首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data are presented about the development of reproductive and defense behavior of noncopulated female crickets Gryllus argentinus Sauss. in the beginning of the imaginal ontogeny. The character of interaction of females with “virtual” males (the “supporting ball” method-“trackball”) was studied. The forms of female motor reactions to models of intraspecies male sound signals-the calling and aggressive songs-are described and analyzed. The character of the development of female acoustic behavior is described as judged by change in the forms of motor reactions in the course of the imaginal ontogeny. It is shown that immediately after the imaginal molt the reproductive behavior is not formed yet but it matures gradually within a few days. At the early stages of the imaginal ontogeny passive defense behavior is found to be most clearly expressed.  相似文献   

2.
Summary In this paper we analyze Carl Gegenbaur’s conception of the relationship between embryology (“Ontogenie”) and comparative anatomy and his related ideas about homology. We argue that Gegenbaur’s conviction of the primacy of comparative anatomy and his careful consideration of caenogenesis led him to a more balanced view about the relationship between ontogeny and phylogeny than his good friend Ernst Haeckel. We also argue that Gegenbaur’s ideas about the centrality of comparative anatomy and his definitions of homology actually laid the conceptual foundations for Hans Spemann’s (1915) later analysis of homology. We also analyze Gegenbaur’s reception in the United States and how the discussions between E.B. Wilson and Edwin Conklin about the role of the “embryological criterion of homology” and the latter’s argument for an even earlier concept of cellular homology reflect the recurring theme of preformism in ontogeny, a theme that finds its modern equivalent in various genetic definitions of homology, only recently challenged by the emerging synthesis of evolutionary developmental biology. Finally, we conclude that Gegenbaur’s own careful methodological principles can serve as an important model for proponents of present day “evo-devo”, especially with respect to the integration of ontogeny with phylogeny embedded in comparative anatomy.  相似文献   

3.
Cyrtograpsus angulatus andChasmagnathus granulata (Grapsidae) are the two dominant decapod crustacean species in the outer parts of Mar Chiquita Lagoon, the southernmost in a series of coastal lagoons that occur along the temperate Atlantic coasts of South America. Distribution and habitat preferences (water and sediment type) in these crab species were studied in late spring. There is evidence of ontogenetic changes in habitat selection of both species. Recruitment ofC. angulatus takes place mainly in crevices of tube-building polychaete (Ficopomatus enigmaticus) “reefs” and, to a lesser extent, also in other protected microhabitats (under stones). In the latter, mostly somewhat larger juveniles were found, suggesting that these are used as a refuge for growing individuals. Adults are most frequently found on unprotected muddy and sandy beaches.C. angulatus was found in all parts of Mar Chiquita Lagoon, including freshwater, brackish, and marine habitats.C. granulata, in contrast, was restricted to the lower parts of the lagoon, where brackish water predominates and freshwater or marine conditions occur only exceptionally. It showed highest population density on “dry mud” flats and inSpartina densiflora grassland, where it can build stable burrows and where high contents of organic matter occur in the sediment. Such habitats are characterized by mixed populations of juveniles (including newly settled recruits) and adults, males and females (including a high percentage of ovigerous). Unstable “wet mud” as well as stony sand were found to be inhabited by chiefly adult populations, with only few ovigerous females. In “dry mud” flats, the proportion of males increased vertically with increasing level in the intertidal zone, showing a significantly increasing trend also in their average body size. These observations may be explained by higher resistance of males, in particular of large individuals, to desiccation, salinity, and temperature stress occurring in the upper intertidal. However, an opposite, or no such, tendency was found in the distribution of ovigerous and non-ovigerous females, respectively. With increasing distance from the water edge, salinity increased and pH decreased significantly inC. granulata burrows, whereas temperature showed no consistent tendency within the intertidal gradient. A highly significant linear relationship (r=−0.794; P<0.001) between salinity and pH in water from crab burrows is described. This regression line is significantly different from one that had been observed in water from the lagoon, indicating consistently lower pH values at any salinity level in burrow water. This is interpreted as a result of crab and/or microbial respiration.  相似文献   

