共查询到20条相似文献,搜索用时 0 毫秒
1.
Regulatory mRNAs elements termed riboswitches respond to elevated concentrations of cellular metabolites by modulating expression of associated genes. Riboswitches attain their high metabolite selectivity by capitalizing on the intrinsic tertiary structures of their sensor domains. Over the years, riboswitch structure and folding have been amongst the most researched topics in the RNA field. Most recently, novel structures of single-ligand and cooperative double-ligand sensors have broadened our knowledge of architectural and molecular recognition principles exploited by riboswitches. The structural information has been complemented by extensive folding studies, which have provided several important clues on the formation of ligand-competent conformations and mechanisms of ligand discrimination. These studies have greatly improved our understanding of molecular events in riboswitch-mediated gene expression control and provided the molecular basis for intervention into riboswitch-controlled genetic circuits. 相似文献
2.
The unicellular green alga Chlamydomonas reinhardtii is a model system for the study of photosynthesis and chloroplast biogenesis. C. reinhardtii has a photosynthesis apparatus similar to that of higher plants and it grows at rapid rate (generation time about 8 h). It is a facultative phototroph, which allows the isolation of mutants unable to perform photosynthesis and its sexual cycle allows a variety of genetic studies. Transformation of the nucleus and chloroplast genomes is easily performed. Gene transformation occurs mainly by homologous recombination in the chloroplast and heterologous recombination in the nucleus. Mutants are precious tools for studies of thylakoid membrane structure, photosynthetic function and assembly. Photosynthesis mutants affected in the biogenesis of a subunit of a protein complex usually lack the entire complex; this pleiotropic effect has been used in the identification of the other subunits, in the attribution of spectroscopic signals and also as a 'genetic cleaning' process which facilitates both protein complex purification, absorption spectroscopy studies or freeze-fracture analysis. The cytochrome b6f complex is not required for the growth of C. reinhardtii, unlike the case of photosynthetic prokaryotes in which the cytochrome complex is also part of the respiratory chain, and can be uniquely studied in Chlamydomonas by genetic approaches. We describe in greater detail the use of Chlamydomonas mutants in the study of this complex. 相似文献
3.
J Rebek 《Journal of molecular recognition : JMR》1992,5(3):83-88
Self-replicating molecules stand at the very boundary of chemistry with biology. This review describes the development of synthetic structures capable of self-replication from studies in molecular recognition. The weak intermolecular forces--hydrogen bonds and aromatic stacking interactions--that characterize interactions of nucleic acid components were designed into synthetic receptors for adenine. Covalent conjugates of these receptors with adenines gave self-complementary structures capable of replication. The new systems feature autocatalysis, sigmoidal product growth and even mutation. General rules for the design of replicating systems are described and these suggest that the evolution of replicating molecules was an inevitable event. 相似文献
4.
5.
6.
Abstract. The structure of chloroplast membrane proteins and their organization into photosynthetically-active multimeric complexes is described. Extensive use has been made of information derived from gene sequencing and other biochemical studies to predict likely protein conformations. These predictions have been assimilated into structural models of the various thylakoid complexes. The enzymatic activities of the complexes have also been described and where possible related to individual polypeptides. 相似文献
7.
R. A. Laskowski N. M. Luscombe M. B. Swindells J. M. Thornton 《Protein science : a publication of the Protein Society》1996,5(12):2438-2452
One of the primary factors determining how proteins interact with other molecules is the size of clefts in the protein's surface. In enzymes, for example, the active site is often characterized by a particularly large and deep cleft, while interactions between the molecules of a protein dimer tend to involve approximately planar surfaces. Here we present an analysis of how cleft volumes in proteins relate to their molecular interactions and functions. Three separate datasets are used, representing enzyme-ligand binding, protein-protein dimerization and antibody-antigen complexes. We find that, in single-chain enzymes, the ligand is bound in the largest cleft in over 83% of the proteins. Usually the largest cleft is considerably larger than the others, suggesting that size is a functional requirement. Thus, in many cases, the likely active sites of an enzyme can be identified using purely geometrical criteria alone. In other cases, where there is no predominantly large cleft, chemical interactions are required for pinpointing the correct location. In antibody-antigen interactions the antibody usually presents a large cleft for antigen binding. In contrast, protein-protein interactions in homodimers are characterized by approximately planar interfaces with several clefts involved. However, the largest cleft in each subunit still tends to be involved. 相似文献
8.
