首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dispersibility and stability issues of peptide drugs during preparation and storage hinder the widespread adoption of pressurized metered-dose inhaler (pMDI). This study aimed to develop a reverse microemulsion (RM) of exenatide (EXE) pMDI through a liquid-based bottom-up method, thus to overcome the stability issue of peptide drugs encountered in traditional top-down methods, such as milling down and high-pressure homogenization. In this study, Pluronic® L64 (L64) was chosen as a surfactant to prepare the EXE-RM pMDI formulations with the assistance of ethanol. The results showed RM possessed a particle size of 123.80?±?2.91 nm with 0.121?±?0.024 PdI and a satisfied fine-particle fraction of 41.30?±?3.73% measured by a next-generation impactor. In addition, the dispersion stability of RM pMDI was maintained after storage at 4 °C for 50 days. The secondary structure of EXE was maintained during the preparation process. Moreover, the results indicated that L64 was compatible with cells and could improve the penetration of EXE through cell monolayers. Through the liquid-based bottom-up method, EXE-RM pMDI was successfully prepared and exhibited favorable stability and aerodynamic performance. This study offers a preparation strategy to enhance the stability of peptides in pMDIs.  相似文献   

2.
The aim of this study was to apply quality by design (QbD) for pharmaceutical development of felodipine solid mixture (FSM) containing hydrophilic carriers and/or polymeric surfactants, for easier development of controlled-release tablets of felodipine. The material attributes, the process parameters (CPP), and the critical quality attributes of the FSMs were identified. Box–Behnken experimental design was applied to develop space design and determine the control space of FSMs that have maximum solubility, maximum dissolution, and ability to inhibit felodipine crystallization from supersaturated solution. Material attributes and CPP studied were the amount of hydroxypropyl methylcellulose (HPMC; X 1), amount of polymeric surfactants Inutec®SP1 (X 2), amount of Pluronic®F-127 (X 3) and preparation techniques, physical mixture (PM) or solvent evaporation (SE; X 4). There is no proposed design space formed if the Pluronic® content was below 45.1 mg and if PM is used as the preparation technique. The operating ranges, for robust development of FSM of desired quality, of Pluronic®, Inutec®SP1, HPMC, and preparation technique, are 49–50, 16–23, 83–100 mg, and SE, respectively. The calculated value of f2 was 56.85, indicating that the release profile of the controlled-release (CR) tablet (CR-6) containing the optimized in situ-formed FSM was similar to that of the target release profile. Not only did the ternary mixture of Pluronic®, HPMC with Inutec®SP1 enhance the dissolution rate and inhibit crystallization of felodipine, but also they aided Carbopol®974 in controlling felodipine release from the tablet matrix. It could be concluded that a promising once-daily CR tablets of felodipine was successfully designed using QbD approach.  相似文献   

3.
As a drug-sparing approach in early development, vibratory milling has been used for the preparation of nanosuspensions of poorly water-soluble drugs. The aim of this study was to intensify this process through a systematic increase in vibration intensity and bead loading with the optimal bead size for faster production. Griseofulvin, a poorly water-soluble drug, was wet-milled using yttrium-stabilized zirconia beads with sizes ranging from 50 to 1500 μm at low power density (0.87 W/g). Then, this process was intensified with the optimal bead size by sequentially increasing vibration intensity and bead loading. Additional experiments with several bead sizes were performed at high power density (16 W/g), and the results were compared to those from wet stirred media milling. Laser diffraction, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and dissolution tests were used for characterization. Results for the low power density indicated 800 μm as the optimal bead size which led to a median size of 545 nm with more than 10% of the drug particles greater than 1.8 μm albeit the fastest breakage. An increase in either vibration intensity or bead loading resulted in faster breakage. The most intensified process led to 90% of the particles being smaller than 300 nm. At the high power intensity, 400 μm beads were optimal, which enhanced griseofulvin dissolution significantly and signified the importance of bead size in view of the power density. Only the optimally intensified vibratory milling led to a comparable nanosuspension to that prepared by the stirred media milling.  相似文献   

