首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bacterial strain, isolated from a cyanobacterial culture, was identified as Pseudomonas sp. strain X40. Under iron-limiting conditions, the Pseudomonas sp. produced aerobactin, a dihydroxamate siderophore previously found only in the family Enterobacteriaceae. Aerobactin was identified by electrophoretic mobility, spectrophotometric titration, proton nuclear magnetic resonance spectroscopy, mass spectrometry, acid hydrolysis, and biological activity. Aerobactin was used as a siderophore in the Pseudomonas sp. and Escherichia coli. Two iron-repressed outer membrane proteins were observed in the Pseudomonas sp., neither of which had electrophoretic mobility identical to that of the aerobactin outer membrane receptor protein from E. coli. DNA hybridization assays showed no hybridization to the aerobactin genes from the E. coli plasmid pColV, indicating that the genetic determinants for aerobactin production by Pseudomonas strain X40 differ substantially from those found in the archetypic enteric plasmid pColV-K30.  相似文献   

2.
Three strains of Escherichia fergusonii (EF873, EF1496, EF939) of 50 strains tested produced the hydroxamate siderophore aerobactin. Screening of a cosmid library of the strain EF873 chromosomal DNA (in aerobactin nonproducing Escherichia coli VCS257) for aerobactin production identified iucABCD and iutA gene orthologues. The predicted IucABCD and IutA proteins showed 59-65% identity to the corresponding proteins of Shigella flexneri and E. coli. Aerobactin molecules synthesized by E. fergusonii and E. coli strains stimulated growth of aerobactin indicator strains harboring either E. coli or E. fergusonii iutA genes. In the 12 kb upstream and 17 kb downstream regions of the iuc and iut genes, 20 additional ORFs were identified. Their gene products showed homology to proteins from E. coli, S. flexneri, Klebsiella aerogenes, Pseudomonas aeruginosa and Vibrio cholerae. Probes recognizing DNA sequences from a region of more than 25 kb, which included the iucABCD and iutA genes, hybridized with chromosomal DNA of two aerobactin-producing strains (EF873 and EF939), but not with other nonproducing E. fergusonii strains tested. These data, together with the genetic organization of this region, suggest that E. fergusonii iucABCD iutA genes are a portion of a larger segment of DNA similar to pathogenicity islands of other bacteria.  相似文献   

3.
We have cloned chromosomal genes determining the aerobactin iron transport system from the Escherichia coli K1 strain VW187. Mapping and hybridization experiments showed that the VW187 aerobactin region was identical to that of the plasmid ColV-K30. However, in the E. coli K-12 background, the biosynthesis of both siderophore and ferric aerobactin receptor encoded by the VW187-derived recombinant plasmids was not repressed by iron to the same extent found when a recombinant plasmid derived from pColV-K30 was used. RNA-DNA dot-blot hybridization experiments demonstrated that the aerobactin-specific mRNA synthesized by the VW187-derived clones was not iron regulated in E. coli K-12. In contrast, the synthesis of aerobactin and its receptor in strain VW187 was completely repressed by iron regardless of whether the recombinant plasmids originated from VW187 or pColV-K30. Similar results were obtained with gene fusions in which a promoterless lac operon was placed under the control of aerobactin promoter regions of either chromosome- or plasmid-mediated aerobactin systems. DNA sequencing of the chromosomal aerobactin promoter region showed changes in bases located immediately upstream to the -35 region compared with the corresponding region in pColV-K30, which is known to be part of the binding site for the Fur repressor protein.  相似文献   

4.
Aerobactin genes in Shigella spp.   总被引:32,自引:12,他引:20       下载免费PDF全文
Aerobactin, a hydroxamate iron transport compound, is synthesized by some, but not all, Shigella species. Conjugation and hybridization studies indicated that the genes for the synthesis and transport of aerobactin are linked and are found on the chromosome of Shigella flexneri, S. boydii, and S. sonnei. The genes were not found in S. dysenteriae. A number of aerobactin synthesis mutants and transport mutants have been isolated. The most common mutations are deletions of the biosynthesis or biosynthesis and transport genes. The Shigella aerobactin genes share considerable homology with the E. coli ColV aerobactin genes. On the ColV plasmid and in the Shigella chromosome, the aerobactin genes are associated with a repetitive sequence which has been identified as IS1.  相似文献   

