首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The role of class II restriction in T cell recognition of an epitope of the autoantigen myelin basic protein (MBP) has been investigated. Encephalitogenic PL/J(H-2u) and (PL/J X SJL/J(H-2s))F1 ((PLSJ)F1) clones, isolated after immunization with intact MBP, recognize the N-terminal 11 amino acid residues of MBP in association with I-Au class II molecules. The synthetic peptide MBP 1-11 has been tested in vivo for induction of EAE. Clinical and histological EAE occurs in PL/J and (PLSJ)F1 mice but not SJL/J. The class II restriction of T cells primed with MBP 1-11 has been examined in primary cultures in vitro. Similar to encephalitogenic T cell clones, isolated after continuous selection in vitro, the population of MBP 1-11-specific proliferative PL/J and (PLSJ)F1 T cells, recognize this epitope in association with I-Au class II molecules. Not all MBP-specific T cell clones which are restricted to I-Au class II molecules cause autoimmune encephalomyelitis. The specificity of these non-encephalitogenic clones has been examined in this report. These clones also recognize MBP 1-11. Thus recognition of an encephalitogenic T cell epitope is not sufficient for induction of EAE.  相似文献   

2.
Src homology 2 domain-containing protein tyrosine phosphatase (SHP) substrate-1 (SHPS-1) is a transmembrane protein that binds the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region and is expressed on the surface of CD11c(+) dendritic cells (DCs) and macrophages. In this study, we show that mice that express a mutant form of SHPS-1 lacking most of the cytoplasmic region are resistant to experimental autoimmune encephalomyelitis (EAE) in response to immunization with a peptide derived from myelin oligodendrocyte glycoprotein (MOG (35-55)). The MOG (35-55)-induced proliferation of, and production of IFN-gamma, IL-2, and IL-17, by T cells from immunized SHPS-1 mutant mice were reduced compared with those apparent for wild-type cells. The abilities of splenic DCs from mutant mice to stimulate an allogenic MLR and to prime Ag-specific T cells were reduced. Both IL-12-stimulated and TLR-dependent cytokine production by DCs of mutant mice were also impaired. Finally, SHPS-1 mutant mice were resistant to induction of EAE by adoptive transfer of MOG (35-55)-specific T cells. These results show that SHPS-1 on DCs is essential for priming of naive T cells and the development of EAE. SHPS-1 is thus a potential therapeutic target in inflammatory disorders of the CNS and other autoimmune diseases.  相似文献   

3.
Bone marrow (BM)-derived dendritic cells (DC) are potent stimulators of naive CD4+ T cell activation. Because DC are efficient at Ag processing and could potentially present self Ags, we investigated the role of DC in the presentation of an encephalitogenic peptide from myelin basic protein (Ac1-11) in the induction of experimental autoimmune encephalomyelitis (EAE). To determine if DC could prime for EAE, we transferred DC pulsed with Ac1-11 or with medium alone into irradiated mice in combination with CD4+ T cells isolated from a mouse transgenic for a TCR specific for Ac1-11 + I-Au. Mice transferred with Ac1-11-pulsed DC developed EAE 7-10 days later, whereas mice receiving medium-pulsed DC did not. By day 15, all mice given peptide-loaded DC had signs of tail and hind limb paralysis, and by day 20 infiltration of Ac1-11-specific CD4+ T cells was detected in the brain parenchyma. We also demonstrated interactions between Ac1-11-pulsed DC and Ac1-11-specific T cells in the lymph nodes 24 h following adoptive transfer of both cell populations. These data show that DC can efficiently present the self Ag myelin basic protein Ac1-11 to Ag-specific T cells in the periphery of mice to induce EAE.  相似文献   

