首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A serine protease and an enzyme preparation consisting of six chitinases, previously semi-purified from a liquid culture of Paecilomyces lilacinus strain 251, were applied to Meloidogyne javanica eggs to study the effect of the enzymes on eggshell structures. Transmission electron microscopic studies revealed that the protease and chitinases drastically altered the eggshell structures when applied individually or in combination. In the protease-treated eggs, the lipid layer disappeared and the chitin layer was thinner than in the control. The eggs treated with chitinases displayed large vacuoles in the chitin layer, and the vitelline layer was split and had lost its integrity. The major changes in the eggshell structures occurred by the combined effect of P. lilacinus protease and chitinases. The lipid layer was destroyed; the chitin layer hydrolyzed and the vitelline layer had lost integrity. The effect of P. lilacinus protease and chitinase enzymes on the hatching of M. javanica juveniles was also compared with a commercially available bacterial chitinase. The P. lilacinus protease and chitinase enzymes, either individually or in combination, reduced hatching of M. javanica juveniles whereas a commercial bacterial chitinase had an enhancing effect. Some juveniles hatched when the eggs were exposed to a fungal protease and chitinase mixture. We also established that P. lilacinus chitinases retained their activity in the presence of endogenous protease activity.  相似文献   

2.
Acidic exocellular class III chitinase (EC 3.2.1.14) was previously identified in healthy white lupin (Lupinus albus L.) plants and suspension-cultured cells by N-terminal microse-quencing. In this study, the detection of chitinase activity with Remazol Brilliant Violet 5R (RBV)-labelled chitin derivatives is described. Chitinase activity was observed in protein fractions of cytoplasmic or exocellular origin from roots, hypocotyls, cotyledons, and leaves of healthy white lupin plants. Using isoelectrofocusing followed by a new overlay technique with carboxymethyl chitin-RBV conjugate-containing gel, up to six different chitinase isoforms were visualised. Their activity was distributed fairly evenly within a plant with acidic isoforms predominating in cell walls and basic (or neutral) ones found intracellularly. Exocellular location of some chitinase isoforms were also confirmed by detection of their activities in intercellular washing fluids from white lupin tissues. Chitinase activity was demonstrated in culture filtrates and cell walls of suspension-cultured white lupin cells.  相似文献   

3.
We report here the first analysis of chitinase regulation in Moniliophthora perniciosa, the causal agent of the witches' broom disease of cacao. A multivariate statistical approach was employed to evaluate the effect of several variables, including carbon and nitrogen sources and cultivation time, on M. perniciosa non-secreted (detected in mycelium, i.e. in symplasm and cell wall) and secreted (detected in the culture medium) chitinase activities. Non-secreted chitinase activity was enhanced by peptone and chitin and repressed by glucose. Chitinase secretion was increased by yeast extract alone or in combination with other nitrogen sources, and by N-acetylglucosamine, and repressed in presence of chitin. The best cultivation times for non-secreted and secreted chitinase activities were 30 and 20 d, respectively. However, chitinase activity was always higher in the mycelium than in the culture medium, suggesting a relatively poor chitinase secretion activity. Conversely, higher mycelial growth was observed when the activity of the non-secreted chitinase was at its lowest, i.e. when the fungus was grown on glucose and yeast extract as sources of carbon and nitrogen, respectively. Conversely, the induction of non-secreted chitinase activity by chitin decreased the mycelium growth. These results suggest that the culture medium, by the induction or repression of chitinases, affected the hyphal growth. Thus, as an essential component of M. perniciosa growth, chitinases may be a potential target for strategies to control disease.  相似文献   

