首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Borrelia burgdorferi alternates between ticks and mammals, requiring variable gene expression and protein production to adapt to these diverse niches. These adaptations include shifting among the major outer surface lipoproteins OspA, OspC, and VlsE at different stages of the infectious cycle. We hypothesize that these proteins carry out a basic but essential function, and that OspC and VlsE fulfil this requirement during early and persistent stages of mammalian infection respectively. Previous work by other investigators suggested that several B. burgdorferi lipoproteins, including OspA and VlsE, could substitute for OspC at the initial stage of mouse infection, when OspC is transiently but absolutely required. In this study, we assessed whether vlsE and ospA could restore infectivity to an ospC mutant, and found that neither gene product effectively compensated for the absence of OspC during early infection. In contrast, we determined that OspC production was required by B. burgdorferi throughout SCID mouse infection if the vlsE gene were absent. Together, these results indicate that OspC can substitute for VlsE when antigenic variation is unnecessary, but that these two abundant lipoproteins are optimized for their related but specific roles during early and persistent mammalian infection by B. burgdorferi.  相似文献   

2.
Timely expression of the outer surface protein C (OspC) is crucial for the pathogenic strategy of the Lyme disease spirochete Borrelia burgdorferi. The pathogen abundantly expresses OspC during initial infection when the antigen is required, but downregulates when its presence poses a threat to the spirochetes once the anti-OspC humoral response has developed. Here, we show that a large palindromic sequence immediately upstream of the ospC promoter is essential for the repression of ospC expression during murine infection and for the ability of B. burgdorferi to evade specific OspC humoral immunity. Deletion of the sequence completely diminished the ability of B. burgdorferi to avoid clearance by transferred OspC antibody in SCID mice. B. burgdorferi lacking the regulatory element was able to initiate infection but unable to persist in immunocompetent mice. Taken together, the regulatory element immediately upstream of the ospC promoter serves as an operator that may interact with an unidentified repressor(s) to negatively regulate ospC expression and is essential for the immune evasion of B. burgdorferi.  相似文献   

3.
4.
5.
Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis, is transmitted through tick bite. Lyme borreliosis evolves in two stages: a primary red skin lesion called erythema migrans; later on, invasive bacteria disseminate to distant sites inducing secondary manifestations (neuropathies, arthritis, carditis, late skin disorders). It has been previously suggested that the ospC gene could be associated with invasiveness in humans depending on its sequence. Here, we confirm the pattern of invasiveness, according to B. burgdorferi sensu stricto (B. b. ss) ospC group, using the mouse as an experimental host of B. b. ss. As it has been shown that the host plasminogen activation system is used by B. burgdorferi to disseminate throughout the host, we studied the interaction of plasminogen with OspC proteins from invasive and non-invasive groups of B. b. ss. Using two methods, ELISA and surface plasmon resonance, we demonstrate that indeed OspC is a plasminogen-binding protein. Moreover, significant differences in binding affinity for plasminogen are correlated with different invasiveness patterns in mice. These results suggest that the correlation between ospC polymorphism and Borrelia invasiveness in humans is linked, at least in part, to differences in OspC affinity for plasminogen.  相似文献   

6.
7.
Outer surface lipoprotein C (OspC) is a key virulence factor of Borrelia burgdorferi. ospC is differentially regulated during borrelial transmission from ticks to rodents, and such regulation is essential for maintaining the spirochete in its natural enzootic cycle. Recently, we showed that the expression of ospC in B. burgdorferi is governed by a novel alternative sigma factor regulatory network, the RpoN-RpoS pathway. However, the precise mechanism by which the RpoN-RpoS pathway controls ospC expression has been unclear. In particular, there has been uncertainty regarding whether ospC is controlled directly by RpoS (sigma(s)) or indirectly through a transactivator (induced by RpoS). Using deletion analyses and genetic complementation in an OspC-deficient mutant of B. burgdorferi, we analyzed the cis element(s) required for the expression of ospC in its native borrelial background. Two highly conserved upstream inverted repeat elements, previously implicated in ospC regulation, were not required for ospC expression in B. burgdorferi. Using similar approaches, a minimal promoter that contained a canonical -35/-10 sequence necessary and sufficient for sigma(s)-dependent regulation of ospC was identified. Further, targeted mutagenesis of a C at position -15 within the extended -10 region of ospC, which is postulated to function like the strategic C residue important for Esigma(s) binding in Escherichia coli, abolished ospC expression. The minimal ospC promoter also was responsive to coumermycin A(1), further supporting its sigma(s) character. The combined data constitute a body of evidence that the RpoN-RpoS regulatory network controls ospC expression by direct binding of sigma(s) to a sigma(s)-dependent promoter of ospC. The implication of our findings to understanding how B. burgdorferi differentially regulates ospC and other ospC-like genes via the RpoN-RpoS regulatory pathway is discussed.  相似文献   

