首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为探讨氮沉降和经营强度对毛竹凋落叶化学计量特征的影响,研究了不同强度模拟氮沉降(低氮: 30 kg N·hm-2·a-1;中氮: 60 kg N·hm-2·a-1;高氮: 90 kg N·hm-2·a-1)对两种经营强度(粗放经营和集约经营)毛竹林凋落叶生态化学计量特征的影响.结果表明: 相比于粗放经营,集约经营使毛竹凋落叶C、N、P含量分别显著提高9.3%、32.4%和22.7%, 而C∶N、C∶P和N∶P分别显著降低17.4%、54.3%和44.6%.粗放经营条件下,低、中氮沉降显著提高了毛竹凋落叶C、N、P含量,但显著降低了C∶N、C∶P和N∶P;高氮沉降显著提高了C、N含量及C∶P、N∶P,但显著降低了P含量.集约经营条件下,低氮沉降显著提高了毛竹凋落叶P含量,降低了C含量及C∶P、N∶P;中氮沉降显著提高了N、P含量,降低了C含量及C∶N、C∶P和N∶P;高氮沉降显著提高了C∶N、C∶P和N∶P,降低了P含量.经营方式和氮沉降的交互作用显著影响了凋落叶除C∶N以外的生态化学计量特征.毛竹凋落叶P与土壤P含量呈显著相关.  相似文献   

2.
Aims The increase in atmospheric nitrogen (N) deposition has accelerated N cycling of ecosystems, probably resulting in increases in phosphorus (P) demand of ecosystems. Studies on the effects of artificial N:P treatment on the growth and carbon (C), N, P ecological stoichiometry of desert steppe species could provide not only a new insight into the forecasting of how the interaction between soils and plants responses to long-term atmospheric N deposition increase, but also a scientific guidance for sustainable management of grassland in northern China under global climate change. Methods Based on a pot-cultured experiment conducted for Glycyrrhiza uralensis (an N-fixing species) during 2013 to 2014, we studied the effects of different N:P supply ratios (all pots were treated with the same amount of N but with different amounts of P) on aboveground biomass, root biomass, root/shoot ratio, and C:N:P ecological stoichiometry both in G. uralensis (leaves and roots) and in soils. Additionally, through the correlation analyses between biomass and C:N:P ecological stoichiometry in leaves, roots, and soils, we compared the differences among the C:N:P ecological stoichiometry of the three pools, and discussed the indication of C:N:P ecological stoichiometry in soils for the growth and nutrient uptake of G. uralensis. Important findings The results showed that, reducing N:P decreased C:P and N:P ratios both in G. uralensis (leaves and roots) and in soils but increased aboveground biomass and root biomass of G. uralensis, indicating that low to moderate P addition increased P availability of soils and P uptake of G. uralensis. However, excessive low N:P (high P addition) led to great decreases in soil C:P and N:P ratios, thus hindering N uptake and the growth of G. uralensis. C:N:P ratios in the two pools of G. uralensis (especially in leaves) had close correlations with soil C:N:P ratio, indicating that the change in soil C:N:P ratio would have a direct influence on plants. Our results suggest that, through regulating C:N:P ratio in leaves and soils, appropriate amounts of P addition could balance soil P supply and plant P demand and compensate the opposite influences of long-term atmospheric N deposition increase on the structure of desert steppe.  相似文献   