4.
Fusarium head blight (FHB), caused by Fusarium graminearum (= Gibberella zeae), is a destructive disease of wheat for which biological controls are needed. Lysobacter enzymogenes strain C3, a bacterial antagonist of fungal pathogens via lytic enzymes and induced resistance, was evaluated in this study for control of FHB. In greenhouse experiments, chitin broth cultures of C3 reduced FHB severity to <10% infected spikelets as compared to >80% severity in the controls in some experiments. C3 broth cultures heated to inactivate cells and lytic enzymes, but retaining the elicitor factor for induced resistance, also were effective in reducing FHB severity, suggesting induced resistance is one mechanism of action. C3 broth cultures also were effective when applied in highly diluted form and when applied 1 week prior to pathogen inoculation. When applied to 8 cultivars of hard red spring wheat in the greenhouse, C3 treatments reduced FHB in 5 cultivars but not in the others. These findings also are consistent with induced resistance. Protection offered by C3 treatments, however, was not systemic and required that C3 be applied uniformly to all susceptible florets. Field tests were conducted in South Dakota and Nebraska to evaluate the efficacy of C3 chitin broth cultures in spring and winter wheat, respectively. In experiments involving two hard red spring wheat cultivars, treatment with C3 reduced FHB severity in ‘Russ’ but not in ‘Ingot’. In three other field experiments comparing C3, the fungicide tebuconazole, and the combination of C3 and tebuconazole, treatments with the bacterial culture alone and the fungicide alone were inconsistent across experiments, each treatment being ineffective in controlling FHB in one experiment. The biocontrol agent–fungicide combination was more consistently effective, reducing FHB incidence or severity in all three experiments. Thus, the potential for using L. enzymogenes C3 as a biological control agent for FHB was demonstrated along with a number of factors that might affect control efficacy in the field.  相似文献   

5.
The chitinase (EC 3.2.1.14) of the human malaria parasite Plasmodium falciparum, PfCHT1, has been validated as a malaria transmission-blocking vaccine (TBV). The present study aimed to delineate functional characteristics of the P. vivax chitinase PvCHT1, whose primary structure differs from that of PfCHT1 by having proenzyme and chitin-binding domains. The recombinant protein rPvCHT1 expressed with a wheat germ cell-free system hydrolyzed 4-methylumbelliferone (4MU) derivatives of chitin oligosaccharides (β-1,4-poly-N-acetyl glucosamine (GlcNAc)). An anti-rPvCHT1 polyclonal antiserum reacted with in vitro-obtained P. vivax ookinetes in anterior cytoplasm, showing uneven patchy distribution. Enzymatic activity of rPvCHT1 shared the exclusive endochitinase property with parallelly expressed rPfCHT1 as demonstrated by a marked substrate preference for 4MU-GlcNAc3 compared to shorter GlcNAc substrates. While rPvCHT1 was found to be sensitive to the general family-18 chitinase inhibitor, allosamidin, its pH (maximal in neutral environment) and temperature (max. at ~ 25 °C) activity profiles and sensitivity to allosamidin (IC50 = 6 µM) were different from rPfCHT1. The results in this first report of functional rPvCHT1 synthesis indicate that the P. vivax chitinase is enzymatically close to long form Plasmodium chitinases represented by P. gallinaceum PgCHT1.  相似文献   

6.
Chitinolytic Serratia marcescens GPS 5 and non‐chitinolytic Pseudomonas aeruginosa GSE 18, with and without supplementation of chitin, were tested for their ability to activate defence‐related enzymes in groundnut leaves. Thirty‐day‐old groundnut (cv. TMV 2) plants pretreated with GPS 5 and GSE 18 (with and without supplementation of 1% colloidal chitin) were challenge inoculated after 24 h with Phaeoisariopsis personata, the causal agent of late leaf spot (LLS) disease of groundnut. GPS 5 and GSE 18, applied as a prophylactic spray, reduced the lesion frequency by 23% and 67%, respectively, compared with control. Chitin supplementation had no effect on the control of LLS by GSE 18, unlike GPS 5, which upon chitin supplementation reduced the lesion frequency by 64%, compared with chitin alone. In a time course study the activities of chitinase, β‐1,3‐glucanase, peroxidase and phenylalanine ammonia lyase were determined for the different treatments. There was an enhanced activity of the four defence‐related enzymes with all the bacterial treatments when compared with phosphate buffer and colloidal chitin‐treated controls. In correlation to disease severity in bacterial treatments, chitin‐supplemented GSE 18 was similar to GSE 18, whereas chitin‐supplemented GPS 5 was much more effective than GPS 5, in activation of the defence‐related enzymes. The high levels of enzyme activities following chitin‐supplemented GPS 5 application continued up to the measured 13 days after pathogen inoculation.  相似文献   