8.
Evolution of the Borrelia burgdorferi outer surface protein OspC.   总被引:1,自引:0,他引:1       下载免费PDF全文
The genes coding for outer surface protein OspC from 22 Borrelia burgdorferi strains isolated from patients with Lyme borreliosis were cloned and sequenced. For reference purposes, the 16S rRNA genes from 17 of these strains were sequenced after being cloned. The deduced OspC amino acid sequences were aligned with 12 published OspC sequences and revealed the presence of 48 conserved amino acids. On the basis of the alignment, OspC could be divided into an amino-terminal relatively conserved region and a relatively variable region in the central portion. The distance tree obtained divided the ospC sequences into three groups. The first group contained ospC alleles from all (n = 13) sensu stricto strains, the second group contained ospC alleles from seven Borrelia afzelii strains, and the third group contained ospC alleles from five B. afzelii and all (n = 9) Borrelia garinii strains. The ratio of the mean number of synonymous (dS) and nonsynonymous (dN) nucleotide substitutions per site calculated for B. burgdorferi sensu stricto, B. garinii, and B. afzelii ospC alleles suggested that the polymorphism of OspC is due to positive selection favoring diversity at the amino acid level in the relatively variable region. On the basis of the comparison of 16S rRNA gene sequences, Borrelia hermsii is more closely related to B. afzelii than to B. burgdorferi sensu stricto and B. garinii. In contrast, the phylogenetic tree obtained for the B. hermsii variable major protein, Vmp33, and 18 OspC amino acid sequences suggested that Vmp33 and OspC from B. burgdorferi sensu stricto strains share a common evolutionary origin.  相似文献   

9.
Molecular mechanisms underlying the reciprocal regulation of the two major surface lipoproteins and virulence factors of Borrelia burgdorferi, OspA and OspC, are not fully understood. Herein, we report that inactivation of the ospAB operon resulted in overproduction of OspC and many other lipoproteins via the constitutive activation of the Rrp2‐RpoN‐RpoS pathway. Complementing the ospAB mutant with a wild‐type copy of ospA, but not an ospA variant that lacks the lipoprotein signal sequence, restored normal regulation of the Rrp2‐RpoN‐RpoS pathway; these results indicate that the phenotype was not caused by spurious mutations. Interestingly, while most of the ospAB mutant clones displayed a constitutive ospC expression phenotype, some ospAB mutant clones showed little or no ospC expression. Further analyses revealed that this OspC‐negative phenotype was independent of abrogation of ospAB. While activation of the Rrp2‐RpoN‐RpoS pathway was recently shown to downregulate ospA, our findings suggest that reduction of OspA can also activate this pathway. We postulate that the activation of the Rrp2‐RpoN‐RpoS pathway and downregulation of OspA form a positive feedback loop that allows spirochaetes to produce and maintain a constant high level of OspC and other lipoproteins during tick feeding, a strategy that is critical for spirochaetal transmission and mammalian infection.  相似文献   

10.
11.
Borrelia burgdorferi must adapt physiologically to two markedly different host milieus and efficiently transit between its mammalian host and arthropod vector during tick feeding. Differential production of lipoproteins is essential for spirochaetes to survive, multiply and migrate within both hosts. Outer-surface protein C (OspC), which is induced during the blood meal, is critical for transmission of Lyme disease spirochaetes by nymphal ticks. Its biological function is poorly understood, however, despite the fact that its crystal structure has been solved. Evidence has accumulated that OspC blocks clearance of spirochaetes following inoculation in skin, and it is thought to do so by facilitating evasion of innate immunity. The study by Liang and co-workers in this edition of Molecular Microbiology extends this work by showing that OspC prevents early elimination and promotes dissemination. Surprisingly, they also show that unrelated borrelial outer-surface lipoproteins can replace these functions in an ospC mutant. They propose that an abundance of lipoprotein(s) is needed to stabilize the borrelial outer membrane against innate defences. This provocative work clearly runs counter to prevailing orthodoxies of bacterial pathogenesis. It also points the way towards future studies that will clarify the 'partially specific' roles of this enigmatic molecule in Lyme disease pathogenesis.  相似文献   