3.
为了解同一生活型不同种植物叶片碳(C)、氮(N)、磷(P)生态化学计量学特征随季节变化的响应规律,在生长季不同月份,对阿拉善荒漠区6种主要灌木植物霸王(Zygophyllum xanthoxylum)、白刺(Nitraria tangutorum)、红砂(Reaumuria soongorica)、驼绒藜(Ceratoideslatens)、猫头刺(Oxytropis aciphylla)、沙冬青(Ammopiptanthus mongolicus)的物候期进行了连续的观察,并采集植物叶片,分析了其C、N、P含量及计量比在不同月份的变化.结果显示:1)同一生活型的6种植物的叶片C、N、P及C:N、C:P和N:P在整个生长季内的变化规律不同,且以上各指标季节间的变异系数在6种植物之间也存在差异;2)单个植物种叶片C、N、P含量及其计量比的季节变异分析显示,叶片C、N含量及C:N的季节变异较小,叶片P含量及C:P和N:P的季节变异较大,6种植物叶片C、N含量及C:N由于季节变异所计算的变异系数变化范围分别为0.60%-10.20%、6.09%-20.50%和5.87%-18.78%,6种植物叶片P含量的季节变异所产生的变异系数范围为16.43%-43.43%,叶片C:P和N:P的变异系数范围分别为8.48%-31.95%和11.86%-40.73%;3)综合分析6种植物叶片C、N、P及其计量比各指标在整个生长季节内的变异,变异系数由大到小排序为:P(28.85%)>C:P(25.02%)>N:P(22.18%)>N(14.22%)>C:N(12.48%)>C(4.62%);4)生长季节与植物种类对植物叶片C、N、P及其计量比影响的交叉分析显示,植物叶片C、N含量的变异主要受植物种类影响,植物叶片P含量的变异主要受生长季节影响,植物叶片C:N、C:P和N:P的变异都主要受植物种类影响.  相似文献   

4.
为摸清喀斯特植被退化对群落各组分C、N、P生态化学计量特征及内稳态特征的影响,为喀斯特退化生态系统植被恢复与重建提供科学依据,以桂西北喀斯特地区5种退化程度植被群落为研究对象,测定了不同退化程度植被群落植物叶片、凋落物、土壤和微生物生物量的C、N、P含量,分析其化学计量比特征、相互关系及植物内稳性特征。结果表明:(1)随着退化程度加剧,叶片C、N、P含量、N∶P和凋落物N∶P、微生物量C显著下降,而叶片C∶N、C∶P则显著增加,且植物叶片N∶P<14;随退化程度加剧,凋落物N、P含量、土壤C、N、P含量、微生物量N、P呈先略有增后显著降低的趋势,且不同退化程度群落土壤N∶P和微生物量C∶N无显著差异。(2)叶片N、P含量与土壤N、P含量,叶片C∶P与土壤C∶N、C∶P、N∶P,叶片N∶P与凋落物N、N∶P,叶片C、N、P含量与微生物量C呈显著或极显著正相关关系;叶片C∶N与土壤C、N,叶片C∶P与土壤N、P,叶片N∶P与土壤P呈显著或极显著负相关关系。(3)喀斯特地区植物叶片N、P元素的内稳性指数(H)平均值分别为2.74和2.31,属于弱稳态型,叶片N∶P的H值为5.14,为稳...  相似文献   

5.
《植物生态学报》2017,41(3):325
Aims The increase in atmospheric nitrogen (N) deposition has accelerated N cycling of ecosystems, probably resulting in increases in phosphorus (P) demand of ecosystems. Studies on the effects of artificial N:P treatment on the growth and carbon (C), N, P ecological stoichiometry of desert steppe species could provide not only a new insight into the forecasting of how the interaction between soils and plants responses to long-term atmospheric N deposition increase, but also a scientific guidance for sustainable management of grassland in northern China under global climate change. Methods Based on a pot-cultured experiment conducted for Glycyrrhiza uralensis (an N-fixing species) during 2013 to 2014, we studied the effects of different N:P supply ratios (all pots were treated with the same amount of N but with different amounts of P) on aboveground biomass, root biomass, root/shoot ratio, and C:N:P ecological stoichiometry both in G. uralensis (leaves and roots) and in soils. Additionally, through the correlation analyses between biomass and C:N:P ecological stoichiometry in leaves, roots, and soils, we compared the differences among the C:N:P ecological stoichiometry of the three pools, and discussed the indication of C:N:P ecological stoichiometry in soils for the growth and nutrient uptake of G. uralensis. Important findings The results showed that, reducing N:P decreased C:P and N:P ratios both in G. uralensis (leaves and roots) and in soils but increased aboveground biomass and root biomass of G. uralensis, indicating that low to moderate P addition increased P availability of soils and P uptake of G. uralensis. However, excessive low N:P (high P addition) led to great decreases in soil C:P and N:P ratios, thus hindering N uptake and the growth of G. uralensis. C:N:P ratios in the two pools of G. uralensis (especially in leaves) had close correlations with soil C:N:P ratio, indicating that the change in soil C:N:P ratio would have a direct influence on plants. Our results suggest that, through regulating C:N:P ratio in leaves and soils, appropriate amounts of P addition could balance soil P supply and plant P demand and compensate the opposite influences of long-term atmospheric N deposition increase on the structure of desert steppe.  相似文献   

