首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mayburd AL  Kassner RJ 《Biochemistry》2002,41(39):11582-11591
The binding of nitric oxide to ferric and ferrous Chromatium vinosum cytochrome c' was studied. The extinction coefficients for the ferric and ferrous nitric oxide complexes were measured. A binding model that included both a conformational change and dissociation of the dimer into subunits provided the best fit for the ferric cytochrome c' data. The NO (nitric oxide) binding affinity of the WT ferric form was found to be comparable to the affinities displayed by the ferric myoglobins and hemoglobins. Using an improved fitting model, positive cooperativity was found for the binding of NO to the WT ferric and ferrous forms, while anticooperativity was the case for the Y16F mutant. Structural explanations accounting for the binding are proposed. The NO affinity of ferrous cytochrome c' was found to be much lower than the affinities of myoglobins, hemoglobins, and pentacoordinate heme models. Structural factors accounting for the difference in affinities were analyzed. The NO affinity of ferrous cytochrome c' was found to be in the range typical of receptors and carriers. In addition, cytochrome c' was found to react with cytosolic light-irradiated membranes in the presence of succinate and carbon monoxide. With these results, a biochemical model of cytochrome c' functioning as a nitric oxide carrier was proposed.  相似文献   

2.
The spectral properties of both ferric and ferrous cytochromes c' from Alcaligenes sp. N.C.I.B. 11015 are reported. The EPR spectra at 77 K and the electronic, resonance Raman, CD and MCD spectra at room temperature have been compared with those of the other cytochromes c' and various hemoproteins. In the ferrous form, all the spectral results at physiological pH strongly indicated that the heme iron(II) is in a high-spin state. In the ferric form, the EPR and electronic absorption spectra were markedly dependent upon pH. EPR and electronic spectral results suggested that the ground state of heme iron(III) at physiological pH consists of a quantum mechanical admixture of an intermediate-spin and a high-spin state. Under highly alkaline conditions, identification of the axial ligands of heme iron(III) was attempted by crystal field analysis of the low-spin EPR g values. Upon the addition of sodium dodecyl sulfate to ferric and ferrous cytochrome c', the low-spin type spectra were induced. The heme environment of this low-spin species is also discussed.  相似文献   

3.
Electron paramagnetic resonance and electronic absorption spectral changes upon addition of sodium dodecyl sulfate (SDS) to ferric and ferrous cytochrome c have been measured at 77 degrees K and at room temperature. The spectral changes upon addition of SDS to ferric cytochrome c were performed, in two steps, from native low-spin to another low-spin spectrum and subsequently to high-spin-like spectrum. On the other hand, the spectral changes upon addition of SDS to ferrous cytochrome c proceeded, in one step, from native low-spin to high-spin spectrum. The high-spin-like spectrum of ferric cytochrome c and the high-spin spectrum of ferrous cytochrome c in the presence of high concentrations of SDS are, respectively, apparently similar to those of ferric and ferrous cytochrome c' at physiological pH in spectral features. These spectral similarities suggest the similarities in the heme stereochemistry and the ground state of heme iron. Further, the spectra of cytochrome c in the presence of SDS varied with the change of pH values. The ferric high-spin-like and ferrous high-spin spectra were stable at neutral pH and below it. Conformational changes of cytochrome c upon addition of SDS are also discussed.  相似文献   

4.
The spectral properties of cytochrome c' from photosynthetic bacterium Rhodopseudomonas capsulata (= Rhodobacter capsulatus) B100 and its CO complex are reported. The electronic absorption, MCD, and EPR spectra have been compared with those of the other cytochromes c' and horse heart cytochrome c. EPR and electronic spectral results for the ferric cytochrome c' suggest that the ground state of heme-iron(III) at neutral pH consists of a quantum mechanical admixture of an intermediate-spin and a high-spin state and that at pH 11.0 is in a high-spin state. In the MCD spectrum of the CO-ferrous cytochrome c', the MCD intensity in the Soret band region was much higher than that of CO complexes of hemoproteins with a protoheme. The differences in a stereochemistry of the sixth-coordination position is discussed.  相似文献   