4.
Male "viable motheaten" (me(v)) mice, with a naturally occurring mutation in the gene of the SH2 domain protein tyrosine phosphatase SHP-1, are sterile. Known defects in sperm maturation in these mice correlate with an impaired differentiation of the epididymis, which has similarities to the phenotype of mice with a targeted inactivation of the Ros receptor tyrosine kinase. Ros and SHP-1 are coexpressed in epididymal epithelium, and elevated phosphorylation of Ros in the epididymis of me(v) mice suggests that Ros signaling is under control of SHP-1 in vivo. Phosphorylated Ros strongly and directly associates with SHP-1 in yeast two-hybrid, glutathione S-transferase pull-down, and coimmunoprecipitation experiments. Strong binding of SHP-1 to Ros is selective compared to six other receptor tyrosine kinases. The interaction is mediated by the SHP-1 NH(2)-terminal SH2 domain and Ros phosphotyrosine 2267. Overexpression of SHP-1 results in Ros dephosphorylation and effectively downregulates Ros-dependent proliferation and transformation. We propose that SHP-1 is an important downstream regulator of Ros signaling.  相似文献   

5.
Multiple sclerosis (MS) is a severe central nervous system disease. Experimental autoimmune encephalomyelitis (EAE) mimics MS in mice. We report that spontaneous development of EAE in RAG-1-deficient mice transgenic for a myelin basic protein (MBP)-specific TCR (TgMBP+/RAG-1-/-) requires expression of the T cell costimulatory molecule CD28. Surprisingly, T cells from CD28-/-TgMBP+/RAG-1-/- mice proliferate and produce IL-2 in response to MBP1-17 peptide in vitro, excluding clonal anergy as the mechanism of CD28-regulated pathogenesis. Proliferation of autoaggressive T cells was dependent on the concentration of the MBP peptide, as was the development of MBP-induced EAE in CD28-deficient PL/J mice. These results provide the first genetic evidence that CD28 costimulation is crucial for MBP-specific T cell activation in vivo and the initiation of spontaneous EAE.  相似文献   

6.
Ubiquitously expressed SH2-containing tyrosine phosphatases interact physically with tyrosine kinase receptors or their substrates and relay positive mitogenic signals via the activation of the Ras-mitogen-activated protein kinase (MAPK) pathway. Conversely, the structurally related phosphatase SHP-1 is predominantly expressed in hemopoietic cells and becomes tyrosine phosphorylated upon colony-stimulating factor 1 treatment of macrophages without associating with the colony-stimulating factor 1 receptor tyrosine kinase. Mice lacking functional SHP-1 (me/me and me(v)/me(v)) develop systemic autoimmune disease with accumulation of macrophages, suggesting that SHP-1 may be a negative regulator of hemopoietic cell growth. By using macrophages expressing dominant negative Ras and the me(v)/me(v) mouse mutant, we show that SHP-1 is activated in the course of mitogenic signal transduction in a Ras-dependent manner and that its activity is necessary for the Ras-dependent activation of the MAPK pathway but not of the Raf-1 kinase. Consistent with a role for SHP-1 as an intermediate between Ras and the MEK-MAPK pathway, Ras-independent activation of the latter kinases by bacterial lipopolysaccharide occurred normally in me(v)/me(v) cells. Our results sharply accentuate the diversity of signal transduction in mammalian cells, in which the same signaling intermediates can be rearranged to form different pathways.  相似文献   

7.
Intravenous administration of autoantigen is an effective method to induce Ag-specific tolerance against experimental autoimmune encephalomyelitis (EAE). IL-12 is a potent Th1 stimulator and an essential cytokine in the induction of EAE. The role of IL-12 in the induction of i.v. tolerance is not clear. In this study, we induced tolerance by i.v. administering myelin basic protein (MBP) peptide Ac1-11 (MBP1-11) in EAE. We observed significant suppression of IL-12 production by the lymph node cells of MBP1-11-injected mice. To see whether the low level of IL-12 is the cause or effect of tolerance, we administered IL-12 to the EAE mice at the time of i.v. MBP1-11 injection. Exogenous IL-12 abrogated the suppression of clinical and pathological EAE by i.v. tolerance. IL-12 blocked the suppressive effect of i.v. tolerance on the proliferative response to MBP1-11 and MBP1-11-induced production of IL-12 and IFN-gamma. Furthermore, IL-12 completely blocked the i.v. tolerance-induced type 1 T regulatory cell response. These data suggest that i.v. administration of autoantigen results in the suppression of endogenous IL-12 and the consequent switching of the immune response from an immunogenic to a tolerogenic form.  相似文献   