5.
Aerobactin, a dihydroxamate siderophore produced by many strains of enteric bacteria, stimulated the growth of Neisseria gonorrhoeae FA19 and F62 in iron-limiting medium. However, gonococci did not produce detectable amounts of aerobactin in the Escherichia coli LG1522 aerobactin bioassay. We probed gonococcal genomic DNA with the cloned E. coli aerobactin biosynthesis (iucABCD), aerobactin receptor (iutA), and hydroxamate utilization (fhuCDB) genes. Hybridization was detected with fhuB sequences but not with the other genes under conditions which will detect 70% or greater homology. Similar results were obtained with 21 additional strains of gonococci by colony filter hybridization. A library of DNA from N. gonorrhoeae FA19 was constructed in the phasmid vector lambda SE4, and a clone was isolated that complemented the fhuB mutation in derivatives of E. coli BU736 and BN3307. These results suggest that fhuB is a conserved gene and may play a fundamental role in iron acquisition by N. gonorrhoeae.  相似文献   

6.
Aerobactin-mediated utilization of transferrin iron   总被引:25,自引:0,他引:25  
Aerobactin and enterobactin, hydroxamate- and catechol-type siderophores, respectively, were found capable of removing iron (III) from transferrin in buffered solution. Although under these conditions aerobactin displaced the iron much more slowly than did enterobactin, the rate for the former could be accelerated by addition of pyrophosphate as mediator. Transfer of iron (III) from transferrin to aerobactin appeared to proceed via a ternary complex. Cells of Escherichia coli BN 3040 NalR iuc containing transport systems for both enterobactin and aerobactin, the genetic determinants for the latter specified on a ColV-type plasmid, took up iron from [55Fe]transferrin in minimal medium. In this case aerobactin was effective at a much lower concentration, although enterobactin still displayed superior ability to transfer the iron. In serum, however, the rate measured with aerobactin exceeded that found with enterobactin. The results indicate that aerobactin, in spite of its relatively unimpressive affinity for iron (III) as a siderophore, is nonetheless equipped with structural features or properties that enhance its ability to remove the metal ion from transferrin, especially when receptor-bearing cells of E. coli are present to act as a thermodynamic sink for the iron. These attributes of the aerobactin system of iron assimilation may account for its status as a virulence determinant in hospital isolates of E. coli.  相似文献   

7.
Iron transport systems of Serratia marcescens.   总被引:2,自引:0,他引:2       下载免费PDF全文
A Angerer  B Klupp    V Braun 《Journal of bacteriology》1992,174(4):1378-1387
Serratia marcescens W225 expresses an unconventional iron(III) transport system. Uptake of Fe3+ occurs in the absence of an iron(III)-solubilizing siderophore, of an outer membrane receptor protein, and of the TonB and ExbBD proteins involved in outer membrane transport. The three SfuABC proteins found to catalyze iron(III) transport exhibit the typical features of periplasmic binding-protein-dependent systems for transport across the cytoplasmic membrane. In support of these conclusions, the periplasmic SfuA protein bound iron chloride and iron citrate but not ferrichrome, as shown by protection experiments against degradation by added V8 protease. The cloned sfuABC genes conferred upon an Escherichia coli aroB mutant unable to synthesize its own enterochelin siderophore the ability to grow under iron-limiting conditions (in the presence of 0.2 mM 2.2'-dipyridyl). Under extreme iron deficiency (0.4 mM 2.2'-dipyridyl), however, the entry rate of iron across the outer membrane was no longer sufficient for growth. Citrate had to be added in order for iron(III) to be translocated as an iron citrate complex in a FecA- and TonB-dependent manner through the outer membrane and via SfuABC across the cytoplasmic membrane. FecA- and TonB-dependent iron transport across the outer membrane could be clearly correlated with a very low concentration of iron in the medium. Expression of the sfuABC genes in E. coli was controlled by the Fur iron repressor gene. S. marcescens W225 was able to synthesize enterochelin and take up iron(III) enterochelin. It contained an iron(III) aerobactin transport system but lacked aerobactin synthesis. This strain was able to utilize the hydroxamate siderophores ferrichrome, coprogen, ferrioxamine B, rhodotorulic acid, and schizokinen as sole iron sources and grew on iron citrate as well. In contrast to E. coli K-12, S. marcescens could utilize heme. DNA fragments of the E. coli fhuA, iut, exbB, and fur genes hybridized with chromosomal S. marcescens DNA fragments, whereas no hybridization was obtained between S. marcescens chromosomal DNA and E. coli fecA, fhuE, and tonB gene fragments. The presence of multiple iron transport systems was also indicated by the increased synthesis of at least five outer membrane proteins (in the molecular weight range of 72,000 to 87,000) after growth in low-iron media. Serratia liquefaciens and Serratia ficaria produced aerobactin, showing that this siderophore also occurs in the genus Serratia.  相似文献   

