首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cell adhesion molecules (CAMs) provide identifying cues by which neural architecture is sculpted. The Down Syndrome Cell Adhesion Molecule (DSCAM) is required for many neurodevelopmental processes in different species and also has several potential mechanisms of activity, including homophilic adhesion, homophilic repulsion and heterophilic interactions. In the mouse retina, Dscam is expressed in many, but not all neuronal subtypes. Mutations in Dscam cause the fasciculation of dendrites of neighboring homotypic neurons, indicating a role in self-avoidance among cells of a given type, a disruption of the non-random patterning of their cell bodies, and a decrease in developmental cell death in affected cell populations. In order to address how DSCAM facilitates retinal pattering, we developed a conditional allele of Dscam to use alongside existing Dscam mutant mouse strains. Conditional deletion of Dscam reproduces cell spacing, cell number and dendrite arborization defects. Inducible deletion of Dscam and retinal ganglion cell depletion in Brn3b mutant retinas both indicate that these DSCAM-mediated phenotypes can occur independently. In chimeric retinas, in which wild type and Dscam mutant cells are comingled, Dscam mutant cells entangle adjacent wild type cells of the same type, as if both cells were lacking Dscam, consistent with DSCAM-dependent cell spacing and neurite arborization being mediated through homophilic binding cell-to-cell. Deletion of Dscam in specific cell types causes cell-type-autonomous cell body spacing defects, indicating that DSCAM mediates arborization and spacing by acting within given cell types. We also examine the cell autonomy of DSCAM in laminar stratification and find that laminar disorganization can be caused in a non-cell autonomous fashion. Finally, we find Dscam dosage-dependent defects in developmental cell death and amacrine cell spacing, relevant to the increased cell death and other disorders observed in Down syndrome mouse models and human patients, in which Dscam is present in three copies.  相似文献   

2.
The Down syndrome cell adhesion molecule (DSCAM) is a member of the immunoglobulin superfamily that maps to a Down syndrome region of chromosome 21q22.2-22.3. In Drosophila, Dscam functions as an axon guidance receptor regulating targeting and branching. Genetic and biochemical studies have shown that in Drosophila, Dscam activates Pak1 via the Dock adaptor molecule. The extracellular domain of human DSCAM is highly homologous to the Drosophila protein; however, the intracellular domains of both human and Drosophila DSCAM share no obvious sequence identity. To study the signaling mechanisms of human DSCAM, we investigated the interaction between DSCAM and potential downstream molecules. We found that DSCAM directly binds to Pak1 and stimulates Pak1 phosphorylation and activity, unlike Drosophila where an adaptor protein Dock mediates the interaction between Dscam and Pak1. We also observed that DSCAM activates both JNK and p38 MAP kinases. Furthermore, expression of the cytoplasmic domain of DSCAM induces a morphological change in cultured cells that is JNK-dependent. These observations suggest that human DSCAM also signals through Pak1 and may function in axon guidance similar to the Drosophila Dscam.  相似文献   

3.
DSCAM, a conserved gene involved in neuronal differentiation, is a member of the Ig superfamily of cell adhesion molecules. Herein, we report the functional characterization of a human DSCAM (Down syndrome cell adhesion molecule) paralogue, DSCAML1, located on chromosome 11q23. The deduced DSCAML1 protein contains 10 Ig domains, six fibronectin-III domains, and an intracellular domain, all of which are structurally identical to DSCAM. When compared to DSCAM, DSCAML1 protein showed 64% identity to the extracellular domain and 45% identity to the cytoplasmic domain. In the mouse brain, DSCAML1 is predominantly expressed in Purkinje cells of the cerebellum, granule cells of the dentate gyrus, and in neurons of the cerebral cortex and olfactory bulb. Biochemical and immunofluorescence analyses indicated that DSCAML1 is a cell surface molecule that targets axonal features in differentiated PC12 cells. DSCAML1 exhibits homophilic binding activity that does not require divalent cations. Based on its structural and functional properties and similarities to DSCAM, we suggest that DSCAML1 may be involved in formation and maintenance of neural networks. The chromosomal locus for DSCAML1 makes it an ideal candidate for neuronal disorders (such as Gilles de la Tourette and Jacobsen syndromes) that have been mapped on 11q23.  相似文献   