4.
The aim of this study was to assess whether wet bead milling of dexamethasone and tacrolimus suspensions leads to a lower degree of crystallinity of nanocrystals, and if the degree of crystallinity affects the drug solubility, in addition to particle size. Powder X-ray diffraction (XRD) was used to determine the degree of crystallinity of the particles, which decreased during milling until reaching a plateau: the particles had ~79% degree of crystallinity after 5 h milling. Different milling times were required for the two drugs in order to reach their plateaux, 2 h for dexamethasone and 3 h for tacrolimus. These results could be explained with the brittleness of the drugs. Dexamethasone was more brittle than tacrolimus, with an apparent elastic modulus of 16 GPa compared to ~12 GPa of tacrolimus. Freeze-drying the nanosuspensions resulted in a reduction in the degree of crystallinity to ~35% for dexamethasone and to ~45% for tacrolimus in comparison to non-freeze-dried particles. Solubility studies were performed with a Sirius® inForm based on in situ UV/VIS spectroscopy. The reduced degree of crystallinity of nanocrystals after milling was responsible, in addition to the nanoparticle size, for the solubility increase. Indeed, while the smallest particle size (394 nm for dexamethasone and 240 nm for tacrolimus) did not always result in the highest increase in solubility (factor of 1.04 for dexamethasone and 1.3 with tacrolimus), the smallest degree of crystallinity was always characteristic of the maximum solubility obtained (factor of 1.15 for dexamethasone and 1.7 for tacrolimus).  相似文献   

5.
The purpose of this research was to prepare a dry powder vaccine formulation containing whole inactivated influenza virus (VIIV) and a mucoadhesive compound suitable for nasal delivery. Powders containing WIIV and either lactose or trehalose were produced by lyophilization. A micro-ball mill was used to reduce the lyophilized cake to sizes suitable for nasal delivery. Chitosan flakes were reduced in size using a cryo-milling technique. Milled powders were sieved between 45 and 125 μm aggregate sizes and characterized for particle size and distribution, morphology, and flow properties. Powders were blended in the micro-ball mill without the ball. Lyophilization followed by milling produced irregularly shaped, polydisperse particles with a median primary particle diameter of ≈21 μm and a yield of ≈37% of particles in the 45 to 125 μm particle size range. Flow properties of lactose and trehalose powders after lyophilization followed by milling and sieving were similar. Cryo-milling produced a small yield of particles in the desired size range (<10%). Lyophilization followed by milling and sieving produced particles suitable for nasal delivery with different physicochemical properties as a function of processing conditions and components of the formulation. Further optimization of particle size and morphology is required for these powders to be suitable for clinical evaluation. Published: March 10, 2006  相似文献   

6.
Effects of grinding processes on enzymatic degradation of wheat straw   总被引:1,自引:0,他引:1  
The effectiveness of wheat straw fine to ultra-fine grindings at pilot scale was studied. The produced powders were characterised by their particle-size distribution (laser diffraction), crystallinity (WAXS) and enzymatic degradability (Trichoderma reesei enzymatic cocktail). A large range of wheat-straw powders was produced: from coarse (median particle size ∼800 μm) to fine particles (∼50 μm) using sieve-based grindings, then ultra-fine particles ∼20 μm by jet milling and ∼10 μm by ball milling. The wheat straw degradability was enhanced by the decrease of particle size until a limit: ∼100 μm, up to 36% total carbohydrate and 40% glucose hydrolysis yields. Ball milling samples overcame this limit up to 46% total carbohydrate and 72% glucose yields as a consequence of cellulose crystallinity reduction (from 22% to 13%). Ball milling appeared to be an effective pretreatment with similar glucose yield and superior carbohydrate yield compared to steam explosion pretreatment.  相似文献   

7.
Laser diffraction (LD) and next generation impactor (NGI) are commonly used for the evaluation of inhaled drug formulations. In this study, the effect of temperature and humidity on the assessment of the nebulizer particle size distribution (PSD) by LD was investigated, and the consistency between NGI and LD measurements was evaluated. There was an increase in particle size with higher temperature or lower humidity. The particle population with a diameter less than 1 μm was significant at a temperature of 5°C or at relative humidity >90%; however, the same particle population became undetectable when temperature increased to 39°C or at relative humidity of 30–45%. The results of the NGI and LD measurements of aerosol generated from three types of jet nebulizers were compared. A poor correlation between the NGI and LD measurements was observed for PARI LC (2.2 μm) (R 2?=?0.893) and PARI LC (2.9 μm) (R 2?=?0.878), while a relatively good correlation (R 2?=?0.977) was observed for the largest particle size nebulizer (PARI TIA (8.6 μm)). We conclude that the ambient environment and the nebulizer have significant impacts on the performance and consistency between these instruments. These factors should be controlled in the evaluation of inhaled aerosol drug formulations when these instruments are used individually or in combination.  相似文献   