8.
9.
Neutrophils, an essential component of the innate immune system, are regulated in part by signaling pathways involving protein tyrosine phosphorylation. While protein tyrosine kinase functions in regulating neutrophil behavior have been extensively investigated, little is known about the role for specific protein tyrosine phosphatases (PTP) in modulating neutrophil signaling cascades. A key role for Src homology 2 domain-containing phosphatase 1 (SHP-1), a PTP, in neutrophil physiology is, however, implied by the overexpansion and inappropriate activation of granulocyte populations in SHP-1-deficient motheaten (me/me) and motheaten viable (me(v)/me(v)) mice. To directly investigate the importance of SHP-1 to phagocytic cell function, bone marrow neutrophils were isolated from both me/me and me(v)/me(v) mice and examined with respect to their responses to various stimuli. The results of these studies revealed that both quiescent and activated neutrophils from motheaten mice manifested enhanced tyrosine phosphorylation of cellular proteins in the 60- to 80-kDa range relative to that detected in wild-type congenic control neutrophils. MOTHEATEN: neutrophils also demonstrated increased oxidant production, surface expression of CD18, and adhesion to protein-coated plastic. Chemotaxis, however, was severely diminished in the SHP-deficient neutrophils relative to control neutrophils, which was possibly attributable to a combination of defective deadhesion and altered actin assembly. Taken together, these results indicate a significant role for SHP-1 in modulating the tyrosine phosphorylation-dependent signaling pathways that regulate neutrophil microbicidal functions.  相似文献   

10.
11.
Huang Z  Coleman JM  Su Y  Mann M  Ryan J  Shultz LD  Huang H 《Cytokine》2005,29(3):118-124
SHP-1 has been shown to play positive and negative regulatory roles in IL-4-induced STAT6 phosphorylation and in IL-4-mediated functions. To determine whether SHP-1 can regulate STAT6 phosphorylation and IL-4-mediated functions in a cell type-specific manner in the immune system, we examined the IL-4 receptor (IL-4R) expression, STAT6 phosphorylation, and IL-4-mediated functions in CD4+ and CD8+ T cells of viable motheaten (me(v)/me(v)) and littermate control (+/-) mice. CD4+ T cells as well as CD8+ T cells from the lymph node of me(v)/me(v) and +/- mice expressed comparable levels of IL-4R. In CD4+ T cells, the loss of SHP-1 activity did not affect IL-4-induced STAT6 phosphorylation or IL-4-mediated function. In contrast, SHP-1-deficient CD8+ T cells from me(v)/me(v) mice failed to develop into IL-4-producing type-2 cytotoxic T cells (Tc2) in the presence of IL-4 despite that they showed comparable levels of STAT6 phosphorylation to that of +/- CD8+ T cells. Loss of SHP-1 activity also abolished IL-4-mediated inhibition of c-kit expression in bone marrow-derived mast cell (BMMC). Thus, our data suggest that SHP-1 may regulate IL-4-induced STAT6 phosphorylation and IL-4-mediated functions in a cell type-specific manner.  相似文献   