6.
植物残体是引起土壤、微生物和胞外酶C∶N∶P改变的关键因素,但是其作用机理尚不明确。本研究以青藏高原东缘高寒草甸为对象,通过测定土壤、微生物生物量和胞外酶活性等指标,探究移除地上植物或根系及植物残体添加对土壤、微生物和胞外酶C∶N∶P的影响。结果表明: 与无人为扰动草甸相比,移除地上植物显著降低了土壤C∶N(变幅为-23.7%,下同)、C∶P(-14.7%)、微生物生物生物量C∶P、N∶P,显著提高了微生物生物量C∶N、胞外酶C∶N∶P。与移除地上植物相比,移除地上植物和根系显著降低了土壤C∶N(-11.6%)、C∶P(-24.0%)、N∶P(-23.3%)和微生物生物量C∶N,显著提高了微生物生物量N∶P和胞外酶N∶P;移除地上植物后添加植物残体显著提高了微生物生物量C∶N、C∶P和胞外酶C∶N,显著降低了胞外酶N∶P。与移除地上植物和根系相比,移除地上植物和根系后添加植物残体显著降低了土壤C∶N(-16.4%)、微生物生物量C∶P、N∶P和胞外酶N∶P,显著提高了胞外酶C∶N。综上可知,去除植物显著影响土壤、微生物和胞外酶的C∶N∶P,微生物生物量和胞外酶C∶N∶P对植物残体的响应更为敏感。有无根系是添加植物残体时土壤、微生物和胞外酶的生态化学计量稳定性强弱的关键所在。添加植物残体的措施适用于植物根系尚且完好的草甸,有利于高寒草甸土壤碳固存,对没有根系的草甸土壤可能不适用,会增加土壤CO2排放。  相似文献   

7.
周正虎  王传宽 《植物生态学报》2016,40(12):1257-1266
土壤碳(C)、氮(N)、磷(P)化学计量特征会显著影响微生物的生长、群落结构、生物量C:N:P化学计量及其代谢活动。然而生态系统演替过程中土壤-微生物C:N:P化学计量的时间格局及其协调关系还不明确。为此, 该研究收集了2016年5月以前发表的文献中19个生态系统演替序列(包括13个森林、6个草地生态系统)的土壤-微生物生物量C:N:P研究结果, 整合分析了其中土壤-微生物生态化学计量的时间动态, 结果表明: (1)生态系统演替过程中土壤C:N没有一致的时间格局, 而土壤C:P和N:P均随演替进程显著增加, 其中土壤C:N:P与演替时间之间线性关系的斜率与相应演替序列的初始土壤有机C含量呈负相关关系。(2)演替进程中土壤-微生物生物量C:N:P没有一致的时间格局。(3)微生物生物量C占土壤有机C百分比(qMBC)、微生物生物量N占土壤全N百分比、微生物生物量P占土壤全P百分比均随着演替进程而显著增加, 即单位资源所能支持的微生物生物量随着演替进程而增加, 这与宏观生态系统演替理论相符。(4) qMBC随着土壤C:N、C:P和N:P以及C:N、C:P和N:P化学计量不平衡性(即土壤C:N、C:P和N:P分别除以微生物生物量C:N、C:P和N:P)的增加而减小; 其中, C:N、C:P和N:P化学计量不平衡性解释了qMBC变异性的37%-57%, 是演替时间解释率的7-17倍, 表明土壤-微生物生态化学计量关系对qMBC演替动态有重要影响。该研究强调了生态化学计量学理论和生态系统演替理论在土壤微生物时间动态研究中的重要作用, 表明适当地融合生态学宏观理论于土壤微生物研究可以加深对土壤-微生物生态过程的认识。  相似文献   

