首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetic field dependence of the NMR spin-lattice relaxation time of water protons in intact bovine chromaffin vesicles has been studied over the range 1.00–23.49 kG. The T1 relaxation time shows a dispersion a t field values near 20 kG. The observed proton resonance arises mainly from solvent protons (1H2O), but the relaxation rate, which is a weighted average over all sites with which the solvent protons rapidly exchange (i.e., NH and OH protons), is dominated by exchangeable protons in the most slowly moving soluble component. The field dependence of the T1 dispersion demonstrates the existence of a site of exchangeable protons for which τr = 1.9±0.5 ns at 3°C. This site is assigned to ATP and cationic groups to which its phosphate esters are complexed, since previously measured correlation times of epinephrine and the chromogranin backbone are nearly an order of magnitude too short to explain the T1 dispersion. Quantitative estimates of the relative numbers of exchangeable protons on the different soluble components support this interpretation. The temperature dependence of T1 of the peak due to exchangeable protons has also been measured over a temperature range ?3 to 25°C. T1 lengthens by about 30% over this range and exhibits no discontinuous behavior, as would be expected if a gel transition or structural alterations in the storage complex occurred. T1 lengthens by less than 10% in chromaffin granule pastes that have been maintained at 25°C for 24 h, indicating considerable thermal stability in the storage complex. Possible effects on the solvent T1 due to paramagnetic ions have been considered with the conclusion that they are probably negligible or of minor significance.  相似文献   

2.
The critical micellar concentration (CMC) of stearoylcarnitine was determined at different pH values at room temperature by fluorescence spectroscopy, monitoring the spectral changes of 8-anilinonaphthalene-1-sulfonate (ANS). The CMC was found to vary with pH, increasing from about 10 μM at pH 3.0 to ca. 25 μM at pH 7.0, but decreasing slightly with further increase in pH to approximately 19 μM at pH 10.0. Differential scanning calorimetry (DSC) shows that stearoylcarnitine dispersed in water at low concentration undergoes a broad thermotropic phase transition at 44.5°C, with a transition enthalpy of 15.0 kcal/mol. The transition temperature (T t) shifts to ca. 50.5°C in the presence of 1 mM EDTA or when the concentration is increased significantly. The turbidity of aqueous dispersions of stearoylcarnitine was found to be considerably high at low temperatures, which decreases quite abruptly over a short temperature range, indicating that a transition occurs from a phase of large aggregates to one of much smaller aggregates, most likely micelles. The phase transition temperature was determined as 29.1°C at pH 3.0, which increased with increasing pH up to a value of 55.3°C at pH 8.6 and remains nearly constant thereafter up to pH 11.2. The pH dependence of CMC and T t suggest that the pK a of the carboxyl group of long chain acylcarnitines shifts to higher temperatures upon aggregation (micelles or bilayer membranes).  相似文献   

3.
The proton concentration in the medium affects the maximal velocity of sugar uptake with a Km of 0.3 mM (high affinity uptake). By decreasing the proton concentration a decrease in high affinity sugar uptake is observed, in parallel the activity of a low affinity uptake system (Km of 50 mM) rises. Both systems add up to 100%. The existence of the carrier in two conformational states (protonated and unprotonated) has been proposed therefore, the protonated form with high affinity to 6-deoxyglucose, the unprotonated form with low affinity. A plot of extrapolated Vmax values at low substrate concentration versus proton concentration results in a Km for protons of 0.14 µM, i.e. half-maximal protonation of the carrier is achieved at pH 6.85. The stoichiometry of protons cotransported per 6-deoxyglucose is close to 1 at pH 6.0–6.5. At higher pH values the stoichiometry continuously decreases; at pH 8.0 only one proton is cotransported per four molecules of sugar. Whereas the translocation of the protonated carrier is strictly dependent on sugar this coupling is less strict for the unprotonated form. Therefore at alkaline pH a considerable net efflux of accumulated sugar can occur. The dependence of sugar accumulation on pH has been measured. The decrease in accumulation with higher pH values can quantitatively be explained by the decrease in the amount of protonated carrier. The properties of the unprotonated carrier resemble strikingly the properties of carrier at the inner side of the membrane. The inside pH of Chlorella was measured with the weak acid 5,5-dimethyl-2, 4-oxazolidinedion (DMO). At an outside pH of 6.5 the internal pH was found to be 7.2. To explain the extent of sugar accumulation it has to be assumed that the membrane potential also contributes to active sugar transport in this alga.  相似文献   

