首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sorption of Cu(II) and Cd(II) onto the extracellular polymeric substances (EPS) produced by Aspergillus fumigatus was investigated for the initial pH of the solution, EPS concentrations, contact time, NaCl concentration, initial metal ion concentration and the presence of other ions in the solution. The results showed that the adsorption of metal ions was significantly affected by pH, EPS concentrations, initial metal concentration, NaCl concentration and co-ions. The sorption of Cu(II) and Cd(II) increased with increasing pH and initial metal ion concentration but decreased with an increase in the NaCl concentration. The maximum sorption capacities of A. fumigatus EPS calculated from the Langmuir model were 40 mg g−1 EPS and 85.5 mg g−1 EPS for Cu(II) and Cd(II), respectively. The binary metal sorption experiments showed a selective metal binding affinity in the order of Cu(II) > Pb(II) > Cd(II). Both the Freundlich and Langmuir adsorption models described the sorption of Cu(II) and Cd(II) by the EPS of Afumigatus adequately. Fourier transform infrared spectroscopy (FTIR) analysis revealed that carboxyl, amide and hydroxyl functional groups were mainly correlated with the sorption of Cu(II) and Cd(II). Energy dispersive X-ray (EDX) system analysis revealed that the ion-exchange was an important mechanism involved in the Cu(II) and Cd(II) sorption process taking place on EPS.  相似文献   

2.
High concentration of heavy metals is toxic for most microorganisms and cause strict damage in wastewater treatment operations and often a physico-chemical pretreatment prior to biological treatment is considered necessary. However, in this study it has been shown that biological systems can adapt to Ni (II) and Cr (VI) when their concentration is below 10 and 20 mg/L, respectively. The aim of this study was to evaluate the effect of Ni (II) and Cr (VI) on the lab-scale rotating biological contactor process. It was found that, addition of Ni (II) up to 10 mg/L did not reduce the chemical oxygen demand removal efficiency and on the contrary concentrations below 10 mg/L improved the performance. The influent Ni (II) concentration of 1 mg/L was the concentration where the treatment efficiency produced a maximum COD removal of 86.5%. Moreover, Ni (II) concentration above 10 mg/L was relatively toxic to the system and produced lower treatment efficiencies than the baseline study without Ni (II). Turbidity and suspended solids removals were not stimulated to a great extent with nickel. Addition of Ni (II) did not seem to affect the pH of the system during treatment. The dissolved oxygen concentration did not drop below 4 mg/L at all concentrations of Ni (II) indicating aerobic conditions prevailed in the system. Experiments conducted with Cr (VI) revealed that addition of Cr (VI) up to 20 mg/L did not reduce the COD removal efficiency and on the contrary concentrations below 20 mg/L improved the performance. The influent Cr (VI) concentration of 1 mg/L was the concentration where the treatment efficiency produced a maximum COD removal of 88%. Turbidity and SS removals were more efficient at 5 mg/L Cr (VI) concentration, rather than 1 mg/L, which lead to the conclusion that 5 mg/L Cr (VI) concentration is the optimum concentration, in terms of COD, turbidity and SS removals. Similar with Ni (II) experiments, addition of Cr (VI) did not significantly affect the pH value of the effluent. The DO concentration remained above 5 mg/L.  相似文献   

3.
Fang F  Liu XW  Xu J  Yu HQ  Li YM 《Bioresource technology》2009,100(1):59-63
Aerobic granular sludge rich in polyhydroxybutyrate (PHB) was cultivated in a sequencing batch reactor (SBR) by seeding anaerobic granular sludge. The PHB content in aerobic granules was investigated and the experimental results reveal that both influent chemical oxygen demand (COD) and ammonium concentrations had a significant effect on the morphological characteristics and the PHB production of the aerobic granular sludge. At a COD and ammonium concentration of 750 mg/L and 8.5mg/L, respectively, the PHB content of the granules reached 44%, but their poor settling ability, as evidenced by a high sludge volume index, was observed. This was attributed to the outgrowth of filamentous bacteria on the granule surface. However, an increase in the ammonium concentration resulted in an elevated sludge concentration and a decrease in the PHB content in the granules. In this case, the aerobic granular sludge with a regular and compact structure was formed. The results suggest that, through controlling the COD and ammonium concentrations in the influent, the PHB-rich aerobic granular sludge with good settling ability could be cultivated.  相似文献   