8.
《植物生态学报》2016,40(12):1257
AimsThe carbon (C), nitrogen (N) and phosphorus (P) stoichiometry (C:N:P) of soil profoundly influences the growth, community structure, biomass C:N:P stoichiometry, and metabolism in microbes. However, the relationships between soil and microbes in the C:N:P stoichiometry and their temporal dynamics during ecosystem succession are poorly understood. The aim of this study was to determine the temporal patterns of soil and microbial C:N:P stoichiometry and their relationships during ecosystem succession.MethodsAn extensive literature search was conducted and data were compiled for 19 age sequences of successional ecosystems, including 13 forest ecosystems and 6 grassland ecosystems, from 18 studies published up to May 2016. Meta-analyses were performed to examine the sequential changes in 18 variables that were associated with soil and microbial C, N and P contents and the stoichiometry. Important findings (1) There was no consistent temporal pattern in soil C:N along the successional stages, whereas the soil C:P and N:P increased with succession; the slopes of the linear relationships between soil C:N:P stoichiometry and successional age were negatively correlated with the initial content of the soil organic C within given chronosequence. (2) There was no consistent temporal pattern in microbial C:N:P stoichiometry along the successional stages. (3) The fraction of microbial biomass C in soil organic C (qMBC), the fraction of microbial biomass N in soil total N, and the fraction of microbial biomass P in soil total P all increased significantly with succession, in consistency with the theory of succession that ecosystem biomass per unit resource increases with succession. (4) The qMBC decreased with increases in the values of soil C:N, C:P, or N:P, as well as the stoichiometric imbalances in C:N, C:P, and N:P between soil and microbes (i.e., ratios of soil C:N, C:P, and N:P to microbial biomass C:N, C:P, and N:P, respectively). The C:N, C:P, and N:P stoichiometric imbalances explained 37%-57% variations in the qMBC, about 7-17 times more than that explainable by the successional age, illustrating the importance of soil-microbial C:N:P stoichiometry in shaping the successional dynamics in qMBC. In summary, our study highlights the importance of the theories of ecosystem succession and stoichiometry in soil microbial studies, and suggests that appropriately applying macro-ecological theories in microbial studies may improve our understanding on microbial ecological processes.  相似文献   

9.
The rates of mineralization processes influence C sequestration and soil fertility, but despite their importance for ecosystem functioning, C, N and P net mineralization rates are seldom investigated together. Hence, we studied the relationships between net mineralization rates and organic matter stoichiometry in an 8-week incubation experiment with Oi, Oe and Oa horizon material of six beech, one spruce and one pine site. We determined C, N and P net mineralization rates, organic C quality and C:N:P stoichiometry. Net N mineralization only occurred below molar organic matter C:N ratios of 40 (Oi) or 28 (Oa) and N:P ratios of 42 (Oi) or 60 (Oa), and increased with decreasing C:N and N:P ratios. Net P mineralization only occurred below C:P ratios of 1400 (Oi) and N:P ratios of 40 (Oi), and increased with decreasing C:P and N:P ratios. Net N and P mineralization were strongly positively correlated with each other (r = 0.64, p < 0.001), whereas correlations of both net N and net P mineralization with C mineralization were weak. The average C:N:P stoichiometry of net mineralization was 620:4:1 (beech, Oi), 15,350:5:1 (coniferous, Oi), 1520:8:1 (Oe) and 2160:36:1 (Oa). On average, ratios of C:N net mineralization were higher, and ratios of N:P net mineralization lower than organic matter C:N and N:P ratios. This difference contributed to the decrease of C:N ratios and increase of N:P ratios from the Oi to the Oa horizons. In conclusion, the study shows that C, N and P net mineralization rates were closely correlated with the organic matter stoichiometry and that these correlations were modified by the degree of decomposition of the organic matter.  相似文献   