8.
Although the aerobactin-mediated iron uptake system has been characterized genetically in Escherichia coli, the siderophore aerobactin was chemically characterized after purification from culture supernatants of Aerobacter aerogenes 62-1, a member of the Klebsielleae. We have cloned and mapped the genes encoding the aerobactin system genes of A. aerogenes 62-1 and begun characterization of the relevant proteins and enzymatic activities of this plasmid-mediated aerobactin system. Published chemical data indicate that the siderophore aerobactin of E. coli is the same molecule as the aerobactin of Aerobacter aerogenes 62-1, but we have found that both the genes and the complement of proteins making up the biosynthetic enzymes in the two systems have diverged. In contrast, the outer membrane receptors for ferric aerobactin of the two systems showed immunologic cross-reactivity, were of the same molecular size (74 kilodaltons), and were encoded by homologous DNA sequences.  相似文献   

9.
Rhizobactin 1021 is a hydroxymate siderophore produced by the soil bacterium Sinorhizobium meliloti 2011. A regulon comprising rhtA, encoding the outer membrane receptor protein for the ferrisiderophore; the biosynthesis operon rhbABCDEF; and rhrA, the Ara-C-like regulator of the receptor and biosynthesis genes has been previously described. We report the discovery of a gene, located upstream of rhbA and named rhtX (for "rhizobactin transport"), which is required, in addition to rhtA, to confer the ability to utilize rhizobactin 1021 on a strain of S. meliloti that does not naturally utilize the siderophore. Rhizobactin 1021 is structurally similar to aerobactin, which is transported in Escherichia coli via the IutA outer membrane receptor and the FhuCDB inner membrane transport system. E. coli expressing iutA and fhuCDB was found to also transport rhizobactin 1021. We demonstrated that RhtX alone could substitute for FhuCDB to transport rhizobactin 1021 in E. coli. RhtX shows similarity to a number of uncharacterized proteins which are encoded proximal to genes that are either known to be or predicted to be involved in iron acquisition. Among these is PA4218 of Pseudomonas aeruginosa, which is located close to the gene cluster that functions in pyochelin biosynthesis and outer membrane transport. PA4218 was mutated by allelic replacement, and the mutant was found to have a pyochelin utilization-defective phenotype. It is proposed that PA4218 be named fptX (for "ferripyochelin transport"). RhtX and FptX appear to be members of a novel family of permeases that function as single-subunit transporters of siderophores.  相似文献   