7.
Chitinase (EC 3.2.1.14) activity was measured in roots of Allium prorrum L. (leek) during development of a vesicular-arbuscular mycorrhizal symbiosis with Glomus versiforme (Karst.) Berch. During the early stages of infection, between 10 and 20 d after inoculation, the specific activity of chitinase was higher in mycorrhizal roots than in the uninfected controls. However, 60–90 d after inoculation, when the symbiosis was fully established, the mycorrhizal roots contained much less chitinase than control roots. Chitinase was purified from A. porrum roots. An antiserum against beanleaf chitinase was found to cross-react specifically with chitinase in the extracts from non-mycorrhizal and mycorrhizal A. porrum roots. This antiserum was used for the immunocytochemical localization of the enzyme with fluorescent and gold-labelled probes. Chitinase was localized in the vacuoles and in the extracellular spaces of non-mycorrhizal and mycorrhizal roots. There was no immunolabelling on the fungal cell walls in the intercellular or the intracellular phases. It is concluded that the chitin in the fungal walls is inaccessible to plant chitinase. This casts doubts on the possible involvement of this hydrolase in the development of the mycorrhizal fungus. However, fungal penetration does appear to cause a typical defense response in the first stages that is later depressed.  相似文献   

8.
Manduca sexta (tobacco hornworm) chitinase is a molting enzyme that contains several domains including a catalytic domain, a serine/threonine-rich region, and a C-terminal cysteine-rich domain. Previously we showed that this chitinase acts as a biopesticide in transgenic plants where it disrupts gut physiology. To delineate the role of these domains further and to identify and characterize some of the multiple forms produced in molting fluid and in transgenic plants, three different forms with variable lengths of C-terminal deletions were generated. Appropriately truncated forms of the M. sexta chitinase cDNA were generated, introduced into a baculovirus vector, and expressed in insect cells. Two of the truncated chitinases (Chi 1-407 and Chi 1-477) were secreted into the medium, whereas the one with the longest deletion (Chi 1-376) was retained inside the insect cells. The two larger truncated chitinases and the full-length enzyme (Chi 1-535) were purified and their properties were compared. Differences in carbohydrate compositions, pH–activity profiles, and kinetic constants were observed among the different forms of chitinases. All three of these chitinases had some affinity for chitin, and they also exhibited differences in their ability to hydrolyze colloidal chitin. The results support the hypothesis that multiple forms of this enzyme occur in vivo due to proteolytic processing at the C-terminal end and differential glycosylation.  相似文献   

9.
Twenty six Rhizobium strains isolated from root nodules of Sesbania sesban were studied for chitinase activity on chitin agar plates. Among them, only 12 strains showed chitinase activity. The strain showing the highest chitinase activity was selected based on maximum clear zone/colony size ratio on chitin agar plates and chitinase activity in culture filtrate. The strain was identified as Rhizobium sp. which showed a high degree of similarity with Rhizobium radiobacter (= Agrobacterium radiobacter). The cultural and nutritional conditions were optimized for maximum chitinase activity. The Rhizobium sp. exhibited maximum chitinase activity after 36 h of incubation, at neutral pH. Among the different nutritional sources, arabinose and yeast extract were found to be good inducers for chitinase activity. Rhizobium sp. could degrade and utilize dead mycelia of Aspergillus flavus, Aspergillus niger, Curvularia lunata, Fusarium oxysporum and Fusarium udum.  相似文献   

10.
The chitinase producing Penicillium sp. LYG 0704 was procured from soil of the Chonnam National University crop field. The chitinase activity was detected after the first day which increased gradually and reached its maximum after 3 days of cultivation. The chitinase was purified from a culture medium by precipitation with isopropanol and column chromatography with Mono Q and Butyl-Sepharose. The molecular mass of chitinase was estimated to be 47 kDa by SDS–PAGE. Optimal pH and temperature were 5.0 and 40 °C, respectively. The N-terminal amino acid sequence of the enzyme was determined to be 1AGSYRSVAYFVDWAI15. The fully cloned gene, 1287 bp in size, encoded a single peptide of 429 amino acids. BLAST search of the chitinase gene sequence showed similarity with chitinase of Aspergillus fumigatus Af293 chitinase gene (58%) and A. fumigatus class V chitinase ChiB1 gene (56%).  相似文献   