12.
The dimeric OspC/Vsp family surface lipoproteins of Borrelia spirochetes are crucial to the transmission and persistence of Lyme borreliosis and tick-borne relapsing fever. However, the requirements for their proper surface display remained undefined. In previous studies, we showed that localization of Borrelia burgdorferi monomeric surface lipoprotein OspA was dependent on residues in the N-terminal "tether" peptide. Here, site-directed mutagenesis of the B. burgdorferi OspC tether revealed two distinct regions affecting either release from the inner membrane or translocation through the outer membrane. Determinants of both of these steps appear consolidated within a single region of the Borrelia turicatae Vsp1 tether. Periplasmic OspC mutants still were able to form dimers. Their localization defect could be rescued by the addition of an apparently structure-destabilizing C-terminal epitope tag but not by coexpression with wild-type OspC. Furthermore, disruption of intermolecular Vsp1 salt bridges blocked dimerization but not surface localization of the resulting Vsp1 monomers. Together, these results suggest that Borrelia OspC/Vsp1 surface lipoproteins traverse the periplasm and the outer membrane as unfolded monomeric intermediates and assemble into their functional multimeric folds only upon reaching the spirochetal surface.  相似文献   

13.
The 26 to 28 kb circular plasmid of B. burgdorferi sensu lato (cp26) is ubiquitous among bacteria of this group and contains loci implicated in the mouse–tick transmission cycle. Restriction mapping and Southern hybridization indicated that the structure of cp26 is conserved among isolates from different origins and culture passage histories. The cp26 ospC gene encodes an outer surface protein whose synthesis within infected ticks increases when the ticks feed, and whose synthesis in culture increases after a temperature upshift. Previous studies of ospC coding sequences showed them to have stretches of sequence apparently derived from the ospC genes of distantly related isolates by homologous recombination after DNA transfer. We found conservation of the promoter regions of the ospC and guaA genes, which are divergently transcribed. We also demonstrated that the increase in OspC protein after a temperature upshift parallels increases in mRNA levels, as expected if regulatory regions adjoin the conserved sequences in the promoter regions. Finally, we used directed insertion to inactivate the ospC gene of a non-infectious isolate. This first example of directed gene inactivation in B. burgdorferi shows that the OspC protein is not required for stable maintenance of cp26 or growth in culture.  相似文献   

14.
Borrelia burgdorferi spirochetes can circumvent the vertebrate host's immune system for long periods of time. B. burgdorferi sensu stricto and B. afzelii, but not B. garinii, bind the complement inhibitor factor H to protect themselves against complement-mediated opsonophagocytosis and killing. We found that factor H binding and complement resistance are due to inducible expression of a wide repertoire of outer surface protein E (OspE) lipoproteins variably called OspE, p21, ErpA, and ErpP. Individual Borrelia strains carry multiple plasmid-encoded OspE paralogs. Together the OspE homologs were found to constitute an array of proteins that bind factor H via multiple C-terminal domains that are exposed outwards from the Borrelial surface. Charged residue substitutions in the key binding regions account for variations between OspE family members in the optimal binding pH, temperature, and ionic strength. This may help the spirochetes to adapt into various host environments. Our finding that multiple plasmid-encoded OspE proteins act as virulence factors of Borrelia can provide new tools for the prevention and treatment of borreliosis.  相似文献   

15.
As the Lyme disease spirochaete Borrelia burgdorferi shuttles back and forth between arthropod vector and vertebrate host, it encounters vastly different and hostile environments. Major mechanisms contributing to the success of this pathogen throughout this complex transmission cycle are phase and antigenic variation of abundant and serotype‐defining surface lipoproteins. These peripherally membrane‐anchored virulence factors mediate niche‐specific interactions with vector/host factors and protect the spirochaete from the perils of the mammalian immune response. In this issue of Molecular Microbiology, Tilly, Bestor and Rosa redefine the roles of two lipoproteins, OspC and VlsE, during mammalian infection. Using a variety of promoter fusions in combination with a sensitive in vivo ‘use it or lose it’ gene complementation assay, the authors demonstrate that proper sequential expression of OspC followed by VlsE indeed matters. A previously suggested general functional redundancy between these and other lipoproteins is shown to be limited and dependent on an immunodeficient experimental setting that is arguably of diminished ecological relevance. These data reinforce the notion that OspC plays a unique role during initial infection while the antigenically variant VlsE proteins allow for persistence in the mammalian host.  相似文献   

16.
Abstract The expression of outer surface protein C (OspC) was determined for North American Borrelia burgdorferi isolates HB19, DN127c19-2, 25015 and both low and high culture passage B31. A monoclonal antibody detected the presence of OspC protein in only two isolates, while polyclonal antiserum identified this protein in all five isolates. The ospC gene was cloned and sequenced for isolates HB19, DN127c19-2 and 25015, and compared with the published ospC sequences of other Lyme disease spirochetes. Bothe the nucleotide and amino acid sequences were found to vary as much among isolates from the same geographic area as between isolates of different species.  相似文献   