4.
This paper addresses the identification and characterization of developmental patterns in the whole structure of a sympodial species, the apple tree. Dedicated stochastic models (hidden variable-order Markov chains) were used to (i) categorise growth units (GUs) on the basis of their morphological characteristics (number of nodes and presence/absence of flowering) and position along axes, (ii) analyse dependencies between successive GUs and (iii) identify repeated patterns in GU sequences. Two successive phases, referred to as “adolescent” and “adult”, were identified in two apple tree cultivars. In the adolescent phase, “very” long monocyclic GUs were followed by long polycyclic GUs, whereas in the adult phase medium GUs were preferentially followed by short GUs. Flowering GUs constituted a preferential pathway between vegetative GUs of decreasing vigour (long, medium and short) and generated patterns that were interpreted with respect to fruiting regularity. The proposed modelling gave a global and quantitative picture of the two-scale structuring of apple tree ontogeny: a coarse scale corresponding to the succession of the previously mentioned phases and a fine scale corresponding to the alternation between flowering and vegetative GUs. This led us to propose a synthetic scheme of apple tree ontogeny that combines growth phases, polycyclism and flowering, and which could be transposed to other sympodial trees.  相似文献   

5.
While evolutionary theory has been undergoing considerable revision for more than a decade scarcely any biological scientists are willing to resurrect the notion of acquired inheritance since it totally jndermines the concept of ancestor-descendant stability. Acquired inheritance is divisible into two components, soma to germ transfer to replicable information and directed or anticipatory mutation. Pure soma to germ transfer still allows for random events or natural selection as is evident from E. Steel’s proposal of the “somatic selection hypothesis”. Directed mutation is non-stochastic and self-referent. Recent bacterial research has claimed strong support for directed mutation but this phenomenon still would not be important for the small proportion of living taxa (including primates) who sequester their germlines early in ontogeny. There is a basic incompatibility between purposeful responses to final growth stages in complex metazoans and the need to permanently fix future growth into heritable programs. Symposium on Foundations for different approaches to the study of human evolution September 1–3, 1989, Liblice, Czechoslovakia, Czechoslovak Academy of Science  相似文献   

6.
 A study of genotype-by-salinity interaction was carried out to compare the behavior of quantitative trait loci (QTLs) in two F2 populations derived from crosses between the cherry tomato, Lycopersicon esculentum Mill. var. cerasiforme, and two wild relatives Lycopersicon pimpinellifolium (Jusl.) Mill. and Lycopersicon chesmannii f. minor (Hook. f.) Mull., grown at two environmental conditions (optimum and high salinity). QTLs for earliness and fruit yield could be classified into four groups: “response-sensitive”, those detected only under control conditions or whose contribution significantly decreased in salinity; “response-tolerant”, detected only in salinity or in which the direction of their additive effects changed; “constitutive”, detected in both growing conditions; and “altered” QTLs, those where the degree of dominance changed according to the presence or absence of salt. Epistatic interactions were also influenced by the salt treatment. This differential allele effect at some (non-constitutive) QTLs induced by salt stress will make selection under an “optimum environment” unfruitful for the “response-tolerant” QTLs. Similarly, selection under salinity will ignore “response-sensitive” QTLs. Given that salinity is highly variable in the field, marker-assisted selection should take into account not only the “response-tolerant” but also the “response-sensitive” QTLs although there might be cases where selection in some QTLs for both conditions is not feasible. Comparing both populations, very few QTLs showed the same behavior. Received: 5 August 1996 / Accepted: 25 October 1996  相似文献   

