首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low density lipoprotein receptor (LDLR)-deficient mice fed a chow diet have a mild hypercholesterolemia caused by the abnormal accumulation in the plasma of apolipoprotein B (apoB)-100- and apoB-48-carrying intermediate density lipoproteins (IDL) and low density lipoproteins (LDL). Treatment of LDLR-deficient mice with ciprofibrate caused a marked decrease in plasma apoB-48-carrying IDL and LDL but at the same time caused a large accumulation of triglyceride-depleted apoB-100-carrying IDL and LDL, resulting in a significant increase in plasma cholesterol levels. These plasma lipoprotein changes were associated with an increase in the hepatic secretion of apoB-100-carrying very low density lipoproteins (VLDL) and a decrease in the secretion of apoB-48-carrying VLDL, accompanied by a significant decrease in hepatic apoB mRNA editing. Hepatic apobec-1 complementation factor mRNA and protein abundance were significantly decreased, whereas apobec-1 mRNA and protein abundance remained unchanged. No changes in apoB mRNA editing occurred in the intestine of the treated animals. After 150 days of treatment with ciprofibrate, consistent with the increased plasma accumulation of apoB-100-carrying IDL and LDL, the LDLR-deficient mice displayed severe atherosclerotic lesions in the aorta. These findings demonstrate that ciprofibrate treatment decreases hepatic apoB mRNA editing and alters the pattern of hepatic lipoprotein secretion toward apoB-100-associated VLDL, changes that in turn lead to increased atherosclerosis.  相似文献   

2.
The purpose of the present study was to test the hypothesis that lecithin:cholesterol acyltransferase (LCAT) deficiency would accelerate atherosclerosis development in low density lipoprotein (LDL) receptor (LDLr-/-) and apoE (apoE-/-) knockout mice. After 16 weeks of atherogenic diet (0.1% cholesterol, 10% calories from palm oil) consumption, LDLr-/- LCAT-/- double knockout mice, compared with LDLr-/- mice, had similar plasma concentrations of free (FC), esterified (EC), and apoB lipoprotein cholesterol, increased plasma concentrations of phospholipid and triglyceride, decreased HDL cholesterol, and 2-fold more aortic FC (142 +/- 28 versus 61 +/- 20 mg/g protein) and EC (102 +/- 27 versus 61+/- 27 mg/g). ApoE-/- LCAT-/- mice fed the atherogenic diet, compared with apoE-/- mice, had higher concentrations of plasma FC, EC, apoB lipoprotein cholesterol, and phospholipid, and significantly more aortic FC (149 +/- 62 versus 109 +/- 33 mg/g) and EC (101 +/- 23 versus 69 +/- 20 mg/g) than did the apoE-/- mice. LCAT deficiency resulted in a 12-fold increase in the ratio of saturated + monounsaturated to polyunsaturated cholesteryl esters in apoB lipoproteins in LDLr-/- mice and a 3-fold increase in the apoE-/- mice compared with their counterparts with active LCAT. We conclude that LCAT deficiency in LDLr-/- and apoE-/- mice fed an atherogenic diet resulted in increased aortic cholesterol deposition, likely due to a reduction in plasma HDL, an increased saturation of cholesteryl esters in apoB lipoproteins and, in the apoE-/- background, an increased plasma concentration of apoB lipoproteins.  相似文献   

3.
The assembly and secretion of very low density lipoproteins (VLDL) require microsomal triglyceride transfer protein (MTP). Recent evidence also suggests a role for the low density lipoprotein (LDL) receptor in this process. However, the relative importance of MTP in the two steps of VLDL assembly and the specific role of the LDL receptor still remain unclear. To further investigate the role of MTP and the LDL receptor in VLDL assembly, we bred mice harboring "floxed" Mttp alleles (Mttpflox/flox) and a Cre transgene on a low-density lipoprotein receptor-deficient background to generate mice with double deficiency in the liver (Ldlr-/- MttpDelta/Delta). In contrast to the plasma of Ldlr+/+ MttpDelta/Delta mice, the plasma of Ldlr-/- MttpDelta/Delta mice contained apoB100. Accordingly, Ldlr-/- MttpDelta/Delta but not Ldlr+/+ MttpDelta/Delta hepatocytes secreted apoB100-containing lipoprotein particles. The secreted lipoproteins were of LDL and HDL sizes but no VLDL-sized lipoproteins could be detected. These findings indicate that hepatic LDL receptors function as "gatekeepers" targeting dense apoB100-containing lipoproteins for degradation. In addition, these results suggest that very low levels of MTP are insufficient to mediate the second step but sufficient for the first step of VLDL assembly.  相似文献   