9.
M Soudi M Zamocky C Jakopitsch PG Furtmüller C Obinger 《Chemistry & biodiversity》2012,9(9):1776-1793
Peroxidasins represent the subfamily 2 of the peroxidase-cyclooxygenase superfamily and are closely related to chordata peroxidases (subfamily 1) and peroxinectins (subfamily 3). They are multidomain proteins containing a heme peroxidase domain with high homology to human lactoperoxidase that mediates one- and two-electron oxidation reactions. Additional domains of the secreted and glycosylated metalloproteins are type C-like immunoglobulin domains, typical leucine-rich repeats, as well as a von Willebrand factor C module. These are typical motifs of extracellular proteins that mediate protein-protein interactions. We have reconstructed the phylogeny of this new family of oxidoreductases and show the presence of four invertebrate clades as well as one vertebrate clade that includes also two different human representatives. The variability of domain assembly in the various clades was analyzed, as was the occurrence of relevant catalytic residues in the peroxidase domain based on the knowledge of catalysis of the mammalian homologues. Finally, the few reports on expression, localization, enzymatic activity, and physiological roles in the model organisms Drosophila melanogaster, Caenorhabditis elegans, and Homo sapiens are critically reviewed. Roles attributed to peroxidasins include antimicrobial defense, extracellular matrix formation, and consolidation at various developmental stages. Many research questions need to be solved in future, including detailed biochemical/physical studies and elucidation of the three dimensional structure of a model peroxidasin as well as the relation and interplay of the domains and the in vivo functions in various organisms including man. 相似文献
10.
11.
The crystal structure of the membrane-integrated nitric oxide reductase cNOR from Pseudomonas aeruginosa was determined. The smaller NorC subunit of cNOR is comprised of 1 trans-membrane helix and a hydrophilic domain, where the heme c is located, while the larger NorB subunit consists of 12 trans-membrane helices, which contain heme b and the catalytically active binuclear center (heme b(3) and non-heme Fe(B)). The roles of the 5 well-conserved glutamates in NOR are discussed, based on the recently solved structure. Glu211 and Glu280 appear to play an important role in the catalytic reduction of NO at the binuclear center by functioning as a terminal proton donor, while Glu215 probably contributes to the electro-negative environment of the catalytic center. Glu135, a ligand for Ca(2+) sandwiched between two heme propionates from heme b and b(3), and the nearby Glu138 appears to function as a structural factor in maintaining a protein conformation that is suitable for electron-coupled proton transfer from the periplasmic region to the active site. On the basis of these observations, the possible molecular mechanism for the reduction of NO by cNOR is discussed. This article is part of a Special Issue entitled: Respiratory Oxidases. 相似文献
12.
13.
MCP-1结构与功能的分子基础 总被引:7,自引:0,他引:7
MCP 1 (monocytechemoattractantprotein 1 )是第一个被克隆鉴定的CC家族趋化因子 ,最早的研究起源于Cochran等[1] 报道的小鼠基因JE ,该基因从经血小板衍生因子 (PDGF)刺激的成纤维细胞中克隆 ,编码的蛋白质具有趋化白细胞功能。 1 989年 ,Yoshimura等[2 ]从神经胶质瘤系U 1 0 5MG筛到一cDNA克隆 ,其核苷酸和氨基酸序列与鼠JE同源 ,命名为MCP 1。同年Furutani[3] 和Robinson[4] 亦报道相同的趋化因子 ,分别命名为MCAF(hu manmonocy… 相似文献
14.