4.
Down Syndrome Cell Adhesion molecule (DSCAM) is a member of the immunoglobulin superfamily, and represents a novel class of neuronal cell adhesion molecules. In order to understand the cellular functions of DSCAM, we isolated full-length mouse and human cDNA clones, and analysed its expression during mouse development and differentiation. Sequence analysis of the human DSCAM cDNA predicted at least 33 exons that are distributed over 840 kb. When compared to human DSCAM, the mouse homologue showed 90 and 98% identity at the nucleotide and amino acid levels, respectively. In mouse, DSCAM is located on 16C, the syntenic region for human chromosome band 21q22 and also the region duplicated in mouse DS models. DSCAM gene is predicted to encode an approximately 220-kDa protein, and its expression shows dynamic changes that correlate with neuronal differentiation during mouse development. Our results suggest that DSCAM may play critical roles in the formation and maintenance of specific neuronal networks in brain.  相似文献   

5.
Drosophila Down syndrome cell adhesion molecule (Dscam) potentially produces more than 150,000 cell adhesion molecules that share two alternative transmembrane/juxtamembrane (TM) domains, which dictate the dendrite versus axon subcellular distribution and function of different Dscam isoforms. Vertebrate genomes contain two closely related genes, DSCAM and DSCAM-Like1 (DSCAML1), which do not have extensive alternative splicing. We investigated the functional conservation between invertebrate Dscams and vertebrate DSCAMs by cross-species rescue assays and found that human DSCAM and DSCAML1 partially, but substantially, rescued the larval lethality of Drosophila Dscam mutants. Interestingly, both human DSCAM and DSCAML1 were targeted to the dendrites in Drosophila neurons, had synergistic rescue effects with Drosophila Dscam[TM2], and preferentially rescued the dendrite defects of Drosophila Dscam mutant neurons. Therefore, human DSCAM and DSCAML1 are functionally conserved with Drosophila Dscam[TM1] isoforms.  相似文献   

6.
Mental retardation represents the more invalidating pathological aspect of Down syndrome, DS, and has a hard impact in public health. Modifications in DS brain, concerning abnormal size, neuronal differentiation, and cell density, cause changes in the neurophysiology and behavior of DS patients, and could be determined by dosage imbalance of genes localized in the DS critical region, DCR. Among these genes, C21orf5 showed high homology with Caenorhabditis elegans Pad1 involved in cellular differentiation and patterning. To shed light on C21orf5 role in DS, we performed molecular characterization of human and mouse orthologs, their spatio-temporal expression during development and in adult, and overexpression in DS and transgenic mice. C21orf5 was widely expressed early in embryogenesis in the nervous system. Later, its expression became differential and increased in mesencephalon and rhomboencephalon. This developmental expression profile evolves selectively in adult brain with higher signals in hippocampus, cerebellum, perirhinal, and entorhinal cortex, compared to the other cortical regions. Cellular specificity was detected in hippocampus with higher C21orf5 mRNA level in CA3 cells. Our findings appoint C21orf5 as candidate gene for mental retardation: Its overexpression in DS cells may contribute to gene imbalance in DS.Its specific expression in normal and its mirroring pattern in transgenic mice correspond to abnormal regions in DS patients and to neurological phenotype of transgenic mice. Altered cortical lamination in transgenic mice and the Pad1 ortholog function suggest a potential role of C21orf5 in cell differentiation. Its patterned differential expression in the medial temporal-lobe system, including hippocampal formation and perirhinal cortex involved in memory storage, and learning and memory defects in the transgenic mice suggest a specialized role for C21orf5 in cognitive processes. These evidences suggest that C21orf5 is an attractive candidate gene contributing to neurological alterations responsible for mental retardation in DS patients.  相似文献   

7.
The Down syndrome cell adhesion molecule (Dscam) is a protein overexpressed in the brains of Down syndrome patients and implicated in mental retardation. Dscam is involved in axon guidance and branching in Drosophila, but cellular roles in vertebrates have yet to be elucidated. To understand its role in vertebrate development, we cloned the zebrafish homolog of Dscam and showed that it shares high amino acid identity and structure with the mammalian homologs. Zebrafish dscam is highly expressed in developing neurons, similar to what has been described in Drosophila and mouse. When dscam expression is diminished by morpholino injection, embryos display few neurons and their axons do not enter stereotyped pathways. Zebrafish dscam is also present at early embryonic stages including blastulation and gastrulation. Its loss results in early morphogenetic defects. dscam knockdown results in impaired cell movement during epiboly as well as in subsequent stages. We propose that migrating cells utilize dscam to remodel the developing embryo.  相似文献   

