首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ornamental hybrid shrub, Lantana camara L. (lantana), is a serious environmental weed and has been targeted for biological control in South Africa since 1961. The established biocontrol agents cause insufficient levels of damage and additional natural enemies are required to reduce the invasiveness of this weed. The lantana mirid, Falconia intermedia (Distant), is a promising new agent that was imported from the Caribbean for life history and host-range studies. The nymphs and adults are leaf-suckers that cause chlorotic speckling, which reduces the photosynthetic capacity of the plant. Biological studies indicate that F. intermedia has considerable biocontrol potential, in that it has a high intrinsic rate of increase, the potential for multiple generations a year, highly mobile adults, and a high level of damage per individual. Host-specificity trials indicated that the lantana mirid has a narrow host range, with L. camara being the most suitable host, but several indigenous African species in the closely related genus Lippia are suitable alternative host plants. Under multiple-choice conditions, adults showed a significant and strong oviposition preference for L. camara over the Lippia species. A risk assessment of potential nontarget effects indicated that three Lippia species could sustain damage levels in the field. The relatively low probability of damage to indigenous species was considered a justified trade-off for the potentially marked impact on L. camara. The regulatory authorities accepted the results of this study and F. intermedia was released against L. camara in South Africa in April 1999.  相似文献   

2.
Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) was introduced as an ornamental in South Africa, but is fast becoming an important invasive plant in many areas. It is difficult to control the plant chemically and mechanically. The first biocontrol agent, the chrysomelid Charidotis auroguttata (Boheman), has been released. It established at some release sites, but numbers have so far remained low. Additional biocontrol agents were sought to augment C. auroguttata. The potential host ranges of two foliage feeding lace bugs, Carvalhotingis visenda (Drake and Hambleton) and C. hollandi (Drake) (Hemiptera: Tingidae) were evaluated on the basis of nymphal no-choice and adult multi-choice tests involving 23 plant species in 11 families. In no-choice tests, nymphs of both species were able to survive and complete development on M. unguis-cati only, and adults of both species only fed and oviposited on M. unguis-cati during the adult multi-choice tests. Host specificity tests thus confirm that the tingids are highly host specific biocontrol agents, and will not pose risk to any non-target plants in South Africa. A study to determine the potential impact of C. hollandi nymphal feeding on M. unguis-cati showed a significant decrease in the chlorophyll contents of leaves when compared to those of control plants. These studies indicate that, once released, the two lace bug species could contribute significantly to the biological control of M. unguis-cati in South Africa.  相似文献   

3.
The biology and host range of the flea-beetle, Alagoasa extrema (Harold) (Coleoptera: Chrysomelidae: Galerucinae: Alticini), was studied under quarantine laboratory conditions to evaluate the insect’s suitability for release as a biological control agent for the noxious weed, Lantana camara L. (Verbenaceae), in South Africa. Identification of this species proved noteworthy. The adults of A. extrema display three freely interbreeding and very distinct colour morphs, which can be confused with no less than 11 species of Alagoasa found in Mexico and the southwestern U.S. Initially, specimens were identified as two species of the genus Alagoasa Bechyné, i.e. A. quadrilineata (Harold) and A. extrema. Thirteen additional Alagoasa species and Kushelina petaurista (F). that can be confused with A. extremabased on external morphology of adults or larvae are discussed. Favourable biological characteristics included long-lived adults, several overlapping generations per year, and high adult and larval feeding rates. Observations from the insect’s native Mexican range and studies in South Africa suggest that A. extrema would probably be more suited to subtropical, rather than temperate areas in Africa. Host-specificity studies showed A. extrema to be an oligophagous species, capable of feeding and developing on several non-target species, especially two indigenous, African Lippia species (Verbenaceae). The host suitability of these indigenous species was only marginally lower than that of L. camara, and the potential risk to them was deemed to be too high to warrant release. It was therefore recommended that A. extrema be rejected as biocontrol agent for lantana in Africa.  相似文献   