5.
Rhodobacter capsulatus cytochrome c' (RCCP) has been overexpressed in Escherichia coli, and its spectroscopic and ligand-binding properties have been investigated. It is concluded that the heterologously expressed protein is assembled correctly, as judged by UV-vis absorption, EPR, and resonance Raman (RR) spectroscopy of the unligated protein as well as forms in which the heme is ligated by CO or NO. To probe the oligomerization state of RCCP and its potential influence on heme reactivity, we have compared the properties of wild-type RCCP with a mutant (K42E) that lacks a salt bridge at the subunit interface. Analytical ultracentrifugation indicates that wild-type and K42E proteins are both monomeric in solution, contrary to the homodimeric structure of the crystalline state. Surprisingly, the K42E mutation produces a number of changes at the heme center (nearly 20 A distant), including perturbation of the ferric spin-state equilibrium and a change in the ferrous heme-nitrosyl complex from a six-coordinate/five-coordinate mixture to a predominantly five-coordinate heme-NO species. RR spectra indicate that ferrous K42E and wild-type RCCP both have relatively high Fe-His stretching frequencies, suggesting that the more favored five-coordinate heme-nitrosyl formation in K42E is not caused by a weaker Fe2+-His bond. Nevertheless, the altered reactivity of ferrous K42E with NO, together with its modified ferric spin state, shows that structural changes originating at the dimer interface can affect the properties of the heme center, raising the exciting possibility that intermolecular encounters at the protein surface might modulate the reactivity of cytochrome c' in vivo.  相似文献   

6.
The heme coordination chemistry and spectroscopic properties of Rhodobacter capsulatus cytochrome c' (RCCP) have been compared to data from Alcaligenes xylosoxidans (AXCP), with the aim of understanding the basis for their different reactivities with nitric oxide (NO). Whereas ferrous AXCP reacts with NO to form a predominantly five-coordinate heme-nitrosyl complex via a six-coordinate intermediate, RCCP forms an equilibrium mixture of six-coordinate and five-coordinate heme-nitrosyl species in approximately equal proportions. Ferrous RCCP and AXCP both exhibit high Fe-His stretching frequencies (227 and 231 cm(-)(1), respectively), suggesting that factors other than the Fe-His bond strength account for their differences in heme-nitrosyl coordination number. Resonance Raman spectra of ferrous-nitrosyl RCCP confirm the presence of both five-coordinate and six-coordinate heme-NO complexes. The six-coordinate heme-nitrosyl of RCCP exhibits a fairly typical Fe-NO stretching frequency (569 cm(-)(1)), in contrast to the relatively high value (579 cm(-)(1)) of the AXCP six-coordinate heme-nitrosyl intermediate. It is proposed that NO experiences greater steric hindrance in binding to the distal face of AXCP, as compared to RCCP, leading to a more distorted Fe-N-O geometry and an elevated Fe-NO stretching frequency. Evidence that RCCP has a more accessible distal coordination site than in AXCP stems from the fact that ferric RCCP readily forms a heme complex with exogenous imidazole, whereas AXCP does not. A model is proposed in which distal heme-face accessibility, rather than the proximal Fe-His bond strength, determines the heme-nitrosyl coordination number in cytochromes c'.  相似文献   

