首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Movement of cells, either as amoeboid individuals or in organised groups, is a key feature of organ formation. Both modes of migration occur during Drosophila embryonic gonad development, which therefore provides a paradigm for understanding the contribution of these processes to organ morphogenesis. Gonads of Drosophila are formed from three distinct cell types: primordial germ cells (PGCs), somatic gonadal precursors (SGPs), and in males, male-specific somatic gonadal precursors (msSGPs). These originate in distinct locations and migrate to associate in two intermingled clusters which then compact to form the spherical primitive gonads. PGC movements are well studied, but much less is known of the migratory events and other interactions undergone by their somatic partners. These appear to move in organised groups like, for example, lateral line cells in zebra fish or Drosophila ovarian border cells.  相似文献   

2.

Background  

Dmrt1 is a highly conserved gene involved in the determination and early differentiation phase of the primordial gonad in vertebrates. In the fish medaka dmrt1bY, a functional duplicate of the autosomal dmrt1a gene on the Y-chromosome, has been shown to be the master regulator of male gonadal development, comparable to Sry in mammals. In males mRNA and protein expression was observed before morphological sex differentiation in the somatic cells surrounding primordial germ cells (PGCs) of the gonadal anlage and later on exclusively in Sertoli cells. This suggested a role for dmrt1bY during male gonad and germ cell development.  相似文献   

3.

Background  

Embryo in vitro manipulations during early development are thought to increase mortality by altering the epigenetic regulation of some imprinted genes. Using a bovine interspecies model with a single nucleotide polymorphism, we assessed the imprinting status of the small nuclear ribonucleoprotein polypeptide N (SNRPN) gene in bovine embryos produced by artificial insemination (AI), in vitro culture (IVF) and somatic cell nuclear transfer (SCNT) and correlated allelic expression with the DNA methylation patterns of a differentially methylated region (DMR) located on the SNRPN promoter.  相似文献   

4.

Background  

Clonal propagation is highly desired especially for valuable horticultural crops. The method with the potentially highest multiplication rate is regeneration via somatic embryogenesis. However, this mode of propagation is often hampered by the occurrence of developmental aberrations and non-embryogenic callus. Therefore, the developmental process of somatic embryogenesis was analysed in the ornamental crop Cyclamen persicum by expression profiling, comparing different developmental stages of embryogenic cell cultures, zygotic vs. somatic embryos and embryogenic vs. non-embryogenic cell cultures.  相似文献   

5.
6.

Background  

Three types of cell lines have been established from mouse blastocysts: embryonic stem (ES) cells, trophoblast stem (TS) cells, and extra-embryonic endoderm (XEN) cells, which have the potential to differentiate into their respective cognate lineages. ES cells can differentiate in vitro not only into somatic cell lineages but into extra-embryonic lineages, including trophectoderm and extra-embryonic endoderm (ExEn) as well. TS cells can be established from ES cells by the artificial repression of Oct3/4 or the upregulation of Cdx2 in the presence of FGF4 on feeder cells. The relationship between these embryo-derived XEN cells and ES cell-derived ExEn cell lines remains unclear, although we have previously reported that overexpression of Gata4 or Gata6 induces differentiation of mouse ES cells into extra-embryonic endoderm in vitro.  相似文献   

7.

Background  

Fish skeletal muscle growth involves the activation of a resident myogenic stem cell population, referred to as satellite cells, that can fuse with pre-existing muscle fibers or among themselves to generate a new fiber. In order to monitor the regulation of myogenic cell differentiation and fusion by various extrinsic factors, we generated transgenic trout (Oncorhynchus mykiss) carrying a construct containing the green fluorescent protein reporter gene driven by a fast myosin light chain 2 (MlC2f) promoter, and cultivated genetically modified myogenic cells derived from these fish.  相似文献   

8.

Background  

Embryonic stem cells (ESC) are pluripotent cells obtained from the inner cell mass (ICM) of blastocysts derived from in vitro culture associated with reproductive endocrinology therapy. Human ESCs are regarded as highly significant since they retain the capacity to differentiate into any of approximately 200 unique cell types. Human ESC research is controversial because to acquire such cells, the ICM of human blastocysts must be manipulated in a way that renders embryos nonviable and unsuitable for transfer in utero. Techniques to yield competent ESCs with conservation of source blastocysts would satisfy many objections against ESC research, but at present such approaches remain largely untested.  相似文献   

9.