11.
The strain ofSerratia marcescens QM B1466 produces selectively large amount of chitinolytic enzymes (about 1mg/L medium). Enzymatic hydrolysis of chitin to N-acetyl-β-D-glucosamine (NAG) was performed with a system consisting of two hydrolases (chitinase and chitobiase) produced by optimization of a microbial host consuming chitin particles. For the development of Large-scale biological process for the production of NAG from chitinaceous waste, the selection and optimization of a microbial host, particle size of chitin and pretreatment of chitin source were investigated. Also, the effect of crab/shrimp chitin sources and initial induction time using chitin as a sole carbon source on chitinase/chitobiase production and NAG production were examined. Crab-shell chitin(1.5%) treated by dilute acid and, ball-milled with a nominal diameter less than 250m gave the highest chitinase activity over a 7 days culture. Crude chitinase/chitobiase solution obtained in a 10 L fed-batch fermentation showed a maximum activities of 23.6 U/mL and 5.1 U/mL, respectively with a feeding time of 3 hrs, near pH 8.5 at 30°C.  相似文献   

12.
【目的】通过构建假交替单胞菌(Pseudoalteromonassp.DL-6)低温几丁质酶(chitinaseA,chi A;chitinase C,chi C)的重组乳酸克鲁维酵母菌株、纯化重组蛋白并对其进行酶学性质表征,为低温几丁质酶潜在工业化生产几丁寡糖奠定理论基础。【方法】人工合成密码子优化的几丁质酶基因,构建重组乳酸克鲁维酵母表达质粒(p KLAC1-chi A、p KLAC1-chi C)并用电脉冲法转化到乳酸克鲁维酵母中,实现低温几丁质酶的可溶表达。利用镍柱亲和层析纯化得到高纯度的重组几丁质酶。【结果】成功构建产低温几丁质酶的重组乳酸克鲁维酵母并纯化获得高纯度的重组几丁质酶。经SDS-PAGE分析在110 k Da与90 k Da附近出现符合预期大小的蛋白条带。铁氰化钾法测得Chi A和Chi C的酶活分别为51.45 U/mg与108.56 U/mg。最适反应温度分别为20°C和30°C,最适p H分别为8.0和9.0。在低于40°C,p H 8.0–12.0时,Chi A和Chi C重组酶较稳定。Chi A和Chi C对胶体几丁质以及粉状底物α-几丁质与β-几丁质具有明显的降解活性,且具有一定协同降解能力。【结论】首次实现假交替单胞菌来源的低温几丁质酶在乳酸克鲁维酵母中的重组表达、纯化、酶学性质及其降解产物分析,为其他低温几丁质酶的研究提供借鉴意义。  相似文献   

13.
In the presence of chitin,Aeromonas sp. DYU-Too7 can produce extra-cellular, chitin-degrading enzymes. Chitin analogues and other carbon sources can be used to cultivate this bacterial strain. The chitinases produced by the strain were higher in the GIcN (glucosamine) medium than those in other media. The maximal chitinase activity occurred in the medium containing 0.1% GIcN. Cultivation ofAeromonas sp. DYU-Too7 in the GIcN medium sped up the chitinase production; however the same result did not appear when it was cultivated in the (Chitin+GIcN) medium. This result may indicate that GIcN can be utilized byAeromonas sp. DYU-Too7 as a carbon source and an inducer to produce chitinases. A chitinase with a molecular mass of 36 kDa was further purified and characterized to have an optimal reacting pH of 5.0 and an optimal reacting temperature of 50°C. This chitinase showed high stability in the proximity of 30°C and also high stability in the proximity of pH 7.0. The hydrolysates of colloidal chitin, with the aid of the 36-kDa chitinase, were analyzed by an HPLC and found to be chitobiose.  相似文献   