7.
Andrew CR  Green EL  Lawson DM  Eady RR 《Biochemistry》2001,40(13):4115-4122
Resonance Raman (RR) studies have been conducted on Alcaligenes xylosoxidans cytochrome c', a mono-His ligated hemoprotein which reversibly binds NO and CO but not O(2). Recent crystallographic characterization of this protein has revealed the first example of a hemoprotein which can utilize both sides of its heme (distal and proximal) for binding exogenous ligands to its Fe center. The present RR investigation of the Fe coordination and heme pocket environments of ferrous, carbonyl, and nitrosyl forms of cytochrome c' in solution fully supports the structures determined by X-ray crystallography and offers insights into mechanisms of ligand discrimination in heme-based sensors. Ferrous cytochrome c' reacts with CO to form a six-coordinate heme-CO complex, whereas reaction with NO results in cleavage of the proximal linkage to give a five-coordinate heme-NO adduct, despite the relatively high stretching frequency (231 cm(-1)) of the ferrous Fe-N(His) bond. RR spectra of the six-coordinate CO adduct indicate that CO binds to the Fe in a nonpolar environment in line with its location in the hydrophobic distal heme pocket. On the other hand, RR data for the five-coordinate NO adduct suggest a positively polarized environment for the NO ligand, consistent with its binding close to Arg 124 on the opposite (proximal) side of the heme. Parallels between certain physicochemical properties of cytochrome c' and those of heme-based sensor proteins raise the possibility that the latter may also utilize both sides of their hemes to discriminate between NO and CO binding.  相似文献   

8.
Equilibrium constants for the binding of a series of alkyl isocyanides to ferrous cytochrome c' from Rhodospirillum molischianum have been measured spectrophotometrically. The equilibrium constants range from 3.3 M-1 to 2.6 x 10(2) M-1 and follow the order methyl greater than ethyl less than n-propyl less than tert-butyl less than n-butyl less than amyl less than cyclohexyl less than n-hexyl. The decrease in equilibrium constant from methyl to ethyl isocyanide provides evidence for a steric interaction between the ligand and the protein. The increase in equilibrium constant from ethyl to n-hexyl isocyanide is accounted for by a favorable partitioning of the ligand into a hydrophobic heme coordination site. The effect of steric interactions on the differences in the binding constants has been further evaluated by comparing the alkyl isocyanide and CO binding constants for the ferrous cytochrome c' to those of a sterically unconstrained model heme complex in a detergent micelle. The results indicate that the heme coordination site of the ferrous cytochrome c' is severely sterically hindered, similar to that of the reported crystal structure of Rs. molischianum ferric cytochrome c'.  相似文献   

9.
Resonance Raman spectra of Chromatium vinosum cytochrome c' have been obtained for the five pH-dependent states of the protein [i.e., types I (pH 7), II (pH 10), and III (pH 12) of the ferric protein and type a (pH 7) and type n (pH 12) of the ferrous protein]. The raman spectra of type II and type a are consistent with those of high-spin, 5-coordinate heme proteins, such as deoxyhemoglobin, while spectra of type III and type n correspond more closely to those of low-spin, ferric and ferrous cytochrome c, respectively. Spectra of the CO-bound equilibrium species qualitatively resemble those of carbon monoxy human HbA. However, both the Fe-C and C = O stretching modes of the ligated species exhibit pH-dependent frequency shifts. Our data also indicate that CO photolysis is much more efficient at pH 7 than at pH 12. Moreover, the spectra of the photolytic transients suggest that unique, high-spin species are formed subsequent to CO photolysis from both type a and type n species.  相似文献   

10.
《Inorganica chimica acta》1988,152(4):241-249
The electronic absorption, EPR and MCD spectra of NO derivatives of both ferrous and ferric cytochrome c (horse heart) have been measured in the pH region 2.0 to 12.9, in order to elucidate the pH dependence of the stereochemistry around the heme group. The reaction products of NO with ferrous cytochrome c in equilibrium were as follows: in the region 2.0 ⩽ pH ⩽ 5.3, NO–ferrous cytochrome c; in the region 5.3 < pH ⩽ 11.0, a mixture of NO–ferrous cytochrome c and native ferrous cytochrome c; at pH 12.0, NO–ferrous cytochrome c. At pH 2.0, the NO–ferrous cytochrome c contained a five-coordinate nitrosylheme as the major component and a six-coordinate species as the minor component, and at the order pH values it contained only the six-coordinate species. The reaction products of NO with ferric cytochrome c in equilibrium were as follows: in the region 2.0 ⩽ pH ⩽ 7.2, NO–ferric cytochrome c with six-coordinate nitrosylheme; in the region 7.2 < pH ⩽ 11.0, a mixture of NO–ferrous cytochrome c and native ferrous cytochrome c; at pH 12.0, NO–ferrous cytochrome c. Thus, the reaction of NO with ferric cytochrome c results in the formation of NO–ferrous cytochrome c, which is a typical case of reductive nitrosylation.  相似文献   