4.
The safety of biological control is a contentious issue. We suggest that constructing and analyzing food webs may be a valuable addition to standard biological control research techniques, as they offer a means of assessing the post-release safety of control agents. Using preliminary data to demonstrate the value of food webs in biocontrol programs, we quantified the extent to which a key agent has infiltrated natural communities in Australia and, potentially, impacted on non-target species. Using these data, we also demonstrate how food webs can be used to generate testable hypotheses regarding indirect interactions between introduced agents and non-target species. We developed food webs in communities invaded to varying degrees by an exotic weed, bitou bush, Chrysanthemoides monilifera ssp. rotundata, and a key biocontrol agent for this weed in Australia, the tephritid fly, Mesoclanis polana. Three food webs were constructed during springtime showing the interactions between plants, seed-feeding insects and their parasitoids. One food web was constructed in a plot of native Australian vegetation that was free of bitou bush (‘bitou-free’), another in a plot of Australian vegetation surrounded by an invasion of bitou bush (‘bitou-threatened’) and a third from a plot infested with a monoculture of bitou bush (‘bitou-infested’). The bitou-free web contained 36 species, the bitou-threatened plot 9 species and the bitou-infested web contained 6 species. One native Australian herbivore attacked the seeds of bitou bush. M. polana, a seed-feeding fly, was heavily attacked by native parasitoids, these being more abundant than the parasitoids feeding on the native seed feeders. A surprising result is that none of the three species of native parasitoids reared from M. polana were reared from any of the native herbivores. The food webs revealed how a highly host-specific biocontrol agent, such as M. polana has the potential to change community structure by increasing the abundance of native parasitoids. The webs also suggest that indirect interactions between M. polana and native non-target species are possible, these been mediated by shared parasitoids. The experiments necessary to determine the presence of these interactions are outlined.  相似文献   

5.
This paper reviews successful and, briefly, unsuccessful viral biocontrol programs for invasive vertebrate pests to provide lessons for future programs, especially the potential use of cyprinid herpesvirus-3 to control carp in Australia. There have only been three major programs where viral pathogens have been used successfully against invasive vertebrate pests. Myxoma and rabbit hemorrhagic disease viruses were used to control rabbits in Australia, and feline panleukopenia virus helped eliminate cats from sub-Antarctic Marion Island. These programs have shown us that successful viral biocontrol programs for invasive species must include: a thorough understanding of the biology of the target species, and of the viral epidemiology; an integrated pest management program involving both the virus and other control methods; and, a post-release assessment of the ecological benefits of the program. The most important practical lessons identified in this review are: the greatest impact of viruses as biocontrol agents is in the first years following release; unsuspected cross-reactive viruses may confer protection on the target species; and, there may be age- or temperature-related resistance to the virus in the target species.  相似文献   

6.
The potential for classical biological control to cause unintended harm to native species was evaluated in the case of the endemic Hawaiian koa bug, Coleotichus blackburniae White (Hemiptera: Scutelleridae), and parasitoids introduced to Hawaii for control of an agricultural pest, the southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae). Parasitism of C. blackburniae eggs, nymphs and adults by biocontrol agents was quantified across a wide range of habitats and compared to other sources of mortality. Egg mortality due to the biocontrol agent Trissolcus basalis Wollaston (Hymenoptera: Scelionidae) was low (maximum 26%) and confined to elevations below 500 m on a single host plant. Predation, mainly by alien spiders and ants, was the greatest source of egg mortality (maximum 87%). Parasitism of adult C. blackburniae by the biocontrol agent Trichopoda pilipes (F.) (Diptera: Tachinidae) was near zero at 21 of 24 sites surveyed. Three sites with high bug density had higher levels of T. pilipes parasitism, reaching maxima of 70% among adult female bugs, 100% among males and 50% among fifth instars. Male-biased parasitism indicated that T. pilipes is adapted to using male aggregation pheromone for finding C. blackburniae hosts. The relative impacts of biocontrol agents and other sources of mortality were compared using life tables. Invasive species, particularly generalist egg predators, had the greatest impacts on C. blackburniae populations. Effects of intentionally introduced parasitoids were relatively minor, although the tachinid T. pilipes showed potential for large impacts at individual sites. In retrospect, non-target attacks by biological control agents on C. blackburniae were predictable, but the environmental range and magnitude of impacts would have been difficult to foresee.  相似文献   