10.
The phytopathogenic bacterium Erwinia carotovora subsp. carotovora W3C105 produced the hydroxamate siderophore aerobactin under iron-limiting conditions. A survey of 22 diverse strains of E. carotovora revealed that strain W3C105 alone produced aerobactin. The ferric-aerobactin receptor of strain W3C105 was an 80-kDa protein, identified by immunoblots of Sarkosyl-soluble proteins obtained from E. carotovora cells grown in iron-depleted medium and probed with antiserum raised against the 74-kDa ferric-aerobactin receptor encoded by the pColV-K30 plasmid of Escherichia coli. Genes determining aerobactin biosynthesis and uptake were localized to an 11.3-kb EcoRI-HindIII chromosomal fragment of strain W3C105. A 10-kb subclone of the fragment conferred on E. coli DH5 alpha both aerobactin biosynthesis and uptake, determined by cloacin DF13 sensitivity, the presence of the 80-kDa receptor protein, and iron-independent growth of E. coli clones. The aerobactin biosynthesis genes of E. carotovora W3C105 hybridized to those of the pColV-K30 plasmid of E. coli, but the restriction patterns of the aerobactin regions of E. coli and E. carotovora differed. Although the aerobactin region of enteric bacteria is commonly flanked by IS1-like sequences, IS1 sequences were not detected in the genomic DNA or the cloned aerobactin region of E. carotovora. E. coli DH5 alpha cells harboring cloned aerobactin biosynthesis genes from E. carotovora W3C105 produced greater quantities of aerobactin and the 80-kDa ferric-aerobactin receptor when grown in iron-limited than in iron-replete medium. Strain W3C105 grew on an iron-limited medium, whereas derivatives that lacked a functional aerobactin iron acquisition system did not grow on the medium. These results provide evidence for the occurrence and heterogeneity of aerobactin as a high-affinity iron uptake system of both clinical and phytopathogenic species of the Enterobacteriaceae. Although future studies may reveal a role for aerobactin in the virulence or ecology of strain W3C105, a functional aerobactin iron acquisition system is not necessary for the pathogenicity of E. carotovora.  相似文献   

11.
A region of the IncFI plasmid ColV2-K94 which showed homology to the sop partitioning genes of F was cloned and characterized in an attempt to study the stability functions of this element. The sop region contained the incD incompatibility determinant common to many IncFI plasmids, but could not confer on ColV2-K94 miniplasmids the same stable inheritance found in the intact ColV2-K94; thus, other functions appear to be required for efficient plasmid maintenance. Adjacent to the area of sop homology was the X3 region, which was found to contain three inverted IS1-like sequences. The X3 region of ColV2-K94 was similar in organization to the aerobactin iron uptake region of ColV3-K30, but ColV2-K94 lacked the ability to synthesize either the aerobactin siderophore or its outer membrane receptor.  相似文献   

12.
We have identified two types of siderophores produced by Pseudomonas, one of which has never before been found in the genus. Twelve strains of Pseudomonas stutzeri belonging to genomovars 1, 2, 3, 4, 5, and 9 produced proferrioxamines, the hydroxamate-type siderophores. Pseudomonas stutzeri JM 300 (genomovar 7) and DSM 50238 (genomovar 8) and Pseudomonas balearica DSM 6082 produced amonabactins, catecholate-type siderophores. The major proferrioxamines detected were the cyclic proferrioxamines E and D2. Pseudomonas stutzeri KC also produced cyclic (X1 and X2) and linear (G1 and G2a-c) proferrioxamines. Our data indicate that the catecholate-type siderophores belong to amonabactins P 750, P 693, T 789, and T 732. A mutant of P. stutzeri KC (strain CTN1) that no longer produced the secondary siderophore pyridine-2,6-dithiocarboxylic acid continued to produce all other siderophores in its normal spectrum. Siderophore profiles suggest that strain KC (genomovar 9) belongs to the proferrioxamine-producing P. stuzeri. Moreover, a putative ferrioxamine outer membrane receptor gene foxA was identified in strain KC, and colony hybridization showed the presence of homologous receptor genes in all P. stutzeri and P. balearica strains tested.  相似文献   