4.
Careful experiments on the measurement of the intensity of the deuterium NMR signal for 2H2O in muscle and in its distillate were performed, and they showed that all 2H2O in muscles is “NMR visible.”The spin-lattice relaxation time (T1) of the water protons in the muscle and liver of mice and in egg white has been studied at six frequencies ranging from 4.5 to 6.0 MHz over the temperature range of +37 to −70°C. T1 values of deuterons in 2H2O of gastrocnemius muscle and liver of mice have been measured at three frequencies (4.5, 9.21 and 15.35 MHz) over the temperature range of +37 to −20°C. Calculations on T1 for both proton and deuteron have been made and compared with the experimental data. It is suggested that the reduction of the T1 values compared to pure water and the frequency dependence of T1 are due to water molecules in the hydration layer of the macromolecules, and that the bulk of water molecules in the biological tissues and egg white undergoes relaxation like ordinary liquid water.  相似文献   

5.
Abstract

An examination of the 1H NMR assignments and exchange properties of the amino resonances of the self-complementary tetramer, d(CGCG) was undertaken with regard to buffer effects, transfer of saturation from the water resonance and temperature dependence of amino 1H line shape and chemical shift. The lack of buffer effect on visible exchangeable proton resonances is evidence for the stringent requirement for nucleo-base protonation at pH values below neutrality, which is greatly reduced in the helical state. For this reason, sharp resonances are observed for both Watson-Crick and non-Watson-Crick cytosine amino protons for base-paired regions. Considerations of monomeric exchange mechanisms for the cytosine and guanine amino protons formed the basis for successful assignment and isolation of their resonances in the helical state by presaturation of the water resonance at selected pH values. Preirradiation of the water resonance at pH <6 would isolate the guanine amino 1H resonances of any self-complementary oligonucleotide, to exploit its high sensitivity as a useful proble of helix ? coil premelting.  相似文献   

6.
The proton magnetic relaxation time, T1, has been measured at 29 MHz in 0.1M KH2PO4 and 0.1M NaCI (both pH 6) aqueous solutions of human ferrihaemoglobin, the protein concentrations ranging from 0.5 to 5 mM per haem. The linear dependence on protein concentration of the enhancement in relaxation rates, Δ(1/T1), due to the presence of the paramagnetic iron in haemoglobin was confirmed at 34°C and at ~10°C. In the middle temperature range there is a thermally activated process, whose energy of activation depends on protein concentration. This dependence is different for the two salt solutions; Ea increases with cHb for 0.1M KH2PO4 and decreases for 0.1M NaCI. The model of water-proton exchange between the bulk solvent and the sixth coordination site of the haem iron was used to calculate the distance from the “liganded” water protons to the haem iron. This yields distances much larger than those determined by X-ray crystal structure analysis. A model is proposed which reconciliates both types of data. The low-temperature relaxation rates cannot be used in deriving quantitative stereochemical data for the haem pocket because of its special shape. Irrespective of the molecular model adopted, the experimental results show clearly that, both at low (~10°C) and higher (>34°C) temperatures, the interaction of paramagnetic haem iron with water protons is practically the same for the two aqueous solutions. The dynamic state of the haemoglobin molecule, as indicated by the middle-temperature range, is completely different in 0.1M KH2PO4 and 0.1M NaCl, pH 6.  相似文献   

7.
A new technique – Z-spectrum Analysis Provides Proton Environment Data (ZAPPED) – was used to map cross-relaxing free and restricted protons in nine healthy subjects plus two brain tumor patients at 3T. First, MT data were acquired over a wide symmetric range of frequency offsets, and then a trio of quantitative biomarkers, i.e., the apparent spin-spin relaxation times (T2,f, T2,r) in both free and restricted proton pools as well as the restricted pool fraction Fr, were mapped by fitting the measured Z-spectra to a simple two-Lorentzian compartment model on a voxel-by-voxel basis. The mean restricted exchangeable proton fraction, Fr, was found to be 0.17 in gray matter (GM) and 0.28 in white matter (WM) in healthy subjects. Corresponding mean values for apparent spin-spin relaxation times were 785 µs (T2,f) and 17.7 µs (T2,r) in GM, 672 µs (T2,f) and 23.4 µs (T2,r) in WM. The percentages of Ff and Fr in GM are similar for all ages, whereas Fr shows a tendency to decrease with age in WM among healthy subjects. The patient ZAPPED images show higher contrast between tumor and normal tissues than traditional T2-weighted and T1-weighted images. The ZAPPED method provides a simple phenomenological approach to estimating fractions and apparent T2 values of free and restricted MT-active protons, and it may offer clinical useful information.  相似文献   