11.
M Tsubaki  Y Ichikawa  Y Fujimoto  N T Yu  H Hori 《Biochemistry》1990,29(37):8805-8812
Cytochrome P-45011 beta was purified as the 11-deoxycorticosterone-bound form from bovine adrenocortical mitochondria and its active site was investigated by resonance Raman and EPR spectroscopies. Resonance Raman spectra of the purified sample revealed that the heme iron adopts the pure pentacoordinated ferric high-spin state on the basis of the nu 10 (1629cm-1) and nu 3 (1490 cm-1) mode frequencies, which are higher than those of the hexacoordinated ferric high-spin cytochrome P-450scc-substrate complexes. In the ferrous-CO state, a Fe2(+)-CO stretching mode was identified at 481.5 cm-1 on the basis of an isotopic substitution technique; this frequency is very close to that of cytochrome P-450scc in the cholesterol-complexed state (483 cm-1). The EPR spectra of the purified sample at 4.2 K showed ferric high-spin signals (at g = 7.98, 3.65, and 1.71) that were clearly distinct from the cytochrome P-450scc ferric high-spin signals (g = 8.06, 3.55, and 1.68) and confirmed previous assignments of ferric high-spin signals in adrenocortical mitochondria. The EPR spectra of the nitric oxide (NO) complex of ferrous cytochrome P-45011 beta showed EPR signals with rhombic symmetry (gx = 2.068, gz = 2.001, and gy = 1.961) very similar to those of the ferrous cytochrome P-450scc-NO complex in the presence of 22(S)-hydroxycholesterol and 20(R),22-(R)-dihydroxycholesterol at 77 K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Cytochrome c' was crystallized from Achromobacter xylosoxidans GIFU 543. The cytochrome was a basic protein and its molecular weight was 28,000. The pyridine ferrohemochrome showed absorption peaks at 415, 521, and 551 nm. The absorption spectra of the oxidized and reduced forms at neutral pH were almost the same as those of other cytochromes c' reported already. The reduced cytochrome c' reacted with CO and NO, and the NO complex showed a characteristic absorption spectrum. The midpoint redox potential of the hemoprotein was measured to be + 110 mV at pH 7.2.  相似文献   

13.
Ligand binding to the heme distal side is a paradigm of heme-protein biochemistry, the proximal axial ligand being in most cases a His residue. NO binds to the ferrous heme-Fe-atom giving rise to hexa-coordinated adducts (as in myoglobin and hemoglobin) with His and NO as proximal and distal axial ligands, respectively, or to penta-coordinated adducts (as in soluble guanylate cyclase) with NO as the axial distal ligand. Recently, the ferrous derivative of Alcaligenes xylosoxidans cytochrome c' (Axcyt c') and of cardiolipin-bound horse heart cytochrome c (CL-hhcyt c) have been reported to bind NO to the "dark side" of the heme (i.e., as the proximal axial ligand) replacing the endogenous ligand His. Conversely, CL-free hhcyt c behaves as ferrous myoglobin by binding NO to the heme distal side, keeping His as the proximal axial ligand. Moreover, the ferrous derivative of CL-hhcyt c binds CO at the heme distal side, the proximal axial ligand being His. Furthermore, CL-hhcyt c shows peroxidase activity. In contrast, CL-free hhcyt c does not bind CO and does not show peroxidase activity. This suggests that heme-proteins may utilize both sides of the heme for ligand discrimination, which appears to be modulated allosterically. Here, structural and functional aspects of NO binding to ferrous Axcyt c' and (CL-)hhcyt c are reviewed.  相似文献   