14.
The effect of leaf rust (Puccinia triticina) infection on intercellular chitinase (EC 3.2.1.14) and peroxidase (EC 1.11.1.7) activities was studied in resistant [RL 6082 (Thatcher/Lr35)] and susceptible (Thatcher) near isogenic wheat (Triticum aestivum L.) lines at seedling, stem elongation and flag leaf stages of plant growth. The levels of activity of these enzymes were low during the seedling and stem elongation stages. Resistant plants at the flag leaf stage, during which the Lr35 resistance gene was maximally expressed, exhibited high constitutive levels of chitinase and peroxidase activities, in contrast to the lower constitutive levels of susceptible plants. The results suggest that chitinase and peroxidase, constitutively present in the intercellular spaces of Thatcher/Lr35 wheat leaves, may play a role in Lr35 mediated resistance to leaf rust.  相似文献   

15.
31P-NMR measurements of saturation transfer have been used to measure phosphate consumption in respiratory competent cells of the yeast Saccharomyces cerevisiae. Measurements of oxygen consumption and maintenance of the cells in a metabolic steady state during the NMR experiments were facilitated by immobilisation of the cells in an agarose gel matrix which could be perfused in the NMR spectrometer. The contribution of glycolysis to the observed rate of phosphate consumption was estimated by simultaneously measuring glucose consumption and ethanol production in the perfusion buffer. The remaining phosphate consumption, which was attributed to flux through the reaction catalysed by the mitochondrial ATP synthase, combined with measurements of oxygen consumption allowed estimation of a P:O ratio (mol ATP synthesised:atoms oxygen consumed) which was close to 3.  相似文献   

16.
The gene cloning, purification, properties, kinetics, and antifungal activity of chitinase from marine Streptomyces sp. DA11 associated with South China sponge Craniella australiensis were investigated. Alignment analysis of the amino acid sequence deduced from the cloned conserved 451 bp DNA sequence shows the chitinase belongs to ChiC type with 80% similarity to chitinase C precursor from Streptomyces peucetius. Through purification by 80% ammonium sulfate, affinity binding to chitin and diethylaminoethyl-cellulose anion-exchange chromatography, 6.15-fold total purification with a specific activity of 2.95 Umg−1 was achieved. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed a molecular weight of approximately 34 kDa and antifungal activities were observed against Aspergillus niger and Candida albicans. The optimal pH, temperature, and salinity for chitinase activity were 8.0, 50°C, and 45 g‰ psu, respectively, which may contribute to special application of this marine microbe-derived chitinase compared with terrestrial chitinases. The chitinase activity was increased by Mn2+, Cu2+, and Mg2+, while strongly inhibited by Fe2+ and Ba2+. Meanwhile, SDS, ethyleneglycoltetraacetic acid, urea, and ethylenediaminetetraacetic acid were found to have significantly inhibitory effect on chitinase activity. With colloidal chitin as substrates instead of powder chitin, higher V max (0.82 mg product/min·mg protein) and lower K m (0.019 mg/ml) values were achieved. The sponge’s microbial symbiont with chitinase activity may contribute to chitin degradation and antifungal defense. To our knowledge, it was the first time to study sponge-associated microbial chitinase.  相似文献   

17.
A chitinase producing bacterium Enterobacter sp. NRG4, previously isolated in our laboratory, has been reported to have a wide range of applications such as anti-fungal activity, generation of fungal protoplasts and production of chitobiose and N-acetyl D-glucosamine from swollen chitin. In this paper, the gene coding for Enterobacter chitinase has been cloned and expressed in Escherichia coli BL21(DE3). The structural portion of the chitinase gene comprised of 1686 bp. The deduced amino acid sequence of chitinase has high degree of homology (99.0%) with chitinase from Serratia marcescens. The recombinant chitinase was purified to near homogeneity using His-Tag affinity chromatography. The purified recombinant chitinase had a specific activity of 2041.6 U mg−1. It exhibited similar properties pH and temperature optima of 5.5 and 45°C respectively as that of native chitinase. Using swollen chitin as a substrate, the Km, kcat and catalytic efficiency (kcat/Km) values of recombinant chitinase were found to be 1.27 mg ml−1, 0.69 s−1 and 0.54 s−1M−1 respectively. Like native chitinase, the recombinant chitinase produced medicinally important N-acetyl D-glucosamine and chitobiose from swollen chitin and also inhibited the growth of many fungi.  相似文献   