8.
Conclusion  The results of the experiments have revealed that the optimal operating conditions for a lab scale Aljet mill are at the high level (110 psi) of the pushing nozzle and the low level (65 psi) of both grinding nozzles, or vice versa. Operating the Aljet mill at high pushing and grinding pressures also produces small particle size; however, the high pressures require more gaseous fluid making the process less efficient. At a very low pushing nozzle pressure as compared with the grinding nozzle pressure, the material kicks back from the mill, reducing the yield. Optimization of the lab scale Aljet mill operating conditions will be very useful in particle size reduction of poorly water-soluble compounds and is particularly beneficial at early stages of drug development when the drug quantity is very limited.  相似文献   

9.
The full-resolution next generation impactor (NGI) and three abbreviated impactor systems were used to obtain the apparent aerodynamic particle size distribution (APSD) and other quality measures for marketed dry powder inhalers (DPIs) using the compendial method and efficient data analysis (EDA). APSD for the active pharmaceutical ingredient (API) in Spiriva® Handihaler®, Foradil® Aerolizer®, and Relenza® Diskhaler® was obtained using a full-resolution NGI at 39, 60, and 90 L/min, respectively. Two reduced NGI (rNGI) configurations, the filter-only configuration (rNGI-f) and the modified-cup configuration (rNGI-mc), and the fast-screening impactor (FSI) with appropriate inserts to provide a 5-μm cut size were evaluated. The fine particle dose (FPD) obtained using the FSI for Spiriva was statistically similar to that obtained using the full NGI. However, the FPD for both Foradil and Relenza obtained using the FSI was significantly different from that obtained using the full NGI. Despite this, no significant differences were observed for the fine particle fraction (FPF) obtained using the FSI relative to that obtained from the full NGI for any of the DPIs. The use of abbreviated impactor systems appears promising with good agreement observed with the full-resolution NGI, except for small differences observed for the rNGI-mc configuration. These small differences may be product- and/or flow rate-specific, and further evaluation will be required to resolve these differences.  相似文献   

10.
Aim of this study was to elaborate an efficient method for the micronization of the decapeptide cetrorelix (a GnRH-antagonist), in order to obtain a microsuspension as basis for other pharmaceutical preparations, such as e.g. inhalation aerosols. A modified pearl-mill coupled with a cryostat was used for the micronization of cetrorelix in fluid propellant and operated under different conditions. The obtained cetrorelix suspensions were analyzed for particle size distribution, purity of cetrorelix, and for metal contamination through abrasion from parts of the mill. The method allowed an effective micronization of cetrorelix. The mean particle size of the initial cetrorelix lyophilizate bulk ware was reduced from 52.5 μ (Volume Mean Diameter, VMD) down to 14.9, 6.1 and 3.1 μm, respectively, respectively. The HPLC analysis of all cetrorelix suspensions after micronization did not show signs of decomposition as compared to the initial product. The elementary analysis of the suspensions performed by inductively coupled plasma mass spectrometry revealed a negligible amount of contaminants in the suspension (Zr=max. 0.6 ppm; Fe, Cr, Ni, Ba, below limit of quantification, i.e.<0.14 ppm). The only appreciable contaminant. Aluminum (Al=1.1 ppm), was derived from the mechanical capping of aluminum canisters prior to analysis. The Zr determination in the suspension of 0.6 ppm, is still considered to be negligible as compared to the legally tolerated limit of air contamination. By low-temperature micronization in fluid propellant, fine drug suspensions of cetrorelix for pMDIs can be directly manufactured in one-step procedure without destruction of the peptide structure and without appreciable product contamination. Published: July 12, 2001.  相似文献   