13.
Thirty seven strains ofEscherichia coli isolated from the urine of patients with acute symptomatic urinary tract infection were examined for siderophore production: hydroxamate (aerobactin) and phenolate (enterochelin). All the strains were found to produce varying amounts of enterochelin. With the chemical assay, 24.3% strains were aerobactin producers, while 43.2% were positive in the bio-assay. All the aerobactin producers carried the aerobactin receptor on their surface. Attempts to correlate siderophore production with growth in minimal and iron-depleted medium showed that there was a positive quantitative correlation between enterochelin production and growth of organisms under iron depletion. Aerobactin production failed to give an additional advantage of growth to strains producing enterochelin.  相似文献   

14.
Unlike the great majority of the aerobactin-producing enteric bacteria documented in the literature, Enterobacter cloacae EK33, isolated from a case of human neonatal meningitis, did not show any homology at the DNA level with the prototype aerobactin system encoded by the ColV-K30 plasmid. However, both the nuclear magnetic resonance spectrum and fast-atom bombardment mass spectrometry of the siderophore purified from EK33 confirmed its identity with aerobactin. Bioassay screening of a gene library of total DNA of EK33 led to the isolation of several aerobactin-positive clones. Under conditions of iron limitation, these clones expressed in Escherichia coli a protein of 72 kilodaltons that reacted with antiserum raised against the pColV-K30 74-kilodalton aerobactin receptor, while the original E. cloacae strain synthesized an 85-kilodalton protein which also cross-reacted with the antiserum. Restriction endonuclease analysis of the cloned DNA confirmed the structural differences between the two aerobactin genetic systems.  相似文献   

15.
Five cosmid clones with insert sizes averaging 22.6 kilobases (kb) were isolated after complementation of 22 Tn5-induced Sid- mutants of Pseudomonas sp. strain M114. One of these plasmids (pMS639) was also shown to encode ferric-siderophore receptor and dissociation functions. The receptor gene was located on this plasmid since introduction of the plasmid into three wild-type fluorescent pseudomonads enabled them to utilize the ferric-siderophore from strain M114. The presence of an extra iron-regulated protein in the outer membrane profile of one of these strains was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A ferric-siderophore dissociation gene was attributed to pMS639 since it complemented the ferric-siderophore uptake mutation in strain M114FR2. This mutant was not defective in the outer membrane receptor for ferric-siderophore but apparently accumulated ferric-siderophore internally. Since ferric-citrate alleviated the iron stress of the mutant, there was no defect in iron metabolism subsequent to release of iron from the ferric-siderophore complex. Consequently, this mutant was defective in ferric-siderophore dissociation. A fur-like regulatory gene also present on pMS639 was subcloned to a 7.0-kb BglII insert of pCUP5 and was located approximately 7.3 kb from the receptor region. These results established that the 27.2-kb insert of pMS639 encoded at least two siderophore biosynthesis genes, ferric-siderophore receptor and dissociation genes, and a fur-like regulatory gene from the biocontrol fluorescent Pseudomonas sp. strain M114.  相似文献   

16.
Five cosmid clones with insert sizes averaging 22.6 kilobases (kb) were isolated after complementation of 22 Tn5-induced Sid- mutants of Pseudomonas sp. strain M114. One of these plasmids (pMS639) was also shown to encode ferric-siderophore receptor and dissociation functions. The receptor gene was located on this plasmid since introduction of the plasmid into three wild-type fluorescent pseudomonads enabled them to utilize the ferric-siderophore from strain M114. The presence of an extra iron-regulated protein in the outer membrane profile of one of these strains was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A ferric-siderophore dissociation gene was attributed to pMS639 since it complemented the ferric-siderophore uptake mutation in strain M114FR2. This mutant was not defective in the outer membrane receptor for ferric-siderophore but apparently accumulated ferric-siderophore internally. Since ferric-citrate alleviated the iron stress of the mutant, there was no defect in iron metabolism subsequent to release of iron from the ferric-siderophore complex. Consequently, this mutant was defective in ferric-siderophore dissociation. A fur-like regulatory gene also present on pMS639 was subcloned to a 7.0-kb BglII insert of pCUP5 and was located approximately 7.3 kb from the receptor region. These results established that the 27.2-kb insert of pMS639 encoded at least two siderophore biosynthesis genes, ferric-siderophore receptor and dissociation genes, and a fur-like regulatory gene from the biocontrol fluorescent Pseudomonas sp. strain M114.  相似文献   