18.
An extracellular chitinase of Acremonium obclavatum was partially purified. It had an M r of 45 kDa on SDS-PAGE, and was optimally active at pH 3 to 4 and 50°C. Hg and Mn (10 mm) inhibited activity. The chitinase hydrolysed colloidal chitin more rapidly than crude chitin or isolated A. obclavatum cell walls. The partially-purified enzyme inhibited uredospore germination and germ-tube growth of Puccinia arachidis.The authors are with the Centre for Advanced Study in Botany, University of Madras, Guindy campus, Madras 600 025, India  相似文献   

19.
Bacteria isolated from spent mushroom substrate (SMS) were evaluated for the suppression of Pyricularia grisea, the causal agent of gray leaf spot of perennial ryegrass (Lolium perenne) turf. Thirty-two of 849 bacterial isolates (3.8%) from SMS significantly inhibited the mycelial growth of P. grisea in vitro. Six bacterial isolates that afforded maximum inhibition of P. grisea were also refractory to Rhizoctonia solani, Rhizoctonia cerealis, Sclerotinia homoeocarpa, and Fusarium culmorum. Each of the six isolates was identified as Pseudomonas aeruginosa by fatty acid profile analysis. The biocontrol activity of the bacterial isolates was not compromised by a prolonged exposure to UV radiation in vitro. In controlled-environment chamber experiments, all 32 bacterial isolates were tested for suppression of gray leaf spot on Pennfine perennial ryegrass when applied as seed treatment or foliar sprays. Foliar applications of the bacteria (108 cfu/ml 0.1% carboxymethylcellulose), but not the seed treatment, significantly reduced disease severity and incidence. The three most efficient isolates from foliar application treatments, which were among the six bacterial isolates identified as P. aeruginosa, were further evaluated for suppression of gray leaf spot as a function of timing of application. The three isolates of P. aeruginosa suppressed gray leaf spot in perennial ryegrass in Cone-tainers when applied at 1, 3, and 7 days prior to inoculation with P. grisea both in controlled-environment chamber experiments, and in potted ryegrass plants maintained in the field. All application intervals, regardless of the bacterial isolate, provided significant reduction of gray leaf spot severity. Suppression of gray leaf spot by isolates of P. aeruginosa under controlled-environment chamber conditions was not different from that observed in potted ryegrass plants maintained in the field. In field experiments, an isolate of P. aeruginosa provided significant suppression of gray leaf spot when applied at 1, 7, and 14 days prior to inoculation with P. grisea. The bacterium proved effective against gray leaf spot of perennial ryegrass maintained as fairway and rough heights. These results indicate that P. aeruginosa may be a potential biocontrol agent for gray leaf spot of perennial ryegrass turf.  相似文献   

20.
A chitinase gene (pCHi58) encoding a 58 kDa chitinase was isolated from theSerratia marcescens KCTC 2172 cosmid library. The chitinase gene consisted of a 1686 bp open reading frame that encoded 562 amino acids.Escherichia coil harboring the pChi58 gene secreted a 58 kDa chitinase into the culture supernatant. The 58 kDa chitinase was purified using a chitin affinity column and mono-S column. A nucleotide andN-terminal amino acid sequence analysis showed that the 58 kDa chitinase had a leader peptide consisting of 23 amino acids which was cleaved prior to the 24th alanine. The 58 KDa chitinase exhibited a 98% similarity to that ofS. marcescens QMB 1466 in its nuclotide sequence. The chitinolytic patterns of the 58 kDa chitinase released N,N′-diacetyl chitobiose (NAG2) as the major hydrolysis end-product with a trace amount ofN-acetylglucosamine. When a 4-methylumbellyferyl-N-acetylglucosamin monomer, dimmer, and tetramer were used as substrates, the 58 kDa chitinase did not digest the 4-Mu-NAG monomer (analogue of NAG2), thereby indicating that the 58 kDa chitinase was likely an endochitinase. The optimum reaction temperature and pH of the enzyme were 50°C and 5.0, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号