11.
Wet coating methods use organic solvents to prepare layered particles that provide controlled-release medications. However, this approach has disadvantages in that it can cause particle agglomeration, reduce pharmaceutical stability, and leave residual organic solvents. We used a dry coating method to overcome these issues. Fine particles (less than 50 μm in diameter) of controlled-release theophylline were created using theophylline (TP; model drug), polyethylene glycol 20,000 (PEG; drug fixative), hydrogenated castor oil (HCO; controlled-release material), hydrogenated rapeseed oil (HRSO; controlled-release material), and cornstarch (CS; core particle). An ultrahigh-speed mixer was employed to mix TP and CS for 5 min at 28,000 rpm. Subsequent addition of PEG produced single-core particles with a drug reservoir coating. Addition of HCO and HRSO to these particles produced a controlled-release layer on their surface, resulting in less than 10% TP dissolution after 8 h. We successfully demonstrated that this dry coating method could be used to coat 16-μm CS particles with a drug reservoir layer and a controlled-release layer, producing multi-layer coated single-core particles that were less than 50 μm in diameter. These can be used to prepare controlled-release tablets, capsules, and orally disintegrating tablets.  相似文献   

12.
Direct Compression Behavior of Low- and High-Methoxylated Pectins   总被引:1,自引:0,他引:1  
The objective of this study was to evaluate possible usefulness of pectins for direct compression of tablets. The deformation behavior of pectin grades of different degree of methoxylation (DM), namely, 5%, 10%, 25%, 35%, 40%, 50%, and 60% were, examined in terms of yield pressures (YP) derived from Heckel profiles for both compression and decompression and measurements of elastic recovery after ejection. All pectin grades showed a high degree of elastic recovery. DM 60% exhibited most plastic deformation (YP 70.4 MPa) whereas DM 5% (104.6 MPa) and DM 10% (114.7 MPa) least. However, DM 60% gave no coherent tablets, whereas tablet tensile strengths for DM 5% and DM 10% were comparable to Starch 1500®. Also, Heckel profiles were similar to Starch 1500®. For sieved fractions (180–250 and 90–125 μm) of DM 25% and DM 40% originating from the very same batch, YPs were alike, indicating minor effects of particle size. These facts indicate that DM is important for the compaction behavior, and batch-to-batch variability should also be considered. Therefore, pectins of low degree of methoxylation may have a potential as direct compression excipients.  相似文献   

13.
Recently, inhaled immunosuppressive agents have attracted increasing attention for maintenance therapy following lung transplantation. The rationale for this delivery approach includes a more targeted and localized delivery to the diseased site with reduced systemic exposure, potentially leading to decreased adverse side effects. In this study, the in vitro and in vivo performance of an amorphous formulation prepared by thin film freezing (TFF) and a crystalline micronized formulation produced by milling was compared for tacrolimus (TAC). Despite the relatively large geometric size, the TFF-processed formulation was capable of achieving deep lung delivery due to its low-density, highly porous, and brittle characteristics. When emitted from a Miat® monodose inhaler, TFF-processed TAC formulations exhibited a fine particle fraction (FPF) of 83.3% and a mass median aerodynamic diameter (MMAD) of 2.26 μm. Single-dose 24-h pharmacokinetic studies in rats demonstrated that the TAC formulation prepared by TFF exhibited higher pulmonary bioavailability with a prolonged retention time in the lung, possibly due to decreased clearance (e.g., macrophage phagocytosis), compared to the micronized TAC formulation. Additionally, TFF formulation generated a lower systemic TAC concentration with smaller variability than the micronized formulation following inhalation, potentially leading to reduced side effects related to the drug in systemic circulation.  相似文献   

14.
Cellulosic feedstocks for bioenergy differ in composition and processing requirements for efficient conversion to chemicals and fuels. This study discusses and compares the processing requirements for three lignocellulosic feedstocks??soybean hulls, wheat straw, and de-starched wheat bran. They were ground with a hammer mill to investigate how differences in composition and particle size affect the hydrolysis process. Enzyme hydrolysis was conducted using cellulase from Trichoderma reesei at 50°C and pH 5. Ground fractions were also subjected to dilute sulfuric acid treatment at 125°C, 15 psi for 30 min prior to cellulase treatment. Reducing particle size of biomass resulted in segregated components of feedstock. Grinding wheat straw to particle size <132 ??m resulted in measured lignin content from 20% to ??5% and reduced hemicellulose content. Reducing lignin content increased the effectiveness of enzyme hydrolysis of wheat straw. Particles sized <132 ??m exhibited the highest soluble sugar release upon hydrolysis for all three feedstocks studied. Hemicellulose digestion improved with dilute sulfuric acid treatment with residual hemicellulose content <5% in all three feedstocks after acid treatment. This enhanced the cellulase action and resulted in approximately 1.6-fold increase in sugar availability in de-starched wheat bran and ??1.5-fold for wheat straw and soybean hulls. Higher sugar availability in wheat bran after acid-mediated enzyme treatment correlated to higher ethanol yields during yeast fermentation compared with soybean hulls and wheat straw.  相似文献   