4.
In this study, a low-cost biosorbent, dead mushroom biomass (DMB) granules, was used for investigating the optimum conditions of Pb(II), Cu(II), and Ni(II) biosorption from aqueous solutions. Various physicochemical parameters, such as initial metal ion concentration, equilibrium time, pH value, agitation speed, particles diameter, and adsorbent dosage, were studied. Five mathematical models describing the biosorption equilibrium and isotherm constants were tested to find the maximum uptake capacities: Langmuir, Freundlich, Redlich-Peterson, Sips, and Khan models. The best fit to the Pb(II) and Ni(II) biosorption results was obtained by Langmuir model with maximum uptake capacities of 44.67 and 29.17 mg/g for these two ions, respectively, whereas for Cu(II), the corresponding value was 31.65 mg/g obtained with Khan model. The kinetic study demonstrated that the optimum agitation speed was 400 rpm, at which the best removal efficiency and/or minimum surface mass transfer resistance (MSMTR) was achieved. A pseudo-second-order rate kinetic model gave the best fit to the experimental data (R2 = 0.99), resulting in MSMTR values of 4.69× 10?5, 4.45× 10?6, and 1.12× 10?6 m/s for Pb(II), Cu(II), and Ni(II), respectively. The thermodynamic study showed that the biosorption process was spontaneous and exothermic in nature.  相似文献   

5.
Most aerobic granule cultivation has been based on the sequencing batch reactor (SBR) and then the factors that affect aerobic granulations were developed in the SBR. However, little work has been done to cultivate aerobic granules in a continuous-flow bioreactor with simple structure that is realistic for engineering. This work is the first to cultivate aerobic granules in a continuous flow airlift fluidized bed reactor (CAFB) possesses a very simple structure and without settling time and starvation time controlling. The configuration of CAFB was the simplest continuous-flow aerobic granular bioreactor reported by now. The majority of granules could be formatted in the CAFB after 12 days cultivation. The effluent COD concentration maintained at 50 ± 10 mg/L for the variable COD loading rate of 3.5 g COD/L/d and 4.8 g COD/L/d, which confirmed that the CAFB performed good anti-shock abilities. CAFB performed good nitrification ability, however, little denitrification was found under the operating conditions of this study. The shear stress acting on the solid phase were hundreds of times stronger in the CAFB than in the SBR at the same aeration strength. It seems CAFB is very efficient for granulation due to the strong shear-force exertion, which is promising for continuous-flow aerobic granular bioreactor. Protein, positive to the hydrophobicity, was predominant in extracellular polymeric substances in the granules, and favored the granules formation in the CAFB combined with the polysaccharides. However, filamentous bulking always happened in 35 days operation of the CAFB, thus further study on the stability of this bioreactor is urgently necessary.  相似文献   

6.
The potential use of the immobilized fresh water algae (in Ca-alginate) of Scenedesmus quadricauda to remove Cu(II), Zn(II) and Ni(II) ions from aqueous solutions was evaluated using Ca-alginate beads as a control system. Ca-alginate beads containing immobilized algae were incubated for the uniform growth at 22 degrees C for 5d ays. Adsorption of Cu(II), Zn(II) and Ni(II) ions on the immobilized algae showed highest values at around pH 5.0. Adsorption of Cu(II), Zn(II) and Ni(II) ions on the immobilized algae increased as the initial concentration of metal ions increased in the medium. The maximum adsorption capacities of the immobilized algal biosorbents for Cu(II), Zn(II) and Ni(II) were 75.6, 55.2 and 30.4 mg/g (or 1.155, 0.933 and 0.465 mmol/g) biosorbent, respectively. When the heavy metal ions were in competition, the amounts of adsorbed metal ions were found to be 0.84 mol/g for Cu(II), 0.59 mol/g for Ni(II) and 0.08 mol/g for Zn(II), the immobilised algal biomass was significantly selective for Cu(II) ions. The adsorption-equilibrium was also represented with Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherms. The adsorption of Cu(II), Zn(II) and Ni(II) ions on the immobilized algae followed second-order kinetic.  相似文献   