10.
以浙江天童常绿阔叶林、常绿针叶林和落叶阔叶林为对象, 通过对叶片和凋落物C:N:P比率与N、P重吸收的研究, 揭示3种植被类型N、P养分限制和N、P重吸收的内在联系。结果显示: 1)叶片C:N:P在常绿阔叶林为758:18:1, 在常绿针叶林为678:14:1, 在落叶阔叶林为338:11:1; 凋落物C:N:P在常绿阔叶林为777:13:1, 常绿针叶林为691:14:1, 落叶阔叶林为567:14:1; 2)常绿阔叶林和常绿针叶林叶片与凋落物C:N均显著高于落叶阔叶林; 叶片C:P在常绿阔叶林最高, 常绿针叶林中等, 落叶阔叶林最低, 常绿阔叶林和常绿针叶林凋落物C:P显著高于落叶阔叶林; 叶片N:P比也是常绿阔叶林最高、常绿针叶林次之, 落叶阔叶林最低, 但常绿阔叶林凋落物N:P最低; 3)植被叶片N、P含量间(N为x, P为y)的II类线性回归斜率显著大于1 (p < 0.05), 表明叶片P含量的增加可显著提高叶片N含量; 凋落物N、P含量的回归斜率约等于1, 反映了凋落物中单位P含量与单位N含量间的等速损耗关系; 4)常绿阔叶林N重吸收率显著高于常绿针叶林与落叶阔叶林, 落叶阔叶林P重吸收率显著高于常绿阔叶林和常绿针叶林。虽然植被的N:P指示常绿阔叶林受P限制, 落叶阔叶林受N限制, 常绿针叶林受N、P的共同限制, 但是N、P重吸收研究结果表明: 受N素限制的常绿阔叶林具有高的N重吸收率, 受P限制的落叶阔叶林并不具有高的P重吸收率。可见, 较高的N、P养分转移率可能不是植物对N、P养分胁迫的一种重要适应机制, 是物种固有的特征。  相似文献   

11.

Aims

We estimate organic carbon (C): total nitrogen (N): total phosphorus (P) ratios in soils under Australia’s major native vegetation groups.

Methods

We use digital datasets for climate, soils, and vegetation created for the National Land and Water Resources Audit in 2001. Analysis-of-variance is used to investigate differences in nutrient ratios between ecosystems. Linear discriminant analysis and logistic regression are used to investigate the relative importance of climatic variables and soil nutrients in vegetation patterns.

Results

We find that the N:P and C:P ratios have a greater range of values than the C:N ratio, although major vegetation groups tend to show similar trends across all three ratios. Some apparently homeostatic groupings emerge: those with very low, low, medium, or high N:P and C:P. Tussock grasslands have very low soil N, N:P, and C:P, probably due to frequent burning. Eucalypt woodlands have low soil N:P and C:P ratios, although their total P level varies. Rainforests and Melaleuca forests have medium soil N:P and C:P ratios, although their total P level is different. Heathlands, tall open eucalypt forests, and shrublands occur on soils with low levels of total P, and high N:P and C:P ratios that reflect foliar nutrient ratios and recalcitrant litter.

Conclusions

Certain plant communities have typical soil nutrient stoichiometries but there is no single Redfield-like ratio. Vegetation patterns largely reflect soil moisture but for several plant communities, eucalypt communities in particular, soil N and P (or N:P) also play a significant role. Soil N:P and the presence of Proteaceae appear indicative of nutrient constraints in ecosystems.  相似文献   

12.
刘旭艳  胡宇坤 《应用生态学报》2020,31(10):3385-3394
探究大兴安岭典型森林沼泽不同植物叶片和细根生态化学计量特征,能够为进一步认识高纬度气候敏感生态系统养分利用策略和物质循环过程提供依据。对大兴安岭地区兴安落叶松-苔草、兴安落叶松-笃斯越桔-藓类和兴安落叶松-杜香-泥炭藓3种典型森林沼泽19种优势和亚优势维管植物叶片和细根碳氮磷计量特征(C∶N∶P)进行比较,分析不同森林沼泽类型、植物生长型和菌根类型叶片和细根C∶N∶P差异,通过标准化主轴回归分析叶片与细根C∶N∶P的关系。结果表明: 叶片C∶N∶P在种间水平具有最大的变异(42.5%~84.6%),且叶片和细根种间变异大小均为N∶P>C∶N>C∶P。土壤养分和水分含量较高的兴安落叶松-苔草沼泽叶片与细根C∶N和C∶P值较低,且3种森林沼泽植物叶片和细根N∶P均小于10,受N限制。草本植物叶片C∶P和细根C∶N、C∶P显著低于木本植物。外生菌根和杜鹃花类菌根植物叶片和细根C∶N和C∶P高于丛枝菌根和无菌根植物,且杜鹃花类菌根植物叶片和细根C∶P显著高于外生菌根植物。不同森林沼泽、生长型、菌根类型植物叶片和细根C∶N和C∶P差异明显,而N∶P相对稳定。森林沼泽植物叶片与细根C∶N、C∶P和N∶P呈线性正相关,植物地上与地下部分在生态化学计量特征上存在协同。  相似文献   