15.
The postembryonic development of the gonad in the hermaphroditic appendicularian O. gracilis was studied using transmission electron microscopy. The primordial germ cells were detected first in 10-h-old larvae and represent migrating primordial germ syncytium (mPGS) localized in the hemocoel of the tail/trunk junction and several haemocoel areas of the digestive compartment. The mPGS consisted of primordial germ nuclei (PGN) 2 μm in diameter, and elongate somatic-line nuclei 1.8 μm in diameter. In 12.5-h-old juveniles the gonad primordium 40 × 90 μm in size, was separated by a narrow space of haemocoel between the gut and the epidermis of the reproductive compartment. The gonad primordium consisted of the central syncytial part of primordial germ nuclei (PGN), enclosing a single layer of somatic epithelium. In 3-day-old juveniles, the gonad was differentiated into testis and ovary. The testis, 400 × 550 μm in size, is a syncytium of spermatogonial nuclei, covered by a single layer of somatic epithelium. The ovaries, 350 × 850 μm in size, consist of a syncytium with nurse nuclei and meiotic nuclei. The hermaphroditic gonad originates from extragonadal mPGS. Early gonadogenesis in appendicularians has ultrastructural features in common with early gonadogenesis in ascidians.  相似文献   

16.
The acinus consists of complex, branched alveolar ducts and numerous surrounding alveoli, and so in this study, we hypothesized that the particle deposition can be much influenced by the complex acinar geometry, and simulated the airflow and particle deposition (density = 1.0 g/cm3, diameter = 1 and 3 μm) numerically in a pulmonary acinar model based on synchrotron micro-CT of the mammalian lung. We assumed that the fluid–structure interaction was neglected and that alveolar flow was induced by the expansion and contraction of the acinar model with the volume changing sinusoidally with time as the moving boundary conditions. The alveolar flow was dominated by radial flows, and a weak recirculating flow was observed at the proximal side of alveoli during the entire respiratory cycle, despite the maximum Reynolds number at the inlet being 0.029. Under zero gravity, the particle deposition rate after single breathing was less than 0.01, although the particles were transported deeply into the acinus after inspiration. Under a gravitational field, the deposition rate and map were influenced strongly by gravity orientation. In the case of a particle diameter of 1 μm, the rate increased dramatically and mostly non-deposited particles remained in the model, indicating that the rate would increase further after repeated breathing. At a particle diameter of 3 μm, the rate was 1.0 and all particles were deposited during single breathing. Our results show that the particle deposition rate in realistic pulmonary acinar model is higher than in an idealized model.  相似文献   

17.
Many studies reported the influence of wind erosion on soil degradation and the effect of vegetation coverage on preventing wind erosion. However, fewer studies have quantitatively measured the grassland soil particle size fractions and nutrients’ loss caused by wind erosion under different vegetation coverage. Aims: We conducted a field experiments to (1) to explore the effect of vegetation coverage on soil wind erosion; (2) examine quantitatively the effects of wind erosion on soil texture, and determine the most erodible particles fraction of soil; (3) to examine quantitatively the soil carbon, nutrients such as nitrogen and phosphorus loss caused by wind erosion under different vegetation coverage. Methods: Six vegetation coverage treatments (0 %, 15 %, 35 %, 55 %, 75 % and 95 %) were constructed. To be able to monitor wind erosion status under more diverse weather conditions, three consecutive repeat experiments under different weather condition were conducted. Results: The results show that all the residue soil samples after wind erosion became coarser than that of original soil samples. The degree of change for the soil particle size distribution before and after wind erosion gradually increased with the less of vegetation coverage. The critical particle size for distinguishing the original soil sample and the residue soil after wind erosion occurred in the range of 125 μm and 210 μm depending on the vegetation cover. The fractions below or above the critical particle size are either easy to deplete or favoured by wind erosion, respectively. The most reduction occurs between 50 and 90 μm depending on the different weather condition and vegetation coverage. Due to the disproportionately greater amounts of nutrients in the fine soil particles, the preferential depletion of fine particles directly lead to a preferentially significant depletion of organic carbon and nutrients. The organic carbon and nutrient contents in the residue soil after erosion decreased significantly compared to that in the original soil. The soil nutrient loss ratio decrease significantly with the increase of vegetation coverage. Conclusions: Wind erosion is an important factor to affect the evolution of soil texture and soil nutrient. Vegetation coverage has a major impact on both preventing wind erosion and decreasing loss ratio of fine particles and nutrients. If we want to effectively protect the fine particles and nutrients, the vegetation cover should be maintained at least above 35 %.  相似文献   