7.
It has been anticipated that new, much more sensitive, next generation sequencing (NGS) techniques, using massively parallel sequencing, will likely provide radical insights into the genetics of multifactorial diseases. While NGS has been used initially to analyze individual human genomes, and has revealed considerable differences between healthy individuals, we have used NGS to examine genetic variation within individuals, by sequencing tissues “in depth”, i.e., oversequencing many thousands of times. Initial studies have revealed intra-tissue genetic heterogeneity, in the form of multiple variants of a single gene that exist as distinct “majority and “minority” variants. This highly specialized form of somatic mosaicism has been found within both cancer and normal tissues. If such genetic variation within individual tissues is widespread, it will need to be considered as a significant factor in the ontogeny of many multifactorial diseases, including cancer. The discovery of majority and minority gene variants and the resulting somatic cell heterogeneity in both normal and diseased tissues suggests that selection, as opposed to mutation, might be the critical event in disease ontogeny. We, therefore, are proposing a hypothesis to explain multifactorial disease ontogeny in which pre-existing multiple somatic gene variants, which may arise at a very early stage of tissue development, are eventually selected due to changes in tissue microenvironments.  相似文献   

8.
A hypothesis has been advanced that logically combines “contradictory” facts concerning the early mammalian development and shows a natural relationship between the embryos developing from a fertilized ovum and from cells of the inner cell mass of blastocyst. When studying the theoretical questions of cloning, it is necessary to take into consideration the peculiarities of prenatal mammalian ontogeny, which make themselves evident upon comparison with other animals. The absence of yolk in the mammalian ovum defines sharp differences in the early development between mammals and other Amniota. The complete asynchronous cleavage results in the formation of morula followed by blastocyst, which hatches from zona pellucida and is implanted into the uterus tissue. This fact allows us to consider the blastocyst as a mammalian larva, which is fed owing to the maternal organism. It is known that, in the body of a larva (blastocyst), a new embryo develops from some somatic cells. This process is known as polyembryony, which is typical of the development of some parasitic insects. Polyembryony in turn is a variant of somatic embryogenesis, which is a form of asexual reproduction. Thus, the two different embryos, “conceptus” and “embryo proper,” have different origins: the first forms by the sexual way and the second, by the asexual way. Investigation of the mechanisms of somatic embryogenesis in mammals will help us to find conditions necessary for full reprogramming of donor somatic nuclei and provide for successful development of reconstructed embryos.  相似文献   

9.
I call an experiment “crucial” when it makes possible a decisive choice between conflicting hypotheses. Joharmsen's selection for size and weight within pure lines of beans played a central role in the controversy over continuity or discontinuity in hereditary change, often known as the Biometrician-Mendelian controversy. The “crucial” effect of this experiment was not an instantaneous event, but an extended process of repeating similar experiments and discussing possible objections. It took years before Johannsen's claim about the genetic stability of pure lines was accepted as conclusively demonstrated by the community of geneticists. The paper also argues that crucial experiments thus interpreted contradict certain ideas about the underdetermination of theories by facts and the theory-ladenness of facts which have been influential in recent history and sociology of science. The acceptance of stability in the pure lines did not rest on prior preference for continuity or discontinuity. And this fact permitted a final choice between the two theories. When such choice is characterized as “decisive” or “final”, this is not meant in an absolute philosophical sense. What we achive in these cases is highly reliable empirical knowledge. The philosophical possibility of drawing (almost) any conclusion in doubt should be distinguished from reasonable doubt in empirical science.  相似文献   

10.
This article is a review of scientific publications, in which issues of pathogenetics of multifactorial diseases (MFDs) are considered from the viewpoint of evolution and ontogeny. Concepts explaining significance of evolutionary processes in the formation of genetic architecture of human chronic diseases (“thrifty” genomes and phenotypes, “drifty genes,” decanalization) are analyzed. The roles of natural selection and genetic drift in the formation of hereditary diversity of genes for susceptibility to MFDs are considered. The modern concept of “disease ontogeny” (somatic mosaicism, loss of heterozygosity, paradominant inheritance, epigenetic variability) is discussed. It is demonstrated that the evolutionary and ontogenetic approaches to analysis of genimuc and other “-omic” data are essential for understanding the biology of diseases.  相似文献   