8.
Summary. Background: Down syndrome (DS, trisomy 21) is the most common genetic cause of mental retardation. A large series of biochemical defects have been observed in fetal and adult DS brain that help in unraveling the molecular mechanisms underlying mental retardation. Aims: As sialylation of glycoconjugates plays an important role in brain development, this study aimed to look at the sialic acid metabolism by measuring sialic acid synthase (SAS; N-acetylneuraminate synthase) in early second trimester fetal control and DS brain. Results: In this regard, protein profiling was performed by two-dimensional gel electrophoresis coupled to matrix-assisted laser desorption/ionization mass-spectrometry followed by database search and subsequent quantification of spot using specific software. SAS, the enzyme catalyzing synthesis of N-acetyl-neuraminic acid (syn: sialic acid) was represented as a single spot and found to be significantly and manifold reduced (P < 0.01) in cortex of fetuses with DS (control vs. DS, 0.052 ± 0.025 vs. 0.012 ± 0.006). Conclusion: The intriguing finding of the manifold decrease of SAS in DS fetal cerebral cortex as early as in the second trimester of pregnancy may help to explain the brain deficit observed in DS. Decreased SAS may well lead to altered sialic acid metabolism, required for brain development and, more specifically, for sialylation of key brain proteins, including neuronal cell adhesion molecule and myelin associated glycoprotein.  相似文献   

9.
10.
Schmucker D  Clemens JC  Shu H  Worby CA  Xiao J  Muda M  Dixon JE  Zipursky SL 《Cell》2000,101(6):671-684
A Drosophila homolog of human Down syndrome cell adhesion molecule (DSCAM), an immunoglobulin superfamily member, was isolated by its affinity to Dock, an SH3/SH2 adaptor protein required for axon guidance. Dscam binds directly to both Dock's SH2 and SH3 domains. Genetic studies revealed that Dscam, Dock and Pak, a serine/threonine kinase, act together to direct pathfinding of Bolwig's nerve, containing a subclass of sensory axons, to an intermediate target in the embryo. Dscam also is required for the formation of axon pathways in the embryonic central nervous system. cDNA and genomic analyses reveal the existence of multiple forms of Dscam with a conserved architecture containing variable Ig and transmembrane domains. Alternative splicing can potentially generate more than 38,000 Dscam isoforms. This molecular diversity may contribute to the specificity of neuronal connectivity.  相似文献   

11.
Recent studies have uncovered the molecular basis of self-avoidance and tiling, two fundamental principles required for the formation of neural circuits. Both of these wiring strategies are established through homophilic repulsion between Dscam proteins expressed on opposing cell surfaces. In Drosophila, Dscam1 mediates self-avoidance, whereas Dscam2 mediates tiling. By contrast, phenotypes in the retina of the DSCAM mutant mouse indicate that DSCAM functions in both self-avoidance and tiling. These findings suggest that homophilic recognition molecules that have classically been defined as adhesive may also function as repulsive cues and that Dscam proteins specialize in this function.  相似文献   

12.
Central nervous system (CNS) development involves neural patterning, neuronal and axonal migrations, and synapse formation. DSCAM, a chromosome 21 axon guidance molecule, is expressed by CNS neurons during development and throughout adult life. We now report that DSCAM and its chromosome 11 paralog DSCAML1 exhibit inverse ventral-dorsal expression patterns in the developing spinal cord and distinct, partly inverse, expression patterns in the developing cortex, beginning in the Cajal-Retzius cells. In the adult cortex, DSCAM predominates in layer 3/5 pyramidal cells and DSCAML1 predominates in layer 2 granule cells. In the cerebellum, DSCAM is stronger in the Purkinje cells and DSCAML1 in the granule cells. Finally, we find that the predicted DSCAML1 protein contains 60 additional N-terminal amino acids which may contribute to its distinct expression pattern and putative function. We propose that the DSCAMs comprise novel elements of the pathways mediating dorsal-ventral patterning and cell-fate specification in the developing CNS.  相似文献   

