic patterns observed for Hawaìi marine species may be generated by demographic variability due to species‐specific abundance and migration patterns and/or seascape and historical factors.  相似文献   

17.
Rising temperatures have begun to shift flowering time, but it is unclear whether phenotypic plasticity can accommodate projected temperature change for this century. Evaluating clines in phenological traits and the extent and variation in plasticity can provide key information on assessing risk of maladaptation and developing strategies to mitigate climate change. In this study, flower phenology was examined in 52 populations of big sagebrush (Artemisia tridentata) growing in three common gardens. Flowering date (anthesis) varied 91 days from late July to late November among gardens. Mixed‐effects modeling explained 79% of variation in flowering date, of which 46% could be assigned to plasticity and genetic variation in plasticity and 33% to genetics (conditional R2 = 0.79, marginal R2 = 0.33). Two environmental variables that explained the genetic variation were photoperiod and the onset of spring, the Julian date of accumulating degree‐days >5 °C reaching 100. The genetic variation was mapped for contemporary and future climates (decades 2060 and 2090), showing flower date change varies considerably across the landscape. Plasticity was estimated to accommodate, on average, a ±13‐day change in flowering date. However, the examination of genetic variation in plasticity suggests that the magnitude of plasticity could be affected by variation in the sensitivity to photoperiod and temperature. In a warmer common garden, lower‐latitude populations have greater plasticity (+16 days) compared to higher‐latitude populations (+10 days). Mapped climatypes of flowering date for contemporary and future climates illustrate the wide breadth of plasticity and large geographic overlap. Our research highlights the importance of integrating information on genetic variation, phenotypic plasticity and climatic niche modeling to evaluate plant responses and elucidate vulnerabilities to climate change.  相似文献   

18.
The root systems of containerized seedlings must be sufficiently developed and have adequate root plug cohesion to permit handling and the planting of the seedlings with minimal root damage. Genetic variability in morphological and physiological seedling characteristics of 75 open-pollinated white spruce families was estimated to determine whether genetic selection for improved seedling root systems is possible. Seedlings were grown for 2 years under standard cultural practices in a forest nursery. Gas exchange measurements and seedling morphological characteristics (height, diameter, shoot and root dry mass, root to shoot ratio) were measured at the end of the two growing seasons whereas seedling mineral (N, P, and K) status was assessed at the end of the first growing season. Genetic parameters (heritabilities—h 2—and genetic correlations) were estimated for every seedling characteristic and a strong genetic control associated with a large genetic variation was observed at both family (0.20 ≤ hf2 h_f^2  ≤ 0.88) and individual (0.21 ≤ hi2 h_i^2  ≤ 0.97) levels. A single, late-season measurement of physiological characteristics did not reveal physiological basis for family variability in seedling root growth. Nevertheless, the family variation was large enough to permit genetic improvement of 2-year-old seedling juvenile morphological characteristics. Strong, positive genetic correlations enable us to foresee using root collar diameter as an effective method for indirectly selecting white spruce families with heavier root systems.  相似文献   

19.
Understanding how abiotic factors influence the spatial distribution of genetic variation provides insight into microevolutionary processes. The intertidal seascape is characterized by highly heterogeneous habitats which probably influence the partitioning of genetic variation at very small scales. The effects of tidal height on genetic variation in both the haploid (gametophytes) and diploid (tetrasporophytes) stages of the red alga Chondrus crispus were studied. Fronds were sampled every 25 cm within a 5 m × 5 m grid and along a 90-m transect at two shore heights (high and low) in one intertidal site in France. The multilocus genotype of 799 fronds was determined (Nhaploid = 586; Ndiploid = 213) using eight microsatellite loci to test the following hypotheses: (i) high and low shore fronds belong to genetically differentiated populations, (ii) gene flow is restricted within the high shore habitat due to tidal-influenced isolation and (iii) significant FIS values are driven by life history characteristics. Pairwise FST estimates between high and low shore levels supported the hypothesis that high and low shore fronds were genetically differentiated. The high shore was characterized by the occurrence of within-shore genetic differentiation, reduced genetic diversity and increased levels of intergametophytic selfing, suggesting it is a marginal environment. These results suggest at fine scales within the intertidal seascape the same mechanisms as those over the species’ distributional range are at work with core and marginal population dynamics.  相似文献   

20.
Triploid Fritillaria camschatcensis (L.) Ker-Gawler (2n = 3x = 36) is a wild species growing in the low-lying areas of Hokkaido Island, Japan, including the Sapporo campus of Hokkaido University. Many F. camschatcensis plants grew on the campus about a century ago, but we seldom find the plants nowadays and so a project to restore this species is being planned. Because preservation of genetic diversity and composition in populations has become a major target of conservation, this study compared variation in the F. camschatcensis population on the Sapporo campus with that in two other populations in Hokkaido. Phenetic variation assessed by 57 randomly amplified polymorphic DNA markers showed that the three populations were significantly distinct from each other; analysis of molecular variance showed 64.3% of variation (P < 0.001) existed among the three populations. Comparison of phenetic diversity on the Sapporo campus population with that in the two other populations showed that the Sapporo campus population contained large genetic variation despite reduced plant numbers. These results indicate that multiplying F. camschatcensis individuals on the Sapporo campus is adequate to restore the Sapporo campus population because this population contains enough genetic diversity, and that transplanting from other populations should be avoided so as not to introduce different genotypes into the campus. These results will be used to design the restoration strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号