11.
From 2003 through 2005, tidal marsh plant species diversity and abundance on historically surveyed vegetation transects along the salinity gradient of the San Francisco Estuary were investigated to establish empirical relationships between plant distributions and environmental conditions, and furthermore to examine and predict past and future plant distribution changes. This study suggests that for most species, salinity is the primary control on plant distribution. Thus, ongoing changes in estuarine conditions (increasing sea level and salinity) are resulting in a complex mix of plant distribution changes. On the low marsh, where sediment salinity is similar to that of ambient water, halophytic species are replacing salt-intolerant taxa. However, on marsh plains, where increased tidal flooding is moderating high salinity (concentrated by evaporation), halophytic “high marsh” species are being replaced by salt-intolerant “low marsh” taxa. Thus, future changes in plant distributions will hinge on whether marsh sediment accumulation keeps pace with sea level rise.  相似文献   

12.
Summary The early sea urchin embryo is supported in a concentric position within the perivitelline space by elongated microvilli which are attached to the fertilization envelope by extracellular matrix fibers. This “attachment complex,” of microvillus tip: extracellular matrix fibers: fertilization envelope, was revealed by two methods: the use of pronase or calcium-free sea water to dissolve the extracellular matrix fibers, thus causing the eggs to lose their concentric location, and the visualization of the “attachment complex” using video-enhanced differential interference contrast microscopy and transmission electron microscope images. The presence of the “attachment complex” helps in understanding two types of early developmental events: (1) the apparently continual change in microvillus length during cleavage stages which retains the embryos in their concentric position and (2) the hatching process.  相似文献   

13.
 Mating behavior of the Far Eastern catfish, Silurus asotus (Siluriformes: Siluridae), was observed in a ricefield system facing the shore of Lake Biwa in mid-May to early June in 1990–1997. A set behavioral sequence similar to those of two other silurid fishes, S. biwaensis and S. lithophilus, both endemic to the Lake Biwa system, was observed: “chasing,”“clinging,”“enfolding” while “squeezing” by the male, and “circling” by the spawning pair. This form of mating behavior is quite different from that of S. asotus reported from the Ooi River system in Kyoto Prefecture, which mainly spawns in running water in ditches. Received: April 10, 2001 / Revised: November 5, 2001 / Accetped: November 20, 2001  相似文献   

14.
Source-sink landscape theory and its ecological significance   总被引:2,自引:0,他引:2  
Exploring the relationships between landscape pattern and ecological processes is the key topic of landscape ecology, for which, a large number of indices as well as landscape pattern analysis model were developed. However, one problem faced by landscape ecologists is that it is hard to link the landscape indices with a specific ecological process. Linking landscape pattern and ecological processes has become a challenge for landscape ecologists. “Source” and “sink” are common concepts used in air pollution research, by which the movement direction and pattern of different pollutants in air can be clearly identified. In fact, for any ecological process, the research can be considered as a balance between the source and the sink in space. Thus, the concepts of “source” and “sink” could be implemented to the research of landscape pattern and ecological processes. In this paper, a theory of sourcesink landscape was proposed, which include: (1) In the research of landscape pattern and ecological process, all landscape types can be divided into two groups, “source” landscape and “sink” landscape. “Source” landscape contributes positively to the ecological process, while “sink” landscape is unhelpful to the ecological process. (2) Both landscapes are recognized with regard to the specific ecological process. “Source” landscape in a target ecological process may change into a “sink” landscape as in another ecological process. Therefore, the ecological process should be determined before “source” or “sink” landscape were defined. (3) The key point to distinguish “source” landscape from “sink” landscape is to quantify the effect of landscape on ecological process. The positive effect is made by “source” landscape, and the negative effect by “sink” landscape. (4) For the same ecological process, the contribution of “source” landscapes may vary, and it is the same to the “sink” landscapes. It is required to determine the weight of each landscape type on ecological processes. (5) The sourcesink principle can be applied to non-point source pollution control, biologic diversity protection, urban heat island effect mitigation, etc. However, the landscape evaluation models need to be calibrated respectively, because different ecological processes correspond with different source-sink landscapes and evaluation models for the different study areas. This theory is helpful to further study landscape pattern and ecological process, and offers a basis for new landscape index design. __________ Translated from Acta Ecologica Sinica, 2006, 26(5): 1444–1449 [译自: 生态学报]  相似文献   