8.
J. Clifford  B. Sheard 《Biopolymers》1966,4(10):1057-1065
Measurements have been made of the nuclear magnetic relaxation times T1 and T2 of the protons of water in hair. These are interpreted as showing that water molecules in hair exist in a continuous range of environments with a wide spread of rates of molecular rotation. Even at high water contents most of the water molecules are much less mobile than molecules in bulk water. The term “mobility” is given a quantitative meaning.  相似文献   

9.
Spin-lattice relaxation times for the water protons in rat gastronemius muscle are reported over the temperature range +37 to −70°C at six resonance frequencies ranging from 4.5 to 60.0 MHz. From −8 to −70°C, the bulk of the muscle water is frozen. The unfrozen part is termed the hydrated layer and amounts to 7–12% of the total water content. Its correlation time takes teh form of a log-Gaussaian distribution function. From +37 to −8°C, the spin-lattice relaxation time is explained by the exchange of water between the hydration layer and the rest of the water, which behaves like ordinary liquid water. The fact that the observed T2 values are smaller than the calculated values is attributed to the inner field inhomogeneity of the heterogenous system and/or the modification of T2 due to non-zero dipolar interaction.In the presence of perdeuterated dimethylsulfoxide, the freezing point of water decreases and the amount of non-freezable water increases. T1 of water protons for muscle containing 10, 20, and 40% dimethylsulfoxide was calculated.  相似文献   

10.
A Fourier-transform method has been used to measure the spin-lattice relaxation-times (T1 values) of the anomeric protons of a selection of oligo- and poly-saccharide derivatives. Although systematic variations are found for the substances of lower molecular weight, these variations are essentially non-existent at higher molecular weights. Data for the disaccharides cellobiose, maltose, lactose, gentiobiose, and melibiose demonstrate that proton T1-values may provide a powerful method for evaluating conformations of oligosaccharides.  相似文献   

11.
Abstract

Proton ENDOR has been observed from frozen solutions (ca. 38K°) of copper meso-(4-N-tetra-methylpyridyl)porphyrin (CuTMpyP(4)) complexed with Salmon sperm DNA in water and D2O. Lines from exchangeable protons of the DNA bases have been observed in these ENDOR spectra. Analyses of these ENDOR data show that the separations of these DNA protons from the copper atom are between 3.76 and 3.84 A with angles of 19.5 to 22.5 degrees between the Cu-H vectors and the gz axis. A distant ENDOR response has also been observed from phosphorous nuclei in the DNA backbone. We estimate that the phosphorous atoms producing this ENDOR signal are 7.5–10 Å from the copper center of the porphyrin. These ENDOR data combined with results from an earlier NMR investigation (1) have been used to construct a computer simulated model of the binding site in which the porphyrin is partially intercalated and extends into the major groove of DNA. The two GC base pairs at this site are slightly inequivalent. For each, the G imino proton and one of the C amino protons are at appropriate positions to account for the ENDOR signals arising from exchangeable protons. It is unlikely that this inequivalence would persist at room temperature where dynamic processes would give an apparently symmetric interaction. Although the model accounts for all reported experimental data involving tetracationic porphyrin species which have been suggested to be intercalators, it is not a unique solution.  相似文献   

12.
The effect of Ca2+ ion on structural fluctuation of a milk Ca2+-binding protein, α-lactalbumin, under native conditions was investigated by comparing hydrogen-exchange reactions of tryptophan residues in the apo-form without Ca2+ and in the holo-form at 1 mM CaCl2 at pH 7.0 in the presence of 0.1M Na+. The reactions were followed by measuring time-dependent absorption changes at 298–300 nm due to the 2H-1H exchange of the tryptophan imino protons and were found to be biphasic under all the conditions examined. Two of the four tryptophan protons are insensitive to Ca2+ concentration and show a relatively fast exchange rate. The other two protons are much more extensively protected (a protection degree of 103–105) and are markedly affected by the presence of Ca2+. Examinations of the temperature dependence and pH dependence of the individual exchange rates have been utilized for elucidating the exchange mechanism. The fast protons show a low activation energy reaction with so-called EX2 kinetics. The exchange reaction of the slow protons is accompanied by a high activation energy, and the exchange mechanism of the protons depended on the presence or absence of stabilizing Ca2+ ions—the EX1 kinetics for the apo-protein and the EX2 kinetics for the holo-protein at 1 mM Ca2+. The exchange reaction in the thermally unfolded state was also found to be biphasic, but the fast phase, which has an exchange rate in the fully exposed state, becomes predominant with decreasing temperature. By taking this fact and using a structural unfolding model of hydrogen exchange, the present results are fully consistent with thermodynamic parameters of the thermal transition and kinetic parameters of refolding reactions induced by concentration jumps of guanidine hydrochloride obtained in previous studies. It is demonstrated that the reaction of the slow protons in the native state is mediated by a transient global unfolding equivalent to the “thermal” unfolding under a native condition and that switching of the exchange mechanism from the EX1 to EX2 kinetics results from acceleration of the refolding rate with an increase in Ca2+ concentration. The transient global unfolding takes place even under a strongly native condition, e.g., at a temperature 20° below the beginning of the thermal transition.  相似文献   