Grana are not essential for photosynthesis, yet they are ubiquitous in higher plants and in the recently evolved Charaphyta algae; hence grana role and its need is still an intriguing enigma. This article discusses how the grana provide integrated and multifaceted functional advantages, by facilitating mechanisms that fine-tune the dynamics of the photosynthetic apparatus, with particular implications for photosystem II (PSII). This dynamic flexibility of photosynthetic membranes is advantageous in plants responding to ever-changing environmental conditions, from darkness or limiting light to saturating light and sustained or intermittent high light. The thylakoid dynamics are brought about by structural and organizational changes at the level of the overall height and number of granal stacks per chloroplast, molecular dynamics within the membrane itself, the partition gap between appressed membranes within stacks, the aqueous lumen encased by the continuous thylakoid membrane network, and even the stroma bathing the thylakoids. The structural and organizational changes of grana stacks in turn are driven by physicochemical forces, including entropy, at work in the chloroplast. In response to light, attractive van der Waals interactions and screening of electrostatic repulsion between appressed grana thylakoids across the partition gap and most probably direct protein interactions across the granal lumen (PSII extrinsic proteins OEEp-OEEp, particularly PsbQ-PsbQ) contribute to the integrity of grana stacks. We propose that both the light-induced contraction of the partition gap and the granal lumen elicit maximisation of entropy in the chloroplast stroma, thereby enhancing carbon fixation and chloroplast protein synthesizing capacity. This spatiotemporal dynamic flexibility in the structure and function of active and inactive PSIIs within grana stacks in higher plant chloroplasts is vital for the optimization of photosynthesis under a wide range of environmental and developmental conditions. 相似文献
15.
K von Figura 《Current opinion in cell biology》1991,3(4):642-646
Recent studies have established that in mammalian cells insulin-like growth factor-II can couple the large mannose-6-phosphate receptor to a GTP-binding protein and that the insulin-like growth factor-II-induced activation of the GTP-binding protein is inhibited by mannose-6-phosphate and lysosomal enzymes. In mouse, the gene for the large mannose-6-phosphate receptor is maternally imprinted. 相似文献
16.
Main conclusion
MGDG leads to a dimerization of isolated, monomeric PSII core complexes. SQDG and PG induce a detachment of CP43 from the PSII core, thereby disturbing the intrinsic PSII electron transport. The influence of the four thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure and function of isolated monomeric photosystem (PS) II core complexes was investigated. Incubation with the negatively charged lipids SQDG and PG led to a loss of the long-wavelength 77 K fluorescence emission at 693 nm that is associated with the inner antenna proteins. The neutral galactolipids DGDG and MGDG had no or only minor effects on the fluorescence emission spectra of the PSII core complexes, respectively. Pigment analysis, absorption and 77 K fluorescence excitation spectroscopy showed that incubation with SQDG and PG led to an exposure of chlorophyll molecules to the surrounding medium followed by conversion to pheophytin under acidic conditions. Size-exclusion chromatography and polypeptide analysis corroborated the findings of the spectroscopic measurements and pigment analysis. They showed that the negatively charged lipid SQDG led to a dissociation of the inner antenna protein CP43 and the 27- and 25-kDa apoproteins of the light-harvesting complex II, that were also associated with a part of the PSII core complexes used in the present study. Incubation of PSII core complexes with MGDG, on the other hand, induced an almost complete dimerization of the monomeric PSII. Measurements of the fast PSII fluorescence induction demonstrated that MGDG and DGDG only had a minor influence on the reduction kinetics of plastoquinone QA and the artificial PSII electron acceptor 2,5-dimethyl-p-benzoquinone (DMBQ). SQDG and, to a lesser extent, PG perturbed the intrinsic PSII electron transport significantly. 相似文献17.
A database of 210 Schizosaccharomyces pombe DNA sequences (524,794 bp) was extracted from GenBank (release number 81.0) and examined by a number of methods in order to characterize statistical features of these sequences that might serve as signals or constraints for messenger RNA splicing. The statistical information compiled includes splicing signal (donor, acceptor and branch site) profiles, translational initiation start profile, exon/intron length distributions, ORF distribution, CDS size distribution, codon usage table, and 6-tuple distribution. The information content of the various signals are also presented. A rule-based interactive computer program for finding introns called INTRON.PLOT has been developed and was used to successfully analyze 7 newly sequenced genes. 相似文献
18.
19.
The increase in chlorophyll a steady-state fluorescence, induced by high NaCl concentration in Porphyridium cruentum in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, is directly correlated with a significant decrease in thylakoid thickness. It does not appear affected either by alteration of light absorption due to configurational change or by electron transport processes. Oxygen evolution occurs only in intact structures. The interrelationship between membrane structure, oxygen evolution and chlorophyll a steady-state fluorescence is discussed. 相似文献