17.
Anabaena sp. strain 6411, which produces the dihydroxamate siderophore schizokinen to facilitate iron uptake, is also capable of using the related siderophore aerobactin. The two siderophores compete for the same iron transport system, but there is a markedly higher affinity for ferric schizokinen than for ferric aerobactin. The trihydroxamate siderophore ferrioxamine B is far less effective as an iron donor in this organism. Anabaena sp. strain 7120 appears to be closely related to strain 6411. It synthesizes schizokinen as its major siderophore and shows rates of iron uptake from ferric schizokinen, ferric aerobactin, and ferrioxamine B which are similar to those observed with strain 6411. Anabaena cylindrica Lemm. 7122 and 1611, on the other hand, differ from strain 6411. In contrast to schizokinen, the hydroxamate which they produce in response to iron starvation cannot be extracted with water from the organic layer and does not support the growth of the siderophore auxotroph Arthrobacter flavescens JG-9. Strain 7122 can use its endogenous siderophore or schizokinen to promote iron uptake, but at 50-fold-lower rates than are observed with Anabaena sp. strain 6411 or 7120.  相似文献   

18.
Abstract The production of aerobactin has been suggested to be a virulence factor in Escherichia coli . We have studied the production of aerobactin in 155 E. coli strains, isolated from sewage, which carry conjugative antibiotic resistance plasmids, and 88 (57%) of these strains produced aerobactin, and 59 (38%) co-transferred production of the siderophore and antibiotic resistance. In 35 (22%) of the transconjugants, both characters seemed to be encoded into the same plasmid. Those aerobactin-producing-antibiotic resistance plasmids had different sizes and antibiotic resistance patterns. The ecological implications of these results are discussed.  相似文献   

19.
A total of 230 Salmonella strains were screened for enterobactin and aerobactin production, sensitivity to bacteriocins and resistance to antibiotics. All the isolates produced the phenolate siderophore enterobactin. Amongst these, 74 strains, most belonging to S. enteritidis, were sensitive to colicin B. Only 26 isolates, all belonging to S. wien, produced an additional iron chelator, i.e. the siderophore aerobactin, and 22 out of these were sensitive to cloacin DF13. Analysis of iron repressible outer membrane proteins and plasmid profiles in S. wien strains showed that the expression of a 74-kDa iron-repressible outer membrane protein and the presence of large plasmids were associated with multiple antibiotic resistance, aerobactin production and sensitivity to cloacin DF13. The incidence of aerobactin-producing strains among S. wien isolates was higher during years 1974-1985; the epidemiological implications of these results are discussed.  相似文献   

20.
Haem iron-transport system in enterohaemorrhagic Escherichia coli O157:H7   总被引:9,自引:5,他引:4  
In this study, we identified the iron-transport systems of Escherichia coli O157:H7 strain EDL933. This strain synthesized and transported enterobactin and had a ferric citrate transport system but lacked the ability to produce or use aerobactin. It used haem and haemoglobin, but not transferrin or lactoferrin, as iron sources. We cloned the gene encoding an iron-regulated haem-transport protein and showed that this E. coli haem-utilization gene ( chuA ) encoded a 69 kDa outer membrane protein that was synthesized in response to iron limitation. Expression of this protein in a laboratory strain of E. coli was sufficient for utilization of haem or haemoglobin as iron sources. Mutation of the chromosomal chuA and tonB genes in E. coli O157:H7 demonstrated that the utilization of haemin and haemoglobin was ChuA- and TonB-dependent. Nucleotide sequence analysis of chuA revealed features characteristic of TonB-dependentFur-regulated, outer membrane iron-transport proteins. It was highly homologous to the shuA gene of Shigella dysenteriae and less closely related to hemR of Yersinia enterocolitica and hmuR of Yersinia pestis . A conserved Fur box was identified upstream of the chuA gene, and regulation by Fur was confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号