15.
Macroinvertebrate communities were investigated along a gradient of heavy industrial and municipal pollution in the highland Bílina River (Czech Republic). Physico-chemical determinants and ions were monitored and community analysis performed focusing on taxonomic composition, ecological functioning (feeder and dweller guilds) and water quality metrics, including saprobity index, BMWP and diversity. Impacted sites differed significantly from reference and from recovered stretches. Chemical data revealed two main pollution factors, (1) a “salinity determinant”, described best by conductivity and SO42−, and (2) an “organic pollution determinant”, represented best by O2 concentrations and NO2, all varying locally and temporally. Some metrics and taxa showed significant correlations to abiotic parameters. Functional communities showed a stronger relationship to the “organic pollution determinant”, suggesting that elevated organic pollution had a dominating influence on functional community metrics; though other variables may also have an influence in this multistress environment. On the other hand, there were indications that the taxonomic community was more influenced by ion concentrations (“salinity determinant”). The gradient from reference sites to polluted sites was weaker in the final sampling campaign. The results presented here can be used as a reference for assessing future changes in environmental impact from pollution, being finer and more detailed than assessment according to the EU’s WFD.  相似文献   

16.
The axonal transport of neurotransmitter receptors is thought to be a common phenomenon in many neuronal systems. The “machinery” for receptor (protein) “assembly” is found in the cell bodies of neurons and the “manufacture” of receptors takes place there. These receptors are then “shipped” to their ultimate destinations by a transport process. This is an axonal transport mechanism in the case of presynaptic receptors. Some form of transport process may also exist to send receptors out into the dendritic arborizations of neurons, although the latter is more difficult to verify. Axonal transport has been demonstrated, in the peripheral nervous systems, for many different neurotransmitter receptors. In the central nervous system, the results are less clear, but indicate the presence of a transport mechanism for catecholamine, acetylcholine, and opiate sites. One important component then, in the development of receptors, is the transportation to terminal membrane sites where they are ultimately incorporated and available for interaction with neurotransmitters and drugs.  相似文献   

17.
In dealing with the spatial and temporal variability of prey species, predators may be able to forage optimally if they have flexible and rapid behavioral plasticity rather than predetermined responses. For predators that learn to focus attention on the cryptic prey type most frequently encountered during recent searching (termed a “search image”), rare prey types may be overlooked because of a focus on more common prey. Search imaging reflects biased searching for one of a number of available prey types, and has been studied widely in birds and mammals. Here we discuss the significant implications of this phenomenon for insect predator–prey systems, particularly with respect to parasitic wasps searching for host species using learned olfactory cues. We (1) review studies about perceptual development through individual ontogeny, (2) define the term “search image” and discuss the cognitive mechanisms involved in search-image formation, (3) discuss the role of search images and frequency-dependent predation as a proximate mechanism in the maintenance of prey diversity, (4) examine data on host–parasitoid olfactory search imaging, and (5) conclude by identifying important research areas for future studies in the field of olfactory search images.  相似文献   