7.
We qualitatively reviewed the biocontrol literature in two major journals, Biological Control and Environmental Entomology, over the past 10 years by scoring 878 studies into 11 biocontrol-oriented questions. Quantitative meta-analyses were then used on data from 145 studies to examine the effects of different types of biocontrol agents (parasitoids, predators, and pathogens) on several attributes of weed and pest populations. Results for our qualitative review showed that most biocontrol studies were focused on lepidopteran pests, and that parasitoids were the most common biocontrol agents used. Our quantitative review showed that, for weeds, biocontrol agents significantly reduced weed biomass (−82.0%), flower (−98.9%), and seed production (−89.4%). For pests, our quantitative review showed that biocontrol agents significantly reduced pest abundance by 130% compared to control groups, increased parasitism (+139.0%) and increased overall pest mortality (+159.0%) compared to targets not exposed to biocontrol agents. Effects on pest mortality tended to be stronger for parasitoids than predators, although reductions caused in pest abundance were much stronger when predators were used as biocontrol agents. Addition of two or more biocontrol agents increased mortality by 12.97% and decreased pest abundance by 27.17% compared to single releases. Separate sets of meta-analyses demonstrated that the negative impacts of biocontrol on non-target species were much smaller than those for target species, although adverse effects of biocontrol on non-target organisms are based on small sample sizes and should be interpreted with caution. Our results also showed that biocontrol efficacy tended to be higher when agents were generalists than when they were specialists. Large fail–safe numbers found for most of the estimated effects indicate the robustness of the results found for the efficacy of biological control programs.  相似文献   

8.
Weed biocontrol relies on host specificity testing, usually carried out under quarantine conditions to predict the future host range of candidate control agents. The predictive power of host testing can be scrutinised directly with Aconophora compressa, previously released against the weed Lantana camara L. (lantana) because its ecology in its new range (Australia) is known and includes the unanticipated use of several host species. Glasshouse based predictions of field host use from experiments designed a posteriori can therefore be compared against known field host use. Adult survival, reproductive output and egg maturation were quantified. Adult survival did not differ statistically across the four verbenaceous hosts used in Australia. Oviposition was significantly highest on fiddlewood (Citharexylum spinosum L.), followed by lantana, on which oviposition was significantly higher than on two varieties of Duranta erecta (“geisha girl” and “Sheena’s gold”; all Verbenaceae). Oviposition rates across Duranta varieties were not significantly different from each other but were significantly higher than on the two non-verbenaceous hosts (Jacaranda mimosifolia D. Don: Bignoneaceae (jacaranda) and Myoporum acuminatum R. Br.: Myoporaceae (Myoporum)). Production of adult A. compressa was modelled across the hosts tested. The only major discrepancy between model output and their relative abundance across hosts in the field was that densities on lantana in the field were much lower than predicted by the model. The adults may, therefore, not locate lantana under field conditions and/or adults may find lantana but leave after laying relatively few eggs. Fiddlewood is the only primary host plant of A. compressa in Australia, whereas lantana and the others are used secondarily or incidentally. The distinction between primary, secondary and incidental hosts of a herbivore species helps to predict the intensity and regularity of host use by that herbivore. Populations of the primary host plants of a released biological control agent are most likely to be consistently impacted by the herbivore, whereas secondary and incidental host plant species are unlikely to be impacted consistently. As a consequence, potential biocontrol agents should be released only against hosts to which they have been shown to be primarily adapted.  相似文献   

9.
With greater emphasis being placed on management of the risks attached to natural enemy releases for biocontrol programs and the need to justify research budgets, the efficient selection of effective natural enemies is increasingly important. Historically there has been little agreement regarding how or whether this can be accomplished. Recent studies have demonstrated that there is good correspondence between insect host-finding behavior and attack rates in well-designed laboratory studies and their performance of this behavior in the field. Success in measuring efficacy of candidate agents remains somewhat of an art due to the multitude of factors influencing efficacy, but will be improved by attention to: (1) characterization of natural enemy candidates using morphological taxonomy or genetic markers at the onset of a program, (2) climatic matching candidate agents when possible, and (3) evaluations in semi-field or field cage conditions following quarantine evaluations whenever possible before proceeding with widespread releases. The application of these principles is discussed in regard to US biocontrol programs for Bemisia tabaci (Gennadius), Lygus spp., and Aphis glycines Matsumura. Proper project planning and interdisciplinary cooperation will enhance the chances for a successful project.  相似文献   