17.
Borrelia burgdorferi outer surface protein (Osp) A is preferentially expressed by spirochetes in the Ixodes scapularis gut and facilitates pathogen-vector adherence in vitro. Here we examined B. burgdorferi-tick interactions in vivo by using Abs directed against OspA from each of the three major B. burgdorferi sensu lato genospecies: B. burgdorferi sensu stricto, Borrelia afzelii, and Borrelia garinii. Abs directed against B. burgdorferi sensu stricto (isolate N40) destroy the spirochete and can protect mice from infection. In contrast, antisera raised against OspA from B. afzelii (isolate ACA-1) and B. garinii (isolate ZQ-1) bind to B. burgdorferi N40 but are not borreliacidal against the N40 isolate. Our present studies assess whether these selected OspA Abs interfere with B. burgdorferi-tick attachment in a murine model of Lyme disease with I. scapularis. We examined engorged ticks that had fed on B. burgdorferi N40-infected scid mice previously treated with OspA (N40, ACA-1, ZQ-1, or mAb C3.78) or control Abs. OspA-N40 antisera or mAb C3.78 destroyed B. burgdorferi N40 within the engorged ticks. In contrast, treatment of mice with OspA-ACA-1 and OspA-ZQ-1 antisera did not kill B. burgdorferi N40 within the ticks but did effectively interfere with B. burgdorferi-I. scapularis adherence, thereby preventing efficient colonization of the vector. These studies show that nonborreliacidal OspA Abs can inhibit B. burgdorferi attachment to the tick gut, highlighting the importance of OspA in spirochete-arthropod interactions in vivo.  相似文献   

18.
The Lyme disease spirochete, Borrelia burgdorferi, produces two outer surface lipoproteins, OspA and OspB, that are essential for colonization of tick vectors. Both proteins are highly expressed during transmission from infected mammals to feeding ticks and during colonization of tick midguts, but are repressed when bacteria are transmitted from ticks to mammals. Humans and other infected mammals generally do not produce antibodies against either protein, although some Lyme disease patients do seroconvert and produce antibodies against OspA for unknown reasons. We hypothesized that, if such patients had been fed upon by additional ticks, bacteria moving from the patients' bodies to the feeding ticks would have produced OspA and OspB proteins, which then led to immune system recognition and antibody production. This hypothesis was tested by analyzing immune responses of infected mice following feedings by additional Ixodes scapularis ticks. However, results of the present studies demonstrate that expression of OspA and OspB by B. burgdorferi during transmission from infected mammals to feeding ticks does not trigger seroconversion.  相似文献   

19.
The Lyme disease vaccine is based on the outer-surface lipoprotein (OspA) of the pathogen Borrelia burgdorferi, and 95% of vaccine recipients develop substantial titers of antibodies against OspA. Here, we identified seven individuals with very low antibody titers after vaccination (low responders). The macrophages of low responders produced less tumor necrosis factor-alpha and interleukin-6 after OspA stimulation and had lower cell-surface expression of Toll-like receptor (TLR) 1 as compared to normal cells, but normal expression of TLR2. TLRs activate innate responses to pathogens, and TLR2 recognizes lipoproteins and peptidoglycan (PGN). After OspA immunization, mice genetically deficient in either TLR2 (TLR2(-/-)) or TLR1 (TLR1(-/-)) produced low titers of antibodies against OspA. Notably, macrophages from TLR2(-/-) mice were unresponsive to OspA and PGN, whereas those from TLR1(-/-) mice responded normally to PGN but not to OspA. These data indicate that TLR1 and TLR2 are required for lipoprotein recognition and that defects in the TLR1/2 signaling pathway may account for human hyporesponsiveness to OspA vaccination.  相似文献   

20.
To further characterize the function of the Borrelia burgdorferi C-terminal protease CtpA, we used site-directed mutagenesis to alter the putative CtpA cleavage site of one of its known substrates, the outer membrane (OM) porin P13. These mutations resulted in only partial blockage of P13 processing. Ectopic expression of a C-terminally truncated P13 in B. burgdorferi indicated that the C-terminal peptide functions as a safeguard against misfolding or mislocalization prior to its proteolytic removal by CtpA. In a parallel study of Borrelia burgdorferi lipoprotein sorting mechanisms, we observed a lower-molecular-weight variant of surface lipoprotein OspC that was particularly prominent with OspC mutants that mislocalized to the periplasm or contained C-terminal epitope tags. Further investigation revealed that the variant resulted from C-terminal proteolysis by CtpA. Together, these findings indicate that CtpA rather promiscuously targets polypeptides that lack structurally constrained C termini, as proteolysis appears to occur independently of a specific peptide recognition sequence. Low-level processing of surface lipoproteins such as OspC suggests the presence of a CtpA-dependent quality control mechanism that may sense proper translocation of integral outer membrane proteins and surface lipoproteins by detecting the release of C-terminal peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号