18.
A biomechanical method to distinguish self-supporting and non self-supporting growth habits is applied to exceptionally preserved “twigs” ofPitus dayi Gordon. The analysis investigates whether these isolated stem segments are consistent with a self-supporting tree-like habit as suggested by the stumps, trunks and branches of the genusPitus Witham preserved more commonly in the fossil record. Because of difficulties in accurately identifying certain fossil tissues, three centrisymmetrical models were constructed to test a range of possible tissue combinations over five ontogenetic stages. The results suggest a self-supporting habit with trends in mechanical parameters during ontogeny similar to those of extant, self-supporting plants. Less explicitly constrained to the analysis of habit, the investigation also examines the structural significance of specific tissues during ontogeny as observed from contributions of individual tissues to cross-sectional area, axial second moment of area and flexural stiffness.Pitus dayl produced a physiologically “cheap” primary cauline cortex which was rapidly replaced by the development of a rhytidome. A mechanically significant, cauline hypoderm comprising thickwalled sclerenchymatous tissue is absent. This arrangement differs from other tested Palaeozoic pteridosperms interpreted as semi-self-supporting such asLyginopteris oldhamia andCalamopitys sp. in which the primary cortex is mechanically significant and secondary growth of the wood does not reach mechanically significant thresholds within the primary body.  相似文献   

19.
Deschampsia antarctica is one of two species of vascular plants native to Antarctica. Populations of D. antarctica have become established on recently exposed glacial forelands on the Antarctic Peninsula and these plants may rely upon nutrient inputs from hauled out mammals, seabirds and sea spray. However, not much is known about the ability of these plants to tolerate salinity stress. We examined the effects of salinity and temperature on growth, reproduction, chlorophyll fluorescence and water relations of D. antarctica. In addition, we analysed concentrations of free proline in leaves and roots as previous studies have found large increases in the concentration of this amino acid in response to environmental stress. The growth chamber experiment was a 3 × 3 (temperature × salinity) complete factorial. Plants were grown at three temperature regimes: 7°/7°C, 12°/7°C, and 20°/7°C day/night and three salinity levels: <0.02 decismen per metre (dS m−1; “low salinity”), 2.5 dS m−1 (“medium salinity”), and 5.0 dS m−1 (“high salinity”) for 66 days. Warmer temperatures improved leaf and tiller production as well as leaf and root length, which is consistent with previous findings on this species. Salinity reduced final root length by 6 and 13% in the medium and high-salinity treatments, respectively. Plants growing in medium and high-salinity treatments had xylem pressures that were more negative and higher free-proline concentrations, suggesting that proline may act as an osmoregulant in D. antarctica.  相似文献   

20.
Persistent Organic Pollutants (POPs) in the soil–plant system were tracked from their origin in the bulk soil, into the rhizosphere soil pore water, to the xylem sap, and up to the aerial plant tissue. Specifically, the profiles of both chiral and achiral components of technical chlordane along this continuum were examined in detail for members of the Cucurbitaceae family: Cucurbita pepo L. subsp. pepo (“Black Beauty” true zucchini), Cucurbita pepo L. intersubspecific cross (“Zephyr” summer squash), and Cucumis sativus (“Marketmore” cucumber). The experiments were based on the use of mini-rhizotrons for collection and analysis of rhizosphere soil pore water for organic pollutants, as well as for low molecular weight organic acids (LMWOAs). In addition, the xylem sap and aerial plant tissue for intact, homografted, and heterografted C. pepo “Black Beauty” and C. sativus “Marketmore” plants were compared. The data indicate that profiles of the chlordane components in the pore water show no alteration in chiral patterns from those in the bulk soil and may be interpreted by physicochemical partitioning coefficients. Low molecular weight organic acids (LMWOAs) in the rhizosphere were observed to have a minor impact on bioavailability of the pollutants. However, once the pollutants cross the root membrane, major distinctive uptake and enantioselective patterns are apparent in the xylem sap, which are maintained in the aerial tissue. These in planta patterns are based on plant genotype. Specifically, grafting experiments with compatible heterografts of C. pepo and C. sativus establish that the chiral patterns are fully dependent on the plant root. The genotypic dependence of the data suggests possible mechanisms for phytoaccumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号