10.
Biological control of weeds by arthropod herbivores is thought to work by reducing the competitive ability of the weed relative to the surrounding vegetation. However, the assumption that herbivory reduces plant competitive ability has not been tested in most biological control systems, and counter to expectation, recent research on the impact of biological control agents on invasive Centaurea species suggests that this genus may respond to herbivory by increased competitive ability through enhanced plant re-growth and/or by inducing increased production of phytotoxic allelochemicals. We examined the impact of two biological control agents of the invasive plant diffuse knapweed (C. diffusa) to see if feeding by either of these insects would enhance the plant’s competitive ability or allelochemical output. Sub-lethal herbivory by either of the biological control agents significantly reduced knapweed performance when the plant was grown in competition with either of two native species. Competition with knapweed significantly reduced the performance of both native species (Artemisia frigida and Bouteloua gracilis), and herbivory by one of the biocontrol agents resulted in a small but significant increase in both native species’ performance. Diffuse knapweed’s putative allelochemical 8-hydroxyquinoline was not detected in experimental or field collected soils from knapweed-infested sites. In contrast to other studies on the impacts of biological control on other Centaurea species, these data support the premise that biological control agents may reduce invading plant competitive ability. We find no evidence for diffuse knapweed allelopathy mediated by 8-hydroxyquinoline or enhanced allelopathy in response to herbivory by biological control agents.  相似文献   

11.
The genus Anicetus includes economically important biocontrol agents that are introduced for control of soft and wax scale insect agricultural pests (Ceroplastes spp.). Understanding of host–parasitoid associations is critical to the successful outcome of their utilization in biological control projects. However, identification of these parasitoids is often difficult because of their small size and generally similar morphological features, and hence, studies on the host–parasitoid associations. Here, nucleotide sequence data were generated from the mitochondrial COI gene and the D2 region of 28S rRNA to assess genetic variation within and between species of Anicetus occurring in China. The results of this study support the use of the COI and the D2 region of 28S rRNA gene as useful markers in separating species of Anicetus, even in cases where morphological differences are subtle. On the other hand, the COI gene is also useful in recognizing species with much variation in morphology. DNA barcoding reveals high levels of host specificity of endoparasitoids wasps in the genus Anicetus. Our results indicate that each Anicetus species is adapted to a limited set of host species, or even are monospecific in their host choice.  相似文献   

12.
The biota of herbivorous arthropods and pathogenic microorganisms associated with Rosa rugosa in its native and exotic ranges is reviewed. This is done as an initial step towards the identification of potential agents for biological control of this plant species invasive in Europe and North America. It is shown that more insect (but apparently not fungal) species attack R. rugosa in its native range than in its exotic range, and that most of the specialized insect and fungal enemies are confined to its native range. Among the close relatives of R. rugosa in its exotic ranges are many native species, as well as economically important crop plants. Few organisms appear to be narrowly specialized to R. rugosa, but true host specificity can only be identified through experimental testing. Based on the literature, the most promising candidates for biocontrol seem to be the aphids Myzus japonensis and Amphorophora amurensis, the leaf hopper Empoasca ussurica, the tortricid moth Notocelia longispina, the cynipid gall-wasp Diplolepis fukudae, and the rust fungi Phragmidium rosae-rugosae and P. yezoense. A screening programme is suggested, investigating the impact of these organisms on R. rugosa performance, their host specificity and the risk of undesired indirect effects in the ecosystem where agents are released. In addition, demographic studies of the target plant should be integrated to provide guidance for the stage in the life cycle most sensitive to control and, thus, enable selection of the most efficient and safe biocontrol agents.  相似文献   

13.
The infection structures, trophism, and ecological character of nematophagous fungi are reviewed in this article on the basis of data extracted from the literature and the most recent experiments conducted in this area. Traditionally, nematophagous fungi are classified into four groups according to their modes of attacking nematodes: nematode-trapping fungi using adhesive or mechanical hyphal traps, endoparasitic fungi using their spores, eggparasitic fungi invading nematode eggs or females with their hyphal tips, and toxin-producing fungi immobilizing nematodes before invasion. In the present review, we focus on the first two groups. The living strategies of these nematophagous fungi depend on the diversity of their infection structures, such as different traps and spore types, which determine the modes of infecting nematodes. The diversity of trophic modes of nematophagous fungi is an important prerequisite for fungal survival and activity in soil. The abundance and activity of Hirsutella rhossiliensis and H. minnesotensis, representatives of endoparasites and potential biocontrol agents against nematodes, are highly dependent on environmental factors. Comprehensive understanding of the survival and activity of nematophagous fungi in soil is fundamental for the exploitation of these fungi as successful biocontrol agents.  相似文献   