7.
Aerobic granular sludge was cultivated in a glass sequencing batch reactor (SBR) with glucose synthetic wastewater. The spherical shaped granules were observed on 4th day with the mean diameter of 0.1 mm. With the increase of chemical oxygen demand (COD) concentration of the influent, aerobic granules grew matured, the size of which ranged from 1.2 to 1.9 mm. The aerobic granular sludge could sustain high organic loading rate (about 4.0 g COD L−1 d−1), with good settling ability (settling velocity 36 m/h) and high biomass concentration (MLSS 6.7 ±0.2 g/L). Experimental data indicated that the substrate utilization and biomass growth kinetics followed Monod's kinetics model approximately. The corresponding kinetic coefficients of maximum specific substrate utilization rate (k), half velocity coefficient (Ks), growth yield coefficient (Y) and decay coefficient (Kd) were 13.2 d−1, 275.8 mg/L, 0.183–0.250 mg MLSS/mg COD and 0.023–0.075 d−1, respectively, which made aerobic granules have short setup period, high rate of substrate utilization and little surplus sludge.  相似文献   

8.
Poor long-term stability of aerobic granules developed in sequencing batch reactors (SBRs) remains a limitation to widespread use of aerobic granulation in treating wastewater. Filamentous growth has been commonly reported in aerobic granular sludge SBR. This review attempts to address the instability problem of aerobic granular sludge SBR from the perspective of filamentous growth in the system. The possible causes of filamentous growth are identified, including long retention times of solids, low substrate concentration in the liquid phase, high substrate gradient within the granule, dissolved oxygen deficiency in the granule, nutrient deficiency inside granule, temperature shift and flow patterns. Because of cyclic operation of aerobic granular sludge SBR and peculiarities of aerobic granules, various stresses can be present simultaneously and can result in progressive development of filamentous growth in aerobic granular sludge SBR. Overgrowth of filamentous bacteria under stress conditions appears to be a major cause of instability of aerobic granular sludge SBR. Specific recommendations are made for controlling filamentous growth.  相似文献   

9.
In the present paper, aerobic granules were developed in a sequencing batch reactor (SBR) using synthetic wastewater, and 81 % of granular rate was obtained after 15-day cultivation. Aerobic granules have a 96 % BOD removal to the wastewater, and the reactor harbors a mount of biomass including bacteria, fungi and protozoa. In view of the complexity of kinetic behaviors of sludge and biological mechanisms of the granular SBR, a cellular automata model was established to simulate the process of wastewater treatment. The results indicate that the model not only visualized the complex adsorption and degradation process of aerobic granules, but also well described the BOD removal of wastewater and microbial growth in the reactor. Thus, CA model is suitable for simulation of synthetic wastewater treatment. This is the first report about dynamical and visual simulation of treatment process of synthetic wastewater in a granular SBR.  相似文献   

10.
The biosorption of several toxic heavy metals (Pb, Cd, Co, Ni, Zn and Cu) by the exopolysaccharide (EPS) produced by Paenibacillus jamilae, a potential biosorbent for metal remediation and recovery was studied. Firstly, the biochemical composition of this bacterial polymer was determined. Glucose was the most abundant neutral sugar, followed by galactose, rhamnose, fucose and mannose. The polymer presented a high content of uronic acids (28.29%), which may serve as binding sites for divalent cations. The presence of carboxylic groups was also detected by infrared spectroscopy. The EPS presented an interesting affinity for Pb in comparison with the other five metals. Lead biosorption (303.03 mg g−1) was tenfold higher (in terms of mg of metal adsorbed per gram of EPS) than the biosorption of the rest of metals. Biosorption kinetics, the effect of pH and the effect of competitive biosorption were determined. Finally, we found that the EPS was able to precipitate Fe(III), but the EPS-metal precipitate did not form with Fe(II), Pb(II), Cd(II), Co(II), Ni(II), Cu(II) and Zn(II).  相似文献   

11.
The potential use of the immobilized Mentha arvensis distillation waste (IMADW) biomass for removal and recovery of Cu(II) and Zn(II) from aqueous was evaluated in the present study. Biosorption capacity of Cu(II) and Zn(II) on IMADW increased with increase in pH reaching a maximum at 5 for Cu(II) and 6 for Zn(II). The equilibrium sorption data agreed well with Langmuir isotherm model and pseudo-second-order kinetic model in batch mode. Cu(II) and Zn(II) uptake by IMADW was best described by pseudo-first-order kinetic model in continuous mode. Maximum Cu(II) and Zn(II) uptake by IMADW was 104.48 and 107.75 mg/g, respectively. Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were also carried out to investigate functional groups and surface changes of biomass. The results showed that IMADW biomass is a potential biomaterial to remove Cu(II) and Zn(II) ions with a high biosorption capacity from aqueous solutions.  相似文献   