14.
Cytochrome c' from Rhodobacter capsulatus has been shown to confer resistance to nitric oxide (NO). In this study, we demonstrated that the amount of cytochrome c' synthesized for buffering of NO is insufficient to account for the resistance to NO but that the cytochrome-dependent resistance mechanism involves the catalytic breakdown of NO, under aerobic and anaerobic conditions. Even under aerobic conditions, the NO removal is independent of molecular oxygen, suggesting cytochrome c' is a NO reductase. Indeed, we have measured the product of NO breakdown to be nitrous oxide (N(2)O), thus showing that cytochrome c' is behaving as a NO reductase. The increased resistance to NO conferred by cytochrome c' is distinct from the NO reductase pathway that is involved in denitrification. Cytochrome c' is not required for denitrification, but it has a role in the removal of externally supplied NO. Cytochrome c' synthesis occurs aerobically and anaerobically but is partly repressed under denitrifying growth conditions when other NO removal systems are operative. The inhibition of respiratory oxidase activity of R. capsulatus by NO suggests that one role for cytochrome c' is to maintain oxidase activity when both NO and O(2) are present.  相似文献   

15.
Spectroscopic evidence is presented which demonstrates the binding of cyanide to the ferric cytochrome c' from Chromatium vinosum. The cytochrome was shown to bind one equivalent of cyanide with an equilibrium constant of 2.1 X 10(4) at pH 7.0 and 25 degrees C. This finding represents the first observation of the binding of an anionic ligand to the heme iron in a ferric cytochrome c'. These results suggest that the binding site of the ferric Chromatium cytochrome c' may be significantly more accessible than previously indicated.  相似文献   

16.
Resonance Raman spectra are reported for both the heme domain and holoenzyme of cytochrome P450BM3 in the resting state and for the ferric NO, ferrous CO, and ferrous NO adducts in the absence and presence of the substrate, palmitate. Comparison of the spectrum of the palmitate-bound form of the heme domain with that of the holoenzyme indicates that the presence of the flavin reductase domain alters the structure of the heme domain in such a way that water accessibility to the distal pocket is greater for the holoenzyme, a result that is consistent with analogous studies of cytochrome P450cam. The data for the exogenous ligand adducts are compared to those previously reported for corresponding derivatives of cytochrome P450cam and document significant and important differences for the two proteins. Specifically, while the binding of substrate induces relatively dramatic changes in the nu(Fe-XY) modes of the ferrous CO, ferric NO, and ferrous NO derivatives of cytochrome P450cam, no significant changes are observed for the corresponding derivatives of cytochrome P450BM3 upon binding of palmitate. In fact, the spectral data for substrate-free cytochrome P450BM3 provide evidence for distortion of the Fe-XY fragment, even in the absence of substrate. This apparent distortion, which is nonexistent in the case of substrate-free cytochrome P450cam, is most reasonably attributed to interaction of the Fe-XY fragment with the F87 phenylalanine side chain. This residue is known to lie very close to the heme iron in the substrate-free derivative of cytochrome P450BM3 and has been suggested to prevent hydroxylation of the terminal, omega, position of long-chain fatty acids.  相似文献   

17.
Investigations on the biological effects of nitric oxide (NO) derived from nitric oxide synthase (NOS) have led to an explosion in biomedical research over the last decade. The chemistry of this diatomic radical is key to its biological effects. Recently, nitroxyl (HNO/NO(-)) has been proposed to be another important constituent of NO biology. However, these redox siblings often exhibit orthogonal behavior in physiological and cellular responses. We therefore explored the chemistry of NO and HNO with heme proteins in different redox states and observed that HNO favors reaction with ferric heme while NO favors ferrous, consistent with previous reports. Further results show that HNO and NO were equally effective in inhibiting cytochrome P450 activity, which involves ferric and ferrous complexes. The differential chemical behavior of NO and HNO toward heme proteins provides insight into mechanisms of activity that not only helps explain some of the opposing effects observed in NOS-mediated events, but offers a unique control mechanism for the biological action of NO.  相似文献   