12.
The aim of the present study was to identify the signaling mechanism(s) responsible for the modulation of growth hormone secretagogue receptor type 1a (GHSR1a)-associated Akt activity. Ghrelin leads to the activation of Akt through the interplay of distinct signaling mechanisms: an early G(i/o) protein-dependent pathway and a late pathway mediated by β-arrestins. We found that the Src homology 2-containing protein tyrosine phosphatase (SHP-1) was an essential molecule in both G(i/o) protein-dependent and β-arrestin-mediated pathways. More specifically, the role of SHP-1 in the G(i/o) protein-dependent pathway was demonstrated by the fact that the overexpression of a catalytically defective SHP-1 augments tyrosine phosphorylation of the PI3K regulatory subunit p85, leading to an increase in the phosphorylation of cSrc and phosphoinositide-dependent protein kinase 1, and finally activating Akt. The presence of SHP-1 in the β-arrestin-scaffolded complex and its attenuating effect on the cSrc and Akt activities verified that SHP-1 regulates not only the G(i/o) protein-dependent pathway but also the β-arrestin-mediated pathway. Assays performed in preadipocyte and adipocyte 3T3-L1 cells showed SHP-1 expression. According to our results in HEK-GHSR1a cells, ghrelin stimulated SHP-1 phosphorylation in 3T3-L1 cells. The increase in ghrelin-induced Akt activity was enhanced by small interfering RNA of SHP-1 in preadipocyte 3T3-L1 cells. These results were reproduced in white adipose tissue obtained from mice, in which SHP-1 exhibited higher expression in omental than in subcutaneous tissue. Furthermore, this pattern of expression was inverted in mice fed a high-fat diet, suggesting a role for SHP-1 in controlling ghrelin sensitivity in adipose tissue. Indeed, SHP-1 deficiency was associated with augmented ghrelin-evoked Akt phosphorylation in omental tissue, as well as decreased phosphorylation under overexpression of SHP-1 in subcutaneous tissue. These findings showed a novel role for SHP-1 in the regulation of Akt activity through the modulation of the ghrelin/GHSR1a system signaling.  相似文献   

13.
The binding kinetics of the TCR for its interacting ligand and the nature of the resulting signal transduction event determine the fate of a developing thymocyte. The intracellular tyrosine phosphatase SHP-1 is a potential regulator of the TCR signal transduction cascade and may affect thymocyte development. To assess the role of SHP-1 in thymocyte development, we generated T cell-transgenic mice that express a putative dominant negative form of SHP-1, in which a critical cysteine is mutated to serine (SHP-1 C453S). SHP-1 C453S mice that express the 3.L2 TCR transgene are increased in CD4 single positive cells in the thymus and are increased in cells that express the clonotypic TCR. These data suggest that the expression of SHP-1 C453S results in increased positive selection in 3.L2 TCR-transgenic mice and support a role for SHP-1 thymocyte development.  相似文献   

14.
The selection events shaping T cell development in the thymus represent the outcome of TCR-driven intracellular signaling cascades evoked by Ag receptor interaction with cognate ligand. In view of data indicating TCR-evoked thymocyte proliferation to be negatively modulated by the SHP-1 tyrosine phosphatase, a potential role for SHP-1 in regulating selection processes was investigated by analysis of T cell development in H-Y TCR transgenic mice rendered SHP-1 deficient by introduction of the viable motheaten mutation or a dominant negative SHP-1-encoding transgene. Characterization of thymocyte and peripheral T cell populations in H-Y TCR-viable motheaten mice revealed TCR-evoked proliferation as well as the positive and negative selection of H-Y-specific thymocytes to be enhanced in these mice, thus implicating SHP-1 in the negative regulation of each of these processes. T cell selection processes were also augmented in H-Y TCR mice carrying a transgene driving lymphoid-restricted expression of a catalytically inert, dominant-negative form of SHP-1. SHP-1-negative effects on thymocyte TCR signaling were not influenced by co-cross-linking of the CD28 costimulatory and/or CTLA-4 inhibitory receptors and appear, accordingly, to be realized independently of these comodulators. These observations indicate that SHP-1 raises the signaling threshold required for both positive and negative selection and reveal the inhibitory effects of SHP-1 on TCR signaling to be cell autonomous. The demonstrated capacity for SHP-1 to inhibit TCR-evoked proliferation and selection indicate SHP-1 modulatory effects on the magnitude of TCR-generated signal to be a key factor in determining the cellular consequences of TCR-ligand interaction.  相似文献   