Background  

In Drosophila muscle cell fusion takes place both during the formation of the somatic mesoderm and the visceral mesoderm, giving rise to the skeletal muscles and the gut musculature respectively. The core process of myoblast fusion is believed to be similar for both organs. The actin cytoskeleton regulator Verprolin acts by binding to WASP, which in turn binds to the Arp2/3 complex and thus activates actin polymerization. While Verprolin has been shown to be important for somatic muscle cell fusion, the function of this protein in visceral muscle fusion has not been determined.  相似文献   

10.

Background  

The interaction between the karyoplast and cytoplast plays an important role in the efficiency of somatic cell nuclear transfer (SCNT), but the underlying mechanism remains unclear. It is generally accepted that in nuclear transfer embryos, the reprogramming of gene expression is induced by epigenetic mechanisms and does not involve modifications of DNA sequences. In cattle, oocytes with various mitochondrial DNA (mtDNA) haplotypes usually have different ATP content and can further affect the efficiency of in vitro production of embryos. As mtDNA comes from the recipient oocyte during SCNT and is regulated by genes in the donor nucleus, it is a perfect model to investigate the interaction between donor nuclei and host oocytes in SCNT.  相似文献   

11.
Aquatic birnavirus induces post-apoptotic necrotic cell death via a newly synthesized protein-dependent pathway. However, the involvement of viral genome-encoded protein(s) in this death process remains unknown. In the present study, we demonstrated that the submajor capsid protein, VP3, up-regulates the pro-apoptotic protein, Bad, in fish and mouse cells. Western blot analysis revealed that VP3 was expressed in CHSE-214 cells at 4 h post-infection (pi), indicating an early role during viral replication. We cloned the VP3 gene and tested its function in fish and mouse cells; VP3 overexpression induced apoptotic cell death by TUNEL assay. In addition, it up-regulated Bad gene expression in zebrafish ZLE cells by threefold at 12 h post-transfection (pt) and in mouse NIH3T3 cells by tenfold at 24 h pt. VP3 up-regulation of Bad expression altered mitochondria function, inducing mitochondrial membrane potential (MMP) loss and activating initiator caspase-9 and effector caspase-3. Furthermore, reduced Bad expression (65% reduction), MMP loss (up to 40%), and enhanced cell viability (up to 60%) upon expression of VP3 antisense RNA in CHSE-214 cells at 24 h post-IPNV infection was observed. Finally, overexpression of the anti-apoptotic gene, zfBcl-xL, reduced VP3-induced apoptotic cell death and caspase-3 activation at 24 h in fish cells. Taken together, these results suggest that aquatic birnavirus VP3 induces apoptosis via up-regulation of Bad expression and mitochondrial disruption, which activates a downstream caspase-3-mediated death pathway that is blocked by zfBcl-xL.  相似文献   

12.

Background  

Cloning of cattle by somatic cell nuclear transfer (SCNT) is associated with a high incidence of pregnancy failure characterized by abnormal placental and foetal development. These abnormalities are thought to be due, in part, to incomplete re-setting of the epigenetic state of DNA in the donor somatic cell nucleus to a state that is capable of driving embryonic and foetal development to completion. Here, we tested the hypothesis that DNA methylation patterns were not appropriately established during nuclear reprogramming following SCNT. A panel of imprinted, non-imprinted genes and satellite repeat sequences was examined in tissues collected from viable and failing mid-gestation SCNT foetuses and compared with similar tissues from gestation-matched normal foetuses generated by artificial insemination (AI).  相似文献   

13.

Background  

Somatic cell nuclear transfer in cats offers a useful tool for the generation of valuable research models. However, low birth rates after nuclear transfer hamper exploitation of the full potential of the technology. Poor embryo development after activation of the reconstructed oocytes seems to be responsible, at least in part, for the low efficiency. The objective of this study was to characterize the response of cat oocytes to various stimuli in order to fine-tune existing and possibly develop new activation methods for the generation of cat disease models by somatic cell nuclear transfer.  相似文献   

14.
15.
16.