13.
We report proton magnetic resonance studies of a series of lysine oligopeptides in H2O solution. At pH 5 the protonated ε-amino groups are seen as broad resonances; the peptide NH proton resonances are split by spin–spin coupling with the Cα-H proton, and appear at positions which depend on position in the chain and on chain length. Assignments were made by the europium shift method, and we observed the expected effect of catalysis by the terminal —NH3+ of exchange of the adjacent peptide NH. Coupling constants and the temperature coefficient of chemical shift values were consistent with a non-hydrogen-bonded structure for the oligolysines. The rate and mechanism of NH hydrogen exchange were investigated by line-broadening measurements of the peptide protons as a function of pH. Exchange was found to be OH? catalyzed, with large differences in the rate depending on position in the chain. Preliminary studies of the complex between double-helical d(pA)3pGpC(pT)3 and tetra(L -lysine) were performed using 1H- and 31P-nmr techniques. Pmr spectra of the complex at pH values ranging from 3.98 to 8.15 showed very complicated patterns. Downfield shifts and reduction in exchange rates were observed for several tetra(L -lysine) protons. 31P-nmr spectra of the complex reveal an upfield shift of 1 ppm for 3′-5′ phosphate diester resonances on complexation. 31P T1 relaxation times change little on complex formation at low temperature but are altered at higher temperature.  相似文献   

14.
The longitudinal relaxation time (T1) of water protons in floretsof R. ? akebono flower buds was measured with a pulse NMR spectrometerto determine the relationship of T1 to water content and coldhardiness (supercooling ability). Seasonal changes of T1 inflorets were closely correlated with water content and supercoolingability of florets. T1 of florets was short for acclimated budshaving a low water content and long for non-acclimated budshaving a high water content. Flower buds collected in Novemberand stored at 0 and 5?C for 4 weeks had shorter T1 values thanbuds stored at 10?C even though the floret water content andsupercooling ability were similar. Thus, the short T1 of coldacclimated buds hardened naturally or by storage at low temperaturesis due to a combination of both reduced water content and temperature. (Received August 27, 1983; Accepted May 26, 1984)  相似文献   

15.
Oxygen consumption in photosystem II (PSII) preparations in the light was 2 mol O2/h per mg Chl at weakly acidic and at neutral pH values. It increased fourfold to fivefold at pH 8.5-9.0. The addition of either artificial electron donors for PSII such as MnCl2 or diphenylcarbazide, or diuron as an inhibitor of electron transfer from QA, the primary bound quinone acceptor, to QB, the secondary bound quinone acceptor of PSII, resulted in a decrease in oxygen consumption rate at basic pH to value close to ones measured at pH 6.5. Such additions did not affect oxygen consumption at lower pH values. The induction of variable chlorophyll fluorescence yield in the light differed greatly at pH 6.5 and 8.5. While at pH 6.5 the fluorescence yield, after an initial fast rise almost to Fmax, only slightly decreased, at pH 8.5 after such a rise it dropped promptly to a low value. The additions of the artificial electron donors at pH 8.5 resulted in the induction kinetics close to that observed at pH 6.5. These data indicate impairment of electron donation to P680+ that could be caused by damage to the water oxidation system at basic pH values. In experiments with PSII preparations treated with Tris to destroy the water-oxidizing complex, photoconsumption of oxygen in the entire pH region was close to the values in untreated preparations at basic pH. In untreated preparations the rate of light-induced oxygen consumption decreased in the presence of catalase, which decomposes H2O2, as well as in the presence of electron acceptor potassium ferricyanide. From these data it is suggested that the light-induced oxygen consumption in PSII is caused by two processes, by an interaction of O2 with organic radicals, which were formed due to oxidation of components of the donor side of this photosystem (proteins, lipids, pigments) by cation-radical P680+, as well as by oxygen reduction by still unidentified components of PSII.  相似文献   