14.
Management of invasive plants with biological control rests on the assumption of herbivores as structuring forces of plant community composition, but only 30% of programs achieve substantial plant suppression. Control is often caused by a few successful agents, and improvements in the ability to select the most promising species would greatly improve weed biocontrol programs. We evaluated impact of different larval stages and larval densities of the stem boring noctuid Archanara geminipuncta on height and biomass production of Phragmites australis in the field and in a common garden in the native European range. In the field, stem biomass was reduced 21.5–64.5% by A. geminipuncta attack with the largest reduction due to early larval feeding. In the common garden, P. australis performance declined linearly (stem height 40%, biomass 50%; and percentage of flowering stems 90%) as attack rates increased. Significant field and common garden impact and the large Eurasian distribution indicate great potential of A. geminipuncta for biocontrol of introduced P. australis in North America if host specificity tests produce favorable results. If approved for release, we anticipate that A. geminipuncta could establish throughout the range of introduced P. australis in North America. We also anticipate that this moth will build high populations with significant impact on height, aboveground biomass, and clonal expansion of P. australis. This attack is expected to reduce competitive ability of P. australis, favoring native wetland species and preventing further negative ecological impacts associated with the current spread of introduced P. australis in North America.  相似文献   

15.
J-R. Baars  F. Heystek 《BioControl》2003,48(6):743-759
A survey was conducted todetermine the present status of five biocontrolagents established on Lantana camara L.(Verbenaceae) in South Africa. Three ofthe five agents, Calycomyza lantanae(Frick), Ophiomyia lantanae Froggatt andTeleonemia scrupulosa Stål areestablished throughout the range of L.camara. The two hispine beetles, Octotomascabripennis Guérin-Ménevilleand Uroplata girardi Pic are restrictedto the warm, subtropical regions in the easternrange of the weed, and are unable to cope withthe plants becoming seasonally leafless in dryand temperate areas. The two beetles and T. scrupulosa are rated as the most damagingagents on L. camara. The impact of O. lantanae is uncertain, and due to lowpopulations, the impact of C. lantanae isnegligible. Insect populations typicallyaccumulate to maximise their impact on plantsby midsummer, giving plants the opportunity tocompensate for the cumulative agent damageaccrued at the end of the previous growingseason. A number of parasitoids were rearedfrom U. girardi, O. lantanae andC. lantanae, but only those adapted toC. lantanae are expected to significantlyreduce its field density. The agents feed anddevelop on a wide range of lantana varieties,and where two or more varieties co-exist,insects occurred in equal abundance on thedifferent varieties. The importance of varietalpreferences appears to have beenover-estimated, but needs consideration whennew candidates are evaluated. The impact ofthese biocontrol agents is insufficient toreduce L. camara to a manageablesituation, and additional candidates arenecessary to control this weed in South Africa.  相似文献   

16.
Phragmites australis is a cosmopolitan clonal grass valued for its support of diversity-rich communities in its native range and feared for its devastating effects on native diversity where the species is introduced. Lack of successful control in North America resulted in the initiation of a biological control program. We used a combination of field surveys and common garden experiments in Europe to study life history and ecology of a chloropid fly, Platycephala planifrons, to assess its potential as a biological control agent. The fly is widely distributed (in non-flooded sites) throughout Eurasia but attack rates are generally low (mean 5–10%; max. 29%). Adults emerge in late June and may live for several months. Females lay eggs at the base of Ph. australis shoots. First instar larvae of this stem-feeding fly overwinter in dormant below-ground shoots of Ph. australis and rapidly complete development in early spring. Larval feeding destroys the growing meristem of the shoot causing premature wilting and 60–70% reductions in shoot biomass production. Early season attack and considerable impact suggest that Pl. planifrons could be a potent biocontrol agent, if it can escape suppression by natural enemies in the introduced range. However, the generally low attack rates in its native range and its dependence on dry sites appear to make the species a “second-choice” candidate for potential release in North America.  相似文献   