13.
刘姝萱  安慧  张馨文  杜忠毓  刘小平 《生态学报》2022,42(21):8773-8783
为明确植物、凋落物和土壤养分含量及化学计量比对土壤中添加多种限制性养分的响应,阐明“植物-凋落物-土壤”连续体化学计量动态及各组分之间的协同作用,以宁夏荒漠草原为研究对象,于2018年开始进行氮(N)、磷(P)养分添加控制试验。试验处理包括对照(CK)、N添加、P添加、NP共同添加4个处理。结果表明:(1)NP共同添加显著增加了荒漠草原植物N和P含量、以及凋落物和土壤P含量,显著降低了荒漠草原植物C∶N和C∶P、以及土壤和凋落物C∶P和N∶P。P添加显著增加了荒漠草原植物、凋落物和土壤P含量,显著降低了植物、凋落物、土壤C∶P和N∶P。N添加分别增加了植物、凋落物N含量和N∶P,但对植物N含量影响未达到显著水平。(2)C、N、P含量和N∶P大小均表现为植物>凋落物>土壤,C∶N和C∶P均表现为凋落物>植物。(3)N添加提高了荒漠草原植物对P再吸收效率,降低了荒漠草原植物对N利用效率;P添加提高荒漠草原植物对N再吸收效率,降低荒漠草原对P的利用效率;NP共同添加提高了荒漠草原植物对N和P再吸收效率,降低了荒漠草原植物对N和P利用效率。(4)植物-凋落物-土壤的N、P含量...  相似文献   

14.
许雪贇  秦燕燕  曹建军 《生态学报》2019,39(24):9044-9051
海拔对陆地生物地球化学循环过程具有重要影响。研究植物叶片碳(C)、氮(N)、磷(P)生态化学计量沿海拔的变化特征,有助于深入了解植物对环境的适应策略。通过对青藏高原东北缘不同海拔(2980—3280,3281—3580,4180—4480,4481—4780 m)二裂委陵菜(Potentilla bifurca)叶片C、N、P含量及其计量比的首次研究,对其生态适应性和限制元素进行了初步探讨,结果发现:(1)二裂委陵菜叶片C、N、P平均含量分别为411.58 g/kg、22.47 g/kg和1.35 g/kg;C∶N、C∶P、N∶P的均值分别为18.51、321.81和17.33。(2)随着海拔升高,二裂委陵菜叶片C含量和N∶P呈上升趋势,分别从400.40 g/kg增加到418.08 g/kg、12.73增加到18.81;N、P含量呈先降后增趋势,其最大和最小值分别为23.88 g/kg和20.48 g/kg、1.89 g/kg和1.12 g/kg;C∶N、C∶P呈先增后降趋势,分别从20.42减少到17.79、372.18减少到334.72。(3)二裂委陵菜叶片C与N、C∶N不相关,与P显著负相关,而与C∶P、N∶P显著正相关;N与N∶P不相关,与P显著正相关,而与C∶N、C∶P显著负相关;P与C∶N、C∶P、N∶P显著负相关;C∶N与C∶P显著正相关,与N∶P不相关;C∶P与N∶P显著正相关。(4)二裂委陵菜生长主要受P限制。  相似文献   