18.
The cellular structure of two products, an extruded breakfast cereal and a short dough biscuit, was characterized by two different X-ray micro computed tomographic systems. Acquisitions were made by a compact desktop system Skyscan 1174 (Bruker μCT, Belgium) and at the European Synchrotron Radiation Facility (ESRF, beamline ID19, France) at different resolutions (voxel size of 6.5 μm, 7.5 μm, 16.2 μm and 25.8 μm). 3D images were processed for the density, the connectivity index and the granulometry of cells and cell walls. These experiments underlined the importance of the resolution for determination of quantitative measurements such as densities and thicknesses. The median width calculated for the cell walls distribution in the biscuit dropped from 141 to 50 μm when the voxel size changed from 25.8 to 7.5 μm. Images well showed that even though the food products had close values of porosity 0.6 and 0.7 for biscuit and extruded breakfast cereal respectively, their cellular structures were very different. The biscuit had small cells (median value of the distribution varied from 125 to 152 μm, according to resolution) and larger cell walls (50–141 μm) than the extrudate (32–109 μm) which, on the contrary, exhibited very large cells (307–400 μm). Beyond methodological issues, these differences could be clearly attributed to the differences of compositions and processes.  相似文献   

19.
Phalaris aquatica L., a rich in holocellulose (69.80 %) and deficient in lignin (6.70 %) herbaceous, perennial grass species, was utilized in a two-step (biomass pretreatment-enzymatic hydrolysis) saccharification process for sugars recovery. The Taguchi methodology was employed to determine the dilute acid pretreatment and enzymatic hydrolysis conditions that optimized hemicellulose conversion (75.04 %), minimized the production of inhibitory compounds (1.41 g/L), and maximized the cellulose to glucose yield (69.69 %) of mixed particulate biomass (particles <1000 μm) under batch conditions. The effect of biomass particle size on saccharification process efficiency was also investigated. It was found that small-size biomass particles (53–106 μm) resulted in maximum hemicellulose conversion (81.12 %) and cellulose to glucose yield (93.24 %). The determined optimal conditions were then applied to a combined batch pretreatment process followed by a fed-batch enzymatic hydrolysis process that maximized glucose concentration (62.24 g/L) and yield (92.48 %). The overall efficiency of the saccharification process was 88.13 %.  相似文献   

20.
The formation, stability and in vitro digestion of milk fat globule membrane (MFGM) proteins stabilized emulsions with 0.2 wt% β-carotene were investigated. The average particle size of β-carotene emulsions stabilized with various MFGM proteins levels (1%, 2%, 3%, 4%, 5% wt%) decreased with the increase of MFGM proteins levels. When MFGM proteins concentration in emulsions is above 2%, the average particle size of β-carotene emulsions is below 1.0 μm. A quite stable emulsion was formed at pH 6.0 and 7.0, but particle size increased with decrease in acidity of the β-carotene emulsion. β-carotene emulsions stabilized with MFGM proteins were stable with a certain salt concentrations (0–500 mMNaCl). β-carotene emulsions were quite stable to aggregation of the particles at elevated temperature and time (85 °C for 90 min). At the same time, β-carotene emulsions were stable against degradation under heat treatment conditions. In vitro digestion of β-carotene emulsion showed the mean particle size of β-carotene emulsions stabilized with MFGM proteins in the simulated stomach conditions and intestinal conditions is larger than that of initial emulsions and simulated mouth conditions. Confocal laser scanning microscopy of β-carotene MFGM proteins emulsions also showed the corresponding results to different vitro digestion model. There was a rapid release of free fatty acid (FFA) during the first 10 min and after this period, an almost constant 70% digestion extent was reached. Approximately 80% of β-carotene was released within 2 h of incubation under the simulated intestinal fluid. These results showed that MFGM protein can be used as a good emulsifier in emulsion stabilization, β-carotene rapid release as well as lipophilic bioactive compounds delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号