17.
Lantana camara is a poisonous, bushy shrub from South and Central America that has invaded much of the moist, warm sub-tropical areas of South Africa. In the last decade, evidence of a conspicuous and damaging mycobiota on lantana in the Neotropics has persuaded biocontrol researchers to consider fungi as potential biocontrol agents for this plant. Samples of diseased L. camara leaves were collected during field surveys in South, North and Central America from 1987 to 1997. Pathogenicity tests showed the leaf spot fungus, Mycovellosiella lantanae var. lantanae to be a promising biocontrol pathogen. Inoculations onto South African biotypes of L. camara and a number of closely related species within the family Verbenaceae were made under quarantine conditions to determine the pathogenicity and host specificity of the fungus. Inoculation of L. camara biotypes resulted in necrotic, grey lesions (20-60 per leaf), necrosis of flower buds and stalks, as well as defoliation of certain biotypes after three weeks. None of the other plant species tested showed any disease symptoms. This indicates a very restricted host range, making this pathogen a suitable candidate for application as a biological control agent. It is expected that the fungus will reduce the vigour and reproductive potential of L. camara. Due to the variation in virulence of M. lantanae var. lantanae when tested on South African lantana biotypes, release strategies may include the use of combinations of the isolates to target a wider range of lantana biotypes in the field. Permission to release M. lantanae var. lantanae in South Africa was granted in September 2001. The pathogen will be released as a classical biocontrol agent in South Africa.  相似文献   

18.
Soil solarization in combination with introduction of biocontrol agents (BCA) was evaluated as a potential disease management strategy for tomato damping-off caused by Pythium spp. A rifampicin resistant Pseudomonas fluorescens strain (PfT-8) and a carbendazim resistant Trichoderma harzianum strain (ThM-1) were introduced into soil following solarization. Tomato seeds were planted into treated field plots. The influence of soil solarization and application of biocontrol agents on damping-off incidence, plant biomass, rhizosphere population of introduced antagonists, and native Pythium spp. was assessed by two consecutive field trials. Damping-off incidence was significantly reduced in solarized plots compared to control. Soil inoculation of biocontrol agents into solarized plots resulted in the highest suppression of damping-off incidence (PfT-8 up to 92%; ThM-1 up to 83%), and increase in plant biomass (PfT-8 up to 66%; ThM-1 up to 48%) when compared to un-solarized control plots. Rhizosphere population of introduced biocontrol agents gradually increased (PfT-8 up to 102% and ThM-1 up to 84%) in solarized soils when compared to unsolarized control. The population of Pythium spp in rhizosphere soil was reduced up to 55% in solarized plots; whereas, application of BCA to solarized soils reduced the rhizosphere population of Pythium spp. by 86 and 82% in P. fluorescens and T. harzianum applied plots respectively.  相似文献   

19.
Generalist phytoseiids are often observed for long periods on plants in the absence of prey, feeding on alternative foods and reaching high population levels. The persistence of generalist predatory mites on plants with a scarcity or absence of prey is a requirement for successful biocontrol strategies of herbivore mites. The importance of pollen as an alternative food for the support of generalist predatory mite populations is widely recognized. However, on grape the presence of pollen is often limited and thus other food sources should contribute towards generalist predatory mite persistence on perennial plants. Previous field observations reported the relationships between the population increases of generalist phytoseiids with late-season spread of grape downy mildew (GDM) Plasmopara viticola. In this study, we test the hypothesis that GDM could be a suitable food source for the predatory mites Amblyseius andersoni and Typhlodromus pyri. In the laboratory we compared the development times, oviposition rates and life-table parameters of predatory mites feeding on pollen or GDM mycelium and spores. Grape downy mildew supported the survival, development and oviposition of T. pyri and A. andersoni. Life-table parameters showed that GDM was a less suitable food source than pollen for both phytoseiid species and that it was more favorable for A. andersoni than for T. pyri. Implications for predator–prey interactions and conservation biological control in vineyards are discussed.  相似文献   

20.
Soilborne root diseases caused by plant pathogenic Pythium species cause serious losses in a number of agricultural production systems, which has led to a considerable effort devoted to the development of biological agents for disease control. In this article we review information on the ecology and biological control of these pathogens with the premise that a clear understanding of the ecology of the pathogen will assist in the development of efficacious biocontrol agents. The lifecycles of the pathogens and etiology of host infection also are reviewed, as are epidemiological concepts of inoculum-disease relationships and the influence of environmental factors on pathogen aggressiveness and host susceptibility. A number of fungal and bacterial biocontrol agents are discussed and parallels between their ecology and that of the target pathogens highlighted. The mechanisms by which these microbial agents suppress diseases caused by Pythium spp., such as interference with pathogen survival, disruption of the process of plant infection, and induced host resistance, are evaluated. The possibilities for enhancement of efficacy of specific biological control agents by genetic manipulation or deployment tactics are discussed, as are conceptual suggestions for consideration when developing screening programs for antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号