18.
The in vivo mechanism of NO trapping by iron-dithiocarbamate complexes is considered. Contrary to common belief, we find that in biological systems the NO radicals are predominantly trapped by ferric iron-dithiocarbamates. Therefore, the trapping leads to ferric mononitrosyl complexes which are diamagnetic and cannot be directly detected with Electron Paramagnetic Resonance spectroscopy. The ferric mononitrosyl complexes are far easily reduced to ferrous state with L-cysteine, glutathione, ascorbate or dithiocarbamate ligands than their non-nitrosyl counterpart. When trapping NO in oxygenated biological systems, the majority of trapped nitric oxide is found in diamagnetic ferric mononitrosyl iron complexes. Only a minority fraction of NO is trapped in the form of paramagnetic ferrous mononitrosyl iron complexes with dithiocarbamate ligands. Subsequent ex vivo reduction of biological samples sharply increases the total yield of the paramagnetic mononitrosyl iron complexes. Reduction also eliminates the overlapping EPR spectrum from Cu(2+)-dithiocarbamate complexes. This facilitates the quantification of yields from NO trapping.  相似文献   

19.
Cytochrome c' (cyt c') from Methylophilus methylotrophus is unusual insofar as the heme has two axial histidine ligands in the oxidized form but one is detached when the protein is reduced. Despite cyt c' having an axial site available for binding small ligands, we show here that only NO binds readily to the ferrous cyt c'. Binding of CO, as well as CN(-), on the other hand requires considerable structural reorganization, or reduction of the disulfide bridge close to the heme. Standard free energies for the binding of NO and CO reveal high selectivity of the ferrous cyt c' for NO, indicating its putative physiological role. In this work, we characterize in detail the kinetics of NO binding and the structural features of the Fe(2+)-NO adduct by stopped-flow and resonance Raman spectroscopy, respectively.  相似文献   

20.
Andrew CR  George SJ  Lawson DM  Eady RR 《Biochemistry》2002,41(7):2353-2360
The 5-coordinate ferrous heme of Alcaligenes xylosoxidans cytochrome c' reacts with NO to form a 6-coordinate nitrosyl intermediate (lambdaSoret at 415 nm) which subsequently converts to a 5-coordinate nitrosyl end product (lambdaSoret at 395 nm) in a rate-determining step. Stopped-flow measurements at pH 8.9, 25 degrees C, yield a rate constant for the formation of the 6-coordinate nitrosyl adduct, k(on) = (4.4 +/- 0.5) x 10(4) M(-1) x s(-1), which is 3-4 orders of magnitude lower than the values for other pentacoordinate ferrous hemes and is consistent with NO binding within the sterically crowded distal heme pocket. Resonance Raman measurements of the freeze-trapped 6-coordinate nitrosyl intermediate reveal an unusually high Fe-NO stretching frequency of 579 cm(-1), suggesting a distorted Fe-N-O coordination geometry. The rate of 6- to 5-coordinate heme nitrosyl conversion is also dependent upon NO concentration, with a rate constant, k(6-5) = (8.1 +/- 0.7) x 10(3) M(-1) x s(-1), implying that an additional molecule of NO is required to form the 5c-NO adduct. Since crystallographic studies have shown that the 5-coordinate nitrosyl complex of cytochrome c' binds NO to the proximal (rather than distal) face of the heme, the NO dependence of the 6- to 5-coordinate NO conversion supports a mechanism in which the weakened His ligand, as well as the distally bound NO, is displaced by a second NO molecule which attacks and is retained in the proximal coordination position. The fact that a dependent 6- to 5-coordinate nitrosyl conversion has been previously reported for soluble guanylate cyclase suggests that the mechanism of Fe-His bond cleavage may be similar to that of cytochrome c' and strengthens the recent proposal that both proteins exhibit proximal NO binding in their 5-coordinate nitrosyl adducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号