16.
Abstract

A combination of NOESY and ROESY experiments (using ammonia as a catalyst across the pH range of 5 to 8.6) has given us a clear understanding regarding the origin of nOes that are attributed to the stereochemical location and the residence time of water in the major and the minor grooves of d5'(1C2C3A4T5T6A7A8T9G10G)2 3' duplex Our conclusions are the following: (i) In the major groove, the presence of ammonia in the buffer does not influence on the process of exchange between bound and bulk water, (ii) It has been found that the observation of the bound water in the minor groove is a result of straight dipole-dipole effect at the physiological pH. (iii) The residence time of water near H2 of adenine (H2A) in the minor groove has been estimated to be in the range of 0.3–0.5ns, which is closer to the residence time of the bound water found on the surface of protein, (iv) The hydration pattern in the minor groove in the physiological pH, under our NMR measurement condition, is similar to the ones found in the X-ray structure, (v) It has been shown that at pH > 8.0 the nOe/rOe intensities of the water-H2A crosspeaks dramatically increase due to dipole-dipole and/or relayed magnetization transfer from H2A to water through ammonia catalyst.  相似文献   

17.
Spin-lattice (Ti) relaxation mesurements can provide information about the presence of oxygen in the environment of a nucleus, since oxygen, by virtue of its paramagnetic properties, increases Ti relaxation rates. Spin-lattice relaxation times were measured for the choline, fatty acid methylene, and fatty acid methyl protons of sonicated dimyristoyl phosphatidyl choline vesicles in D2O at several oxygen pressures. The increase in relaxation rate due to oxygen was found to be greater for the fatty acid resonances than for the choline resonance. This was interpreted to indicate the presence of oxygen in the hydrocarbon core of the bilayer. In addition, the Ti relaxation data permitted calculation of the oxygen diffusion coefficient in the water and lipid phases.  相似文献   

18.
TheT 1 andT 2 relaxation times of water protons in two cell types in culture derived from Syrian hamster fetuses (normal primary or secondary fetal cells vs BP6T tumor cells derived from the normal cells transformed by carcinogens) were measured at 7.05 Tesla magnetic field (proton frequency =300 MHz). TheT 1/T 2 ratios and the correlation time, τ c , calculated from theT 1/T 2 ratio of cellular water protons, are significantly different in these two fibroblastic cell types of the same biological origin and with similar morphologies and growth rates in culture.  相似文献   

19.
The total water content, the amount of non-freezable water, and the Na+ and K+ contents in the gastrocnemius muscle of albino mice with and without a solid tumor were determined. The spin-lattice relaxation time (T1) for the water protons in the two kinds of muscle were measured at six resonance frequencies ranging from 4.5 to 60 MHz over the temperature range +37 to −65°C. Quantitatively calculated T1 values are given. The difference in T1 for the two types of muscle at temperatures above −5°C is attributed to the difference in the distribution ratio of water between hydration and free states, and bears no direct relation to the concentration of Na+.  相似文献   

20.
Apo and holo forms of lactoferrin (LF) from caprine and bovine species have been characterized and compared with regard to the structural stability determined by thermal denaturation temperature values (T m), at pH 2.0–8.0. The bovine lactoferrin (bLF) showed highest thermal stability with a T m of 90 ± 1°C at pH 7.0 whereas caprine lactoferrin (cLF) showed a lower T m value 68 ± 1°C. The holo form was much more stable than the apo form for the bLF as compared to cLF. When pH was gradually reduced to 3.0, the T m values of both holo bLF and holo cLF were reduced showing T m values of 49 ± 1 and 40 ± 1°C, respectively. Both apo and holo forms of cLF and bLF were found to be most stable at pH 7.0. A significant loss in the iron content of both holo and apo forms of the cLF and bLF was observed when pH was decreased from 7.0 to 2.0. At the same time a gradual unfolding of the apo and holo forms of both cLF and bLF was shown by maximum exposure of hydrophobic regions at pH 3.0. This was supported with a loss in α-helix structure together with an increase in the content of unordered (aperiodic) structure, while β structure seemed unchanged at all pH values. Since LF is used today as fortifier in many products, like infant formulas and exerts many biological functions in human, the structural changes, iron binding and release affected by pH and thermal denaturation temperature are important factors to be clarified for more than the bovine species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号