15.
Inspired by previous studies that have indicated consistent or even well-constrained (relatively low variability) relations among carbon (C), nitrogen (N) and phosphorus (P) in soils, we have endeavored to explore general soil C:N:P ratios in China on a national scale, as well as the changing patterns of these ratios with soil depth, developmental stages and climate; we also attempted to determine if well-constrained C:N:P stoichiometrical ratios exist in China’s soil. Based on an inventory data set of 2,384 soil profiles, our analysis indicated that the mean C:N, C:P and N:P ratios for the entire soil depth (as deep as 250 cm for some soil profiles) in China were 11.9, 61 and 5.2, respectively, showing a C:N:P ratio of ~60:5:1. C:N ratios showed relatively small variation among different climatic zones, soil orders, soil depth and weathering stages, while C:P and N:P ratios showed a high spatial heterogeneity and large variations in different climatic zones, soil orders, soil depth and weathering stages. No well-constrained C:N:P ratios were found for the entire soil depth in China. However, for the 0–10 cm organic-rich soil, which has the most active organism–environment interaction, we found a well-constrained C:N ratio (14.4, molar ratio) and relatively consistent C:P (136) and N:P (9.3) ratios, with a general C:N:P ratio of 134:9:1. Finally, we suggested that soil C:N, C:P and N:P ratios in organic-rich topsoil could be a good indicator of soil nutrient status during soil development.  相似文献   

16.
以北京九龙山自然保护区幼龄侧柏人工林为研究对象,对其不同生长季节叶、枝、根(0—10 cm、10—20 cm土层)的碳(C)、氮(N)、磷(P)含量及其生态化学计量学特征进行了分析,深入探讨了生长季节与器官以及两因素交互作用对以上特征的影响,研究有助于理解植物各性状之间的相互作用以及植物生长过程中资源的利用和分配状况。结果表明:1)不同器官间C含量为414.97—461.58 g/kg,枝最大,根(0—10 cm)最小;N含量为6.57—14.28 g/kg,叶最大,枝最小;P含量为0.39—1.28 g/kg,叶最大,根(10—20 cm)最小;C∶N为31.76—70.98,枝最大,叶最小;C∶P为369.93—1099.20,根(10—20 cm)最大,叶最小;N∶P为9.21—23.81,根(0—10 cm)最大,枝最小。整个生长季节中侧柏各器官C含量最稳定,变异系数均小于7%;P含量变异性最大,变异系数均超过15%,N含量变异性介于两者之间;各器官中C∶N和N∶P较C∶P更为稳定,C、N与P具有较好的耦合协同性,C∶P和N∶P的变化主要取决于P的变化。2)器官对C、N、P含量及其化学计量关系均存在显著影响,生长季节对N和P含量存在显著影响,两者交互作用只对P含量存在显著影响,器官对侧柏C、N、P含量及其化学计量变异的贡献大于生长季节。3)侧柏各器官间C、N、P含量及其化学计量比相关性多数未达到显著性水平,仅有叶与枝中的P及C∶P显著相关,说明侧柏器官分化过程中各器官对元素的吸收利用具有特异性。侧柏叶片N∶P14,说明生长季节里幼龄侧柏人工林更多受到N限制。  相似文献   

17.
研究西南喀斯特峰丛洼地人工林、次生林、原生林3个不同森林类型的6个代表性植物群落C、N、P化学计量特征及其与土壤的关系.结果表明: 不同森林类型植物和土壤C、N、P含量均存在显著差异.土壤C和N含量均为次生林最高,人工林最低,土壤P含量为人工林最高,原生林最低;植物C和P含量变化趋势为人工林>原生林>次生林,植物N含量为次生林最高,原生林最低.土壤C∶P、N∶P以及植物C∶P均为原生林显著高于次生林和人工林,土壤C∶N在不同森林类型间差异不显著;植物N∶P为次生林最高,人工林最低,植物C∶N为原生林>人工林>次生林.在不同森林类型中,乔木叶片N含量与P含量、C∶N与C∶P以及C∶P与N∶P之间均呈显著线性正相关,除了植物叶片C∶N与N∶P以及土壤C∶N与N∶P之间呈显著线性负相关外,植物和土壤的C、N、P、C∶P均无显著相关性,说明土壤C、N、P供应量对乔木叶片C、N、P含量影响不大.  相似文献   