Background

Microcell-mediated chromosome transfer (MMCT) was developed to introduce a low number of chromosomes into a host cell. We have designed a novel technique combining part of MMCT with somatic cell nuclear transfer, which consists of injecting a somatic micronucleus into an enucleated oocyte, and inducing its cellular machinery to replicate such micronucleus. It would allow the isolation and manipulation of a single or a low number of somatic chromosomes.

Methods

Micronuclei from adult bovine fibroblasts were produced by incubation in 0.05 μg/ml demecolcine for 46 h followed by 2 mg/ml mitomycin for 2 h. Cells were finally treated with 10 μg/ml cytochalasin B for 1 h. In vitro matured bovine oocytes were mechanically enucleated and intracytoplasmatically injected with one somatic micronucleus, which had been previously exposed [Micronucleus- injected (+)] or not [Micronucleus- injected (?)] to a transgene (50 ng/μl pCX-EGFP) during 5 min. Enucleated oocytes [Enucleated (+)] and parthenogenetic [Parthenogenetic (+)] controls were injected into the cytoplasm with less than 10 pl of PVP containing 50 ng/μl pCX-EGFP. A non-injected parthenogenetic control [Parthenogenetic (?)] was also included. Two hours after injection, oocytes and reconstituted embryos were activated by incubation in 5 μM ionomycin for 4 min + 1.9 mM 6-DMAP for 3 h. Cleavage stage and egfp expression were evaluated. DNA replication was confirmed by DAPI staining. On day 2, Micronucleus- injected (?), Parthenogenetic (?) and in vitro fertilized (IVF) embryos were karyotyped. Differences among treatments were determined by Fisher′s exact test (p≤0.05).

Results

All the experimental groups underwent the first cell divisions. Interestingly, a low number of Micronucleus-injected embryos showed egfp expression. DAPI staining confirmed replication of micronuclei in most of the evaluated embryos. Karyotype analysis revealed that all Micronucleus-injected embryos had fewer than 15 chromosomes per blastomere (from 1 to 13), while none of the IVF and Parthenogenetic controls showed less than 30 chromosomes per spread.

Conclusions

We have developed a new method to replicate somatic micronuclei, by using the replication machinery of the oocyte. This could be a useful tool for making chromosome transfer, which could be previously targeted for transgenesis.
  相似文献   

17.

Background  

The blasticidin S resistance gene (bsr) is a selectable marker used for gene transfer experiments. The bsr gene encodes for blasticidin S (BS) deaminase, which has a specific activity upon BS. Therefore, its expression is supposed to be harmless in cells. The work reported on herein consisted of experiments to verify a possible toxicity of bsr on mammalian cells, which include several cell lines and primary cultures.  相似文献   

18.

Background  

We have previously noted that there were differences in somatic and male germ cell polyadenylation site choices. First, male germ cells showed a lower incidence of the sequence AAUAAA (an important element for somatic polyadenylation site choice) near the polyadenylation site choice. Second, the polyadenylation sites chosen in male germ cells tended to be nearer the 5' end of the mRNA than those chosen in somatic cells. Finally, a number of mRNAs used a different polyadenylation site in male germ cells than in somatic cells. These differences suggested that male germ cell-specific polyadenylation sites may be poor substrates for polyadenylation in somatic cells. We therefore hypothesized that male germ cell-specific polyadenylation sites would be inefficiently used in somatic cells.  相似文献   

19.

Background  

Electroporation (EP) is a widely used non-viral gene transfer method. We have attempted to develop an exact protocol to maximize DNA expression while minimizing tissue damage following EP of skeletal muscle in vivo. Specifically, we investigated the effects of varying injection techniques, electrode surface geometry, and plasmid mediums.  相似文献   

20.

Background  

Transgenic approaches provide a powerful tool for gene function investigations in plants. However, some legumes are still recalcitrant to current transformation technologies, limiting the extent to which functional genomic studies can be performed on. Superroot of Lotus corniculatus is a continuous root cloning system allowing direct somatic embryogenesis and mass regeneration of plants. Recently, a technique to obtain transgenic L. corniculatus plants from Superroot-derived leaves through A. tumefaciens-mediated transformation was described. However, transformation efficiency was low and it took about six months from gene transfer to PCR identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号