12.
The voltammetric behaviours of aspartame in the presence of some metal ions (Cu(II), Ni(II), Zn(II)) were investigated. In the presence of aspartame, copper ions reduced at two stages with quasi-reversible one-electron and, with increasing the aspartame (L) concentration, Cu(II)L(2) complex reduces at one-stage with irreversible two-electron reaction (-0.322 V). Zn(II)-aspartame complex (logbeta=3.70) was recognized by a cathodic peak at -1.320 V. Ni(II)-aspartame complex (logbeta=6.52) is reduced at the more positive potential (-0.87 V) than that of the hydrated Ni(II) ions (-1.088 V). In the case of the reduction of Ni(II) ions, aspartame serves as a catalyst. From electronic spectra data of the complexes, their stoichiometries of 1:2 (metal-ligand) in aqueous medium are determined. The greatness of these logarithmic values is agreement with Irwing-Williams series (NiZn).  相似文献   

13.
Polyene complexes with Mg(II), Ca(II), Ni(II), Cu(II) and Zn(II) have been prepared and evaluated for biological activity in a flow microcalorimetric study. The bioactivities are all lower per g of complex than is the bioactivity of the patent polyene, nystatin. However extrapolation of the linear bioassay data suggests that because of enhanced solubilities the metal ion complexes may be able to yield higher overall bioactivity than can nystatin alone.  相似文献   

14.
Evidence shows that almost all aerobic granules can only be cultivated in sequencing batch reactor (SBR). Compared to continuous process, the unique feature of SBR is its cycle operation, which results in a periodical starvation in the reactor. So far, the effect of such a periodical starvation on aerobic granulation process remains unknown. Thus, this study investigated the responses of aerobic granules to the respective carbon-, nitrogen-, phosphorus-, potassium-starvation and also their collective effects in terms of cell surface hydrophobicity, surface zeta potential, extracelluar polysaccharides content, specific oxygen utilization rate and biomass growth. Results showed that short-term C-, N-, P- and K- starvations would pose negative effects on aerobic granules, e.g. reduce EPS content, inhibit microbial activity, weaken structural integrity and worsen settleability of aerobic granules. This study likely provides primary evidence that the substrate and nutrients starvation would not contribute to the stability of aerobic granules in a significant way.  相似文献   

15.
N-acyl homoserine lactone (AHL)-based quorum sensing (QS) has been recognized to play an important role in the formation of biofilm. However, aerobic granular sludge is considered as a special biofilm, and its biological implication and role of AHL-based QS still remain unclear. This study investigated the role of AHL-based QS in aerobic granulation. Results showed that AHLs were necessary to the typical aerobic granulation, and AHL-associated coordination of bacteria in sludge aggregation was sludge density dependent only when it reached a threshold of 1.010 g/mL; AHL-based QS was activated to regulate aerobic granulation. Furthermore, a quorum quenching method was firstly adopted to investigate the role of AHLs in aerobic granules. Results showed inhibition of AHL by acylase that reduced the AHL content in aerobic granules and further weakened its attachment potential, which proved that AHLs play an important role in the formation of aerobic granules. Additionally, the assay of quorum quenching not only proved that AHL-based QS could regulate EPS production but also provided additional evidence for the role of AHLs in aerobic granulation by regulating EPS content and its component proportion.  相似文献   

16.
This study aimed to investigate the efficiency of an aerobic sequencing batch reactor (aerobic SBR) in a nonsterile system using the application of an experimental design via central composite design (CCD). The acidic whey obtained from lactic acid fermentation by immobilized Lactobacillus plantarum sp. TISTR 2265 was fed into the bioreactor of the aerobic SBR in an appropriate ratio between acidic whey and cheese whey to produce an acidic environment below 4.5 and then was used to support the growth of Dioszegia sp. TISTR 5792 by inhibiting bacterial contamination. At the optimal condition for a high yield of biomass production, the system was run with a hydraulic retention time (HRT) of 4 days, a solid retention time (SRT) of 8.22 days, and an acidic whey concentration of 80% feeding. The chemical oxygen demand (COD) decreased from 25,230 mg/L to 6,928 mg/L, which represented a COD removal of 72.15%. The yield of biomass production and lactose utilization by Dioszegia sp. TISTR 5792 were 13.14 g/L and 33.36%, respectively, with a long run of up to 180 cycles and the pH values of effluent were rose up to 8.32 without any pH adjustment.  相似文献   