15.
The protein tyrosine phosphatase SHP-1 is a critical regulator of cytokine signaling and inflammation. Mice homozygous for a null allele at the SHP-1 locus have a phenotype of severe inflammation and are hyper-responsive to the TLR4 ligand LPS. TLR4 stimulation in the CNS has been linked to both neuropathic pain and sickness behaviors. To determine if reduction in SHP-1 expression affects LPS-induced behaviors, responses of heterozygous SHP-1-deficient (me/+) and wild-type (+/+) mice to LPS were measured. Chronic (4-week) treatment with LPS induced avoidant behaviors indicative of fear/anxiety in me/+, but not +/+, mice. These behaviors were correlated with a LPS-induced type 2 cytokine, cytokine receptor, and immune effector arginase profile in the brains of me/+ mice not found in +/+ mice. Me/+ mice also had a constitutively greater level of TLR4 in the CNS than +/+ mice. Additionally, me/+ mice displayed constitutively increased thermal sensitivity compared to +/+ mice, measured by the tail-flick test. Moreover, me/+ glial cultures were more responsive to LPS than +/+ glia. Therefore, the reduced expression of SHP-1 in me/+ imparts haploinsufficiency with respect to the control of CNS TLR4 and pain signaling. Furthermore, type 2 cytokines become prevalent during chronic TLR4 hyperstimulation in the CNS and are associated positively with behaviors that are usually linked to type 1 pro-inflammatory cytokines. These findings question the notion that type 2 immunity is solely anti-inflammatory in the CNS and indicate that type 2 immunity induces/potentiates CNS inflammatory processes.  相似文献   

16.
Restimulation of Ag receptors on peripheral T lymphocytes induces tyrosine phosphorylation-based signaling cascades that evoke Fas ligand expression and induction of Fas-mediated programmed cell death. In view of the role for the Src homology domain 2-bearing protein tyrosine phosphatase-1 (SHP-1) in modulating TCR signaling, we investigated the influence of SHP-1 on TCR-mediated apoptosis by assaying the sensitivity of peripheral T cells from SHP-1-deficient viable motheaten (mev) mice to cell death following TCR restimulation. The results of these studies revealed mev peripheral T cells to be markedly more sensitive than wild-type cells to induction of cell death following TCR stimulation. By contrast, PMA/ionophore and anti-Fas Ab-induced apoptotic responses were no different in mev compared with wild-type activated cells. Enhanced apoptosis of TCR-restimulated mev lymphocytes was associated with marked increases in Fas ligand expression as compared with wild-type cells, but was almost abrogated in both mev and wild-type cells by Fas-Fc treatment. Thus, the increased sensitivity of mev T cells to apoptosis following TCR restimulation appears to reflect a TCR-driven phenomenon mediated through up-regulation of Fas-Fas ligand interaction and induction of the Fas signaling cascade. These findings, together with the hyperproliferative responses of mev peripheral T cells to initial TCR stimulation, indicate that SHP-1 modulation of TCR signaling translates to the inhibition of both T cell proliferation and activation and, as such, is likely to play a pivotal role in regulating the expansion of Ag-stimulated T cells during an immune response.  相似文献   