13.
14.
myo-Inositol is elevated in the Down syndrome (DS; trisomy 21) brain and may play a role in mental retardation. In the present study, we examined brain regions and peripheral tissues of Ts65Dn mouse, a recently characterized genetic model of DS, for abnormal myo-inositol accumulation. A GC/MS technique was used to quantitate myo-inositol and other polyol species (ribitol, arabitol, xylitol, and 1,5-anhydrosorbitol) in tissues from the Ts65Dn mice and control diploid mice. myo-Inositol was found to be elevated in frontal cortex, hippocampus, and brain stem but not in cerebellum of the Ts65Dn mouse. Among peripheral organs examined, liver and skeletal muscle were found to excessively accumulate myo-inositol. In all tissues, concentrations of polyol internal controls were normal. The Ts65Dn mouse is useful to study the possible effect of elevated myo-inositol on cellular processes.  相似文献   

15.
The differential adhesion hypothesis of development states that patterning of organisms, organs and tissues is mediated in large part by expression of cell adhesion molecules. The cues provided by cell adhesion molecules are also hypothesized to facilitate specific connectivity within the nervous system. In this study we characterize a novel mouse mutation in the gene Dscam (Down Syndrome Cell Adhesion Molecule). Vertebrate DSCAM is required for normal development of the central nervous system and has been best characterized in the visual system. In the visual system DSCAM is required for regulation of cell number, mosaic formation, laminar specificity, and refinement of retinal-tectal projections. We have identified a novel mutation in Dscam that results in a single amino acid substitution, R1018P, in the extracellular domain of the DSCAM protein. Mice homozygous for the R1018P mutation develop a subset of defects observed in Dscam null mice. In vitro analysis identified defects in DSCAMR1018P localization to filopodia. We also find that wild type DSCAM protein is constitutively cleaved and shed from transfected cells. This secretion is inhibited by the R1018P mutation. We also characterized a novel splice isoform of Dscam and identified defects in lamination of type 2 and type 6 cone bipolar cells in Dscam mutant mice. The identification and characterization of partial loss of function mutations in genes such as Dscam will be helpful in predicting signs and symptoms that may be observed in human patients with partial loss of DSCAM function.  相似文献   

16.
We previously reported that sorting nexin 3 (SNX3), a protein belonging to the sorting nexin family, regulates neurite outgrowth in mouse N1E-115 neuroblastoma cells. The snx3 gene is disrupted in patients with microcephaly, microphthalmia, ectrodactyly, and prognathism (MMEP) and mental retardation, demonstrating that SNX3 plays an important role in the genesis of these organs during development. The present study was designed to determine the expression pattern of snx3 mRNA, particularly in the mouse central nervous system (CNS), from the embryonic stage to adulthood. Whole mount in situ hybridization of embryonic day (E) 9.5 and 10.5 mouse embryos revealed strong positive signals for snx3 mRNA in the forebrain, pharyngeal arches, eyes, and limb buds. In situ hybridization analyses of embryonic and neonatal brain sections revealed that snx3 mRNA is mainly expressed in the cerebral cortex, hippocampus, piriform cortex, cerebellum, and spinal cord. In adulthood, the expression of snx3 mRNA is observed in the cerebral cortex, hippocampus, piriform cortex, and cerebellar neurons. Thus, snx3 mRNA is expressed during neural development and in adult neural tissues, suggesting that SNX3 may play an important role in the development and function of the CNS.  相似文献   

17.
APC2 (previously known as APCL), a molecule closely related to the adenomatous polyposis coli (APC) tumor suppressor, can deplete cytoplasmic beta-catenin, like APC itself. Recently, it has been shown that APC2 may regulate the localization of p53 and the microtubule stability and/or extension. Although it has been reported that APC2 mRNA is expressed in human brain, the anatomical and ontogenic expression patterns remain unclear. The purpose of this study was to investigate the distribution of mouse Apc2 during mouse development. In the adult brain, Apc2 is expressed predominantly in neurons and throughout the brain. Northern blot analysis demonstrated a high level of Apc2 expression in embryonic and early postnatal brain. Ontogenic analysis has indicated that Apc2 is expressed in neural tissue, including the peripheral nervous system. During development of cortex, retina and cerebellum, Apc2 is expressed in post-mitotic cells. These findings suggest that Apc2 may contribute to the development of neuronal cells.  相似文献   