18.
为了评价不同森林类型的生态化学计量特征的差异, 以吉林长白山温带针阔混交林、广东鼎湖山亚热带常绿阔叶林、云南西双版纳热带季雨林和江西千烟洲亚热带人工针叶林为研究对象, 通过对2007年4月-2008年5月4种典型区域森林植物叶片和凋落物的碳(C)氮(N)磷(P)元素质量比与N、P再吸收率的分析, 探讨了4种森林类型N、P养分限制和N、P养分再吸收的内在联系。结果表明: 1)从森林类型上看, 温带针阔混交林叶片的C : N : P为321 : 13 : 1, 亚热带常绿阔叶林叶片的C : N : P为561 : 22 : 1, 热带季雨林叶片的C : N : P为442 : 19 : 1, 亚热带人工针叶林叶片的C : N : P为728 : 18 : 1; 凋落物的C : N : P也是亚热带人工林最高, 达1 950 : 27 : 1, 温带针阔混交林的最低, 为552 : 14 : 1, 热带季雨林的为723 : 24 : 1, 亚热带常绿阔叶林的为1 305 : 35 : 1, 不同森林类型凋落物的C : N : P的计量大小关系与叶片的结果一致; 2)从植物生活型上看, 常绿针叶林叶片的C : N均显著高于常绿阔叶林及落叶阔叶林; 叶片C : P与森林类型的关系并不十分密切; 常绿阔叶林叶片的N : P最高, 常绿针叶林次之, 落叶阔叶林最低; 3)植物叶片的N : P与月平均气温有显著的负相关关系, 但叶片的C : P基本不受月平均气温影响, 叶片的C、N、P计量比与降水的线性关系不显著; 4)高纬度地区的植物更易受N元素限制, 而低纬度地区植物更易受P元素的限制; 但受N或P限制的植物并不一定具有高的N或P再吸收率。研究结果表明, 不同类型森林的叶片与凋落物的化学计量特征具有一致性, 但是环境因子对不同类型植物化学计量比的影响并不相同。  相似文献   

19.
Nitrogen (N) and phosphorus (P) concentrations and N: P ratios between leaves and roots of Nitraria tangutorum along aridity gradients were studied. N. tangutorum was relatively limited by N in April (mean leaf N: P ratio = 11.13) and by P in August (mean leaf N: P ratio = 38.78). N and P in both leaves and roots were highly correlated across sampling sites. In April both leaf and root N and P concentrations increased along aridity gradients. Mean leaf N: P ratios changed slightly, but mean root N: P ratios increased with increasing aridity gradients. We suggest that leaf N: P ratios can indicate nutrient status at different plant growth stages, and root N: P ratios can signify if the amount of soil nutrients is insufficient.  相似文献   

20.
Determinants of seston C : P-ratio in lakes   总被引:1,自引:0,他引:1  
1. The ratio of carbon to phosphorus (C : P) in seston is a major determinant of energy transfer in aquatic food webs and may vary more than an order of magnitude owing to various extrinsic and intrinsic factors. In this study, the determinants of C : P‐ratios in lake particulate matter (seston) was assessed in 112 Norwegian lakes, covering a C : P (atomic ratio) from 24 to 1842 (mean 250). 2. No overall effects of lake area, season or latitude on C : P was detected. Particulate P, but not particulate C, correlated with C : P. Multivariate analysis including a range of lake properties revealed total dissolved P, as the major determinant of sestonic C : P, with the fraction of detritus in total seston, chlorophyll or Secchi depth and lake colour as significant contributors. Together these parameters explained 30% of observed variance if using dissolved P and 81% if using total P as input variable to the multivariate model. 3. Chlorophyll and Secchi depth were highly correlated and substitutable in the analysis. Phytoplankton community composition did not affect seston C : P, probably reflecting the fact that live phytoplankton generally contributed <25% of the seston pool. 4. Total P correlated positively with C : P and is the key determinant of phytoplankton biomass and thus Secchi depth; the latter parameters contributed negatively to seston C : P, probably owing to increased light attenuation. These lake data thus support the light : nutrient ratio hypothesis, i.e. that high light and low P cause skewed uptake ratios of C to P. 5. Zooplankton biomass in general and Daphnia biomass in particular, was negatively correlated with C : P, probably reflecting a negative impact of poor seston quality at high C : P. Zooplankton grazing and nutrient recycling may also have contributed to a negative correlation between zooplankton biomass and sestonic C : P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号