17.
The biosorption from artificial wastewaters of heavy metals (Cd(II), Pb(II) and Cu(II)) onto the dry fungal biomass of Phanerochaete chryosporium was studied in the concentration range of 5-500 mg l(-1). The maximum absorption of different heavy metal ions on the fungal biomass was obtained at pH 6.0 and the biosorption equilibrium was established after about 6 h. The experimental biosorption data for Cd(II), Pb(II) and Cu(II) ions were in good agreement with those calculated by the Langmuir model.  相似文献   

18.
The effects of Ni(II), substrate and initial biomass concentrations on biochemical oxygen demand (BOD) were studied by using an electrolytic respirometer. The effects of Ni(II) (2.5, 5.0, 10.0, 25.0 mg/l) and substrate (325, 650, 1300 mg/l as chemical oxygen demand) in a synthetic wastewater with differing initial biomass concentrations (1, 10, 100 mg/l) were investigated. The biomass-to-metal ratio was found to be the most important parameter affecting the measured BOD values. The maximum specific growth rates were calculated and the results of batch respirometric experiments were analysed both by graphical and statistical methods. In statistical analyses, a factorial experimental design approach was followed and results were treated by multiple regression techniques. A mathematical model was developed to express the maximum oxygen uptake in terms of nickel, substrate and initial biomass concentrations and their magnitudes of their effects were compared. The biomass-to-metal ratio was found to be very significant so that another model that expresses oxygen uptake in relation to the biomass-to-metal ratio and also to substrate concentration was developed. Finally, the effect of Ni(II) was demonstrated to depend on both substrate and initial biomass concentrations. This effect was stimulatory at low concentrations of Ni(II), and complete inhibition was never observed even at the highest concentration of Ni(II) studied, which was 25.0 mg/l. Received: 4 January 1997 / Received revision: 10 June 1997 / Accepted: 29 June 1997  相似文献   

19.
Akar T  Tunali S 《Bioresource technology》2006,97(15):1780-1787
The Pb(II) and Cu(II) biosorption characteristics of Aspergillus flavus fungal biomass were examined as a function of initial pH, contact time and initial metal ion concentration. Heat inactivated (killed) biomass was used in the determination of optimum conditions before investigating the performance of pretreated biosorbent. The maximum biosorption values were found to be 13.46 +/- 0.99 mg/g for Pb(II) and 10.82 +/- 1.46 mg/g for Cu(II) at pH 5.0 +/- 0.1 with an equilibrium time of 2 h. Detergent, sodium hydroxide and dimethyl sulfoxide pretreatments enhanced the biosorption capacity of biomass in comparison with the heat inactivated biomass. The biosorption data obtained under the optimum conditions were well described by the Freundlich isotherm model. Competitive biosorption of Pb(II) and Cu(II) ions was also investigated to determine the selectivity of the biomass. The results indicated that A. flavus is a suitable biosorbent for the removal of Pb(II) and Cu(II) ions from aqueous solution.  相似文献   

20.
Variable aeration in sequencing batch reactor with aerobic granular sludge   总被引:2,自引:0,他引:2  
This study investigated the effects of reduced aeration in famine period on the performance of sequencing batch reactor (SBR) with aerobic granular sludge. Aerobic granules were first cultivated in two SBRs (R1 and R2) with acetate as sole carbon source. From operation day 27, aeration rate in R1 was reduced from 1.66 to 0.55 cm s(-1) from 110 min to the end of each cycle and further reduced from 30 min to the end of each cycle from day 63. R2 as a control was operated with a constant aeration rate of 1.66 cm s(-1) in the whole cycle during the entire experimental period. Results showed that changing trends of SVI, concentration, average size and VSS/SS of biomass with time in R1 and R2 were similar although different aeration modes were adopted. At steady state, SVI of aerobic granules and biomass concentration maintained at about 40 ml g(-1) and 6 g l(-1), respectively. Average size of granules was about 750 microm in R1 while 550 microm in R2. This is the first study to demonstrate that aerobic granular sludge could be stable at reduced aeration rate in famine period during more than 3-month operation. Such an operation strategy with reduced aeration rate will lead to a significant reduction of energy consumption, which makes the aerobic granular sludge technology more competitive over conventional activated sludge process. Furthermore, the stability of aerobic granular system with variable aeration further indicates that the difference of physiology and kinetics of aerobic granule in feast and famine periods results in the different requirements of oxygen and shear stress for the stability of granules, which will deepen the understanding of mechanism of aerobic granulation in sequencing batch reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号