18.
Reduction of actin-related protein complex 2/3 in fetal Down syndrome brain   总被引:5,自引:0,他引:5  
Down syndrome (DS) patients present with morphological abnormalities in brain development, leading to mental retardation. Given the importance of actin cytoskeleton to form the basis of various cell functions, the regulation of actin system is crucial during brain development. We therefore aimed to study the expression levels of actin binding proteins in fetal DS and control cortex. We evaluated the levels of eight actin binding proteins using the proteomic approach of two-dimensional gel electrophoresis with subsequent mass spectroscopical identification of protein spots. In fetal DS brain we found a significant reduction of the actin-related protein complex 2/3 (Arp2/3) 20 kDa subunit and the coronin-like protein p57, which are involved in actin filament cross-linking and nucleation and capping of actin filaments. We conclude that deficient levels of these proteins may, at least partially, be involved in the dysgenesis of the brain in DS.  相似文献   

19.
The JNK family of MAPKs is involved in a large variety of physiological and pathological processes in brain development, such as neural survival, migration, and polarity as well as axon regeneration. However, whether JNK activation is involved in axon guidance remains unknown. Here, we provide evidence indicating the JNK pathway is required for Netrin signaling in the developing nervous system. Netrin-1 increased JNK1, not JNK2 or JNK3, activity in the presence of deleted in colorectal cancer (DCC) or Down syndrome cell adhesion molecule (DSCAM), and expression of both of them further enhanced Netrin-1-induced JNK1 activity in vitro. Inhibition of JNK signaling either by a JNK inhibitor, SP600125, or expression of a dominant negative form of MKK4, a JNK upstream activator, blocked Netrin-1-induced JNK1 activation in HEK293 cells. Netrin-1 increased endogenous JNK activity in primary neurons. Netrin-1-induced JNK activation was inhibited either by the JNK inhibitor or an anti-DCC function-blocking antibody. Combination of the anti-DCC function-blocking antibody with expression of DSCAM shRNA in primary neurons totally abolished Netrin-1-induced JNK activation, whereas knockdown of DSCAM partially inhibited the Netrin-1 effect. In the developing spinal cord, phospho-JNK was strongly expressed in commissural axons before and as they crossed the floor plate, and Netrin-1 stimulation dramatically increased the level of endogenous phospho-JNK in commissural axon growth cones. Inhibition of JNK signaling either by JNK1 RNA interference (RNAi) or the JNK inhibitor suppressed Netrin-1-induced neurite outgrowth and axon attraction. Knockdown of JNK1 in ovo caused defects in spinal cord commissural axon projection and pathfinding. Our study reveals that JNK1 is important in the coordination of DCC and DSCAM in Netrin-mediated attractive signaling.  相似文献   

20.
A decrease in the number and density of neurons is the most common phenotype in the brains of Down syndrome (DS) patients, causing mental retardation. Studies using primary cultured neurons from DS patients or from model mice have suggested that a defect in metabolism of reactive oxygen species, or diminished levels of glutathione, causes mitochondrial and caspase-mediated neuronal apoptosis in vitro. However, it is not well documented whether neuronal apoptosis also occurs in immature DS neurons, owing to the difficulty in isolating or identifying neuronal stem cells in human or mouse fetuses. Here we utilized an in vitro model system for neuronal differentiation, with mouse embryonic stem cells containing human chromosome 21 (TT2F/hChr.21) to examine the effect of an additional hChr.21 on the early phases of neurogenesis. The differentiation profile of TT2F/hChr.21 cells was essentially the same as those of parental TT2F ES cells. In differentiations of both TT2F and TT2F/hChr.21 cells, high level of apoptosis was observed in neuronal stem cells, but the rate of apoptosis in TT2F/hChr.21 cells was significantly higher than that of parental cells. These results suggest that quantitative changes in the level of apoptosis in DS neuronal stem cells may account for the reduction of neuronal number and density in the DS brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号