17.
The protein tyrosine phosphatase SHP-1 is a well-known inhibitor of activation-promoting signaling cascades in hematopoietic cells but its potential role in insulin target tissues is unknown. Here we show that Ptpn6(me-v/me-v) (also known as viable motheaten) mice bearing a functionally deficient SHP-1 protein are markedly glucose tolerant and insulin sensitive as compared to wild-type littermates, as a result of enhanced insulin receptor signaling to IRS-PI3K-Akt in liver and muscle. Downregulation of SHP-1 activity in liver of normal mice by adenoviral expression of a catalytically inert mutant of SHP-1, or after small hairpin RNA-mediated SHP-1 silencing, further confirmed this phenotype. Tyrosine phosphorylation of CEACAM1, a modulator of hepatic insulin clearance, and clearance of serum [125I]-insulin were markedly increased in SHP-1-deficient mice or SHP-1-deficient hepatic cells in vitro. These findings show a novel role for SHP-1 in the regulation of glucose homeostasis through modulation of insulin signaling in liver and muscle as well as hepatic insulin clearance.  相似文献   

18.
The mechanism by which antagonist peptides inhibit T cell responses is unknown. Mice deficient in Src homology 2 domain-containing protein tyrosine phosphatase (SHP-1) have revealed its importance in the negative regulation of lymphocyte signaling. We investigated a possible role for SHP-1 in T cell antagonism and demonstrate, for the first time, a substantial increase in SHP-1 activity during antagonism of CD4(+) T cells. Furthermore, the removal of functional SHP-1 prevents antagonism in these cells. Our data demonstrate that T cell antagonism occurs via a negative intracellular signal that is mediated by SHP-1.  相似文献   

19.
In humans, studies of autoreactive T cells that mediate multiple sclerosis have been largely confined to testing peripheral blood lymphocytes. Little is known how such measurements reflect the disease-mediating autoreactive T cells in the CNS. This information is also not available for murine experimental allergic encephalomyelitis (EAE); the low number of T cells that can be obtained from the blood or the brain of mice prevented such comparisons. We used single-cell resolution IFN-gamma ELISPOT assays to measure the frequencies and functional avidities of myelin basic protein (MBP:87-99)-specific CD4 cells in SJL mice immunized with this peptide. Functional MBP:87-99-specific IFN-gamma-producing cells were present in the CNS during clinical signs of EAE, but not during phases of recovery. In contrast, MBP:87-99-specific T cells persisted in the blood during all stages of the disease, and were also present in mice that did not develop EAE. Therefore, the increased frequency of MBP:87-99-reactive T cells in the blood reliably reflected the primed state, but not the inflammatory activity of these cells in the brain. The functional avidity of the MBP:87-99-reactive T cells was identical in the brain and blood and did not change over 2 mo as the mice progressed from acute to chronic EAE. Therefore, high-affinity T cells did not become selectively enriched in the target organ, and avidity maturation of the MBP:87-99-specific T cell repertoire did not occur in the observation period. The data may help the interpretation of measurements made with peripheral blood lymphocytes of multiple sclerosis patients.  相似文献   

20.
Cross-linking of CD45 induced capping and physical sequestration from CD22 leading to an increase in tyrosine phosphorylation of CD22 and SHP-1 recruitment. Additionally, CD22 isolated from a CD45-deficient B cell line exhibited increased basal/inducible tyrosine phosphorylation and enhanced recruitment of SHP-1 compared with CD22 isolated from CD45-positive parental cells. Subsequent experiments were performed to determine whether enhanced SHP-1 recruitment to CD22 is responsible for attenuation of receptor-mediated Ca2+ responses in CD45-deficient cells. Catalytically inactive SHP-1 expressed in CD45-deficient cells interacted with CD22 and decreased phosphatase activity in CD22 immunoprecipitates to levels that were comparable to those in CD45-positive cells. Expression of catalytically inactive SHP-1 restored intracellular mobilization of Ca2+ in response to MHC class II cross-linking, but did not affect B cell Ag receptor- or class II-mediated Ca2+ influx from the extracellular space. These results indicate that CD45 regulates tyrosine phosphorylation of CD22 and binding of SHP-1. The data further indicate that enhanced recruitment and activation of SHP-1 in CD45-deficient cells affect intracellular mobilization of Ca2+, but are not responsible for abrogation of receptor-mediated Ca2+ influx from the extracellular space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号