4.
5.
In vitro lipolysis of very low density lipoprotein (VLDL) from normolipidemic and familial dysbetalipoproteinemic plasma by purified bovine milk lipoprotein lipase was studied using the combined single vertical spin and vertical autoprofile method of lipoprotein analysis. Lipolysis of normolipidemic plasma supplemented with autologous VLDL resulted in the progressive transformation of VLDL to low density lipoprotein (LDL) via intermediate density lipoprotein (IDL) with the transfer of the excess cholesterol to high density lipoprotein (HDL). At the end of 60 min lipolysis, 92-96% of VLDL triglyceride was hydrolyzed, and, with this process, greater than 95% of the VLDL cholesterol and 125-I-labeled VLDL protein was transferred from the VLDL to the LDL and HDL density region. When VLDL from the plasma of an individual with familial dysbetalipoproteinemia was substituted for VLDL from normolipidemic plasma, less than 50% of the VLDL cholesterol and 65% of 125I-labeled protein was removed from the VLDL density region, although 84-86% of VLDL triglyceride was lipolyzed. Analysis of familial dysbetalipoproteinemic VLDL fractions from pre- and post-lipolyzed plasma showed that the VLDL remaining in the postlipolyzed plasma (lipoprotein lipase-resistant VLDL) was richer in cholesteryl ester and tetramethylurea-insoluble proteins than that from prelipolysis plasma; the major apolipoproteins in the lipoprotein lipase-resistant VLDL were apoB and apoE. During lipolysis of normolipidemic VLDL containing trace amounts of 125I-labeled familial dysbetalipoproteinemic VLDL, removal of VLDL cholesterol was nearly complete from the VLDL density region, while removal of 125I-labeled protein was only partial. A competition study for lipoprotein lipase, comparing normolipidemic and familial dysbetalipoproteinemic VLDL to an artificial substrate ([3H]triolein), revealed that normolipidemic VLDL is clearly better than familial dysbetalipoproteinemic VLDL in competing for the release of 3H-labeled free fatty acids. The results of this study suggest that, in familial dysbetalipoproteinemic individuals, a subpopulation of VLDL rich in cholesteryl ester, apoB, and apoE is resistant to in vitro conversion by lipoprotein lipase to particles having LDL-like density. The presence of this lipoprotein lipase-resistant VLDL in familial dysbetalipoproteinemic subjects likely contributes to the increased level of cholesteryl ester-rich VLDL and IDL in the plasma of these subjects.  相似文献   

6.
Lipoprotein lipase (LPL) is known to play a crucial role in lipoprotein metabolism by hydrolyzing triglycerides; however its role in atherogenesis has yet to be determined. We have previously shown that low density lipoprotein receptor knockout mice overexpressing LPL are resistant to diet-induced atherosclerosis due to the suppression of remnant lipoproteins. Plasma lipoproteins and atherosclerosis of apolipoprotein (apo) E knockout mice which overexpress the human LPL transgene (LPL/APOEKO) were compared with those of control apoE knockout mice (APOEKO). On a normal chow diet, LPL/APOEKO mice showed marked suppression of the plasma triglyceride levels compared with APOEKO mice (54 vs. 182 mg/dl), but no significant changes in plasma cholesterol and apoB levels. Non-high density lipoproteins (HDL) from LPL/APOEKO mice had lower triglyceride content, a smaller size, and a more positive charge compared with those from APOEKO mice. Cholesterol, apoA-I, and apoA-IV were increased in HDL. Although both groups developed hypercholesterolemia to a comparable degree in response to an atherogenic diet, the LPL/APOEKO mice developed 2-fold smaller fatty streak lesions in the aortic sinus compared to the APOEKO mice. In conclusion, overproduction of LPL is protective against atherosclerosis even in the absence of apoE.  相似文献   

7.
In vitro studies have shown that the binding site for microsomal triglyceride transfer protein (MTP) is within the first 17% of apoB (apoB-17). Expression of apoB-48 in McArdle cells decreases endogenous lipoprotein production; however, overexpression of human apoB in transgenic mice does not decrease endogenous mouse apoB expression. To assess this inconsistency, adenoviruses expressing human apoB-17 (AdB17) or apoB-17-beta (which contains apoB-17 plus a small lipid-binding beta-sheet region of apoB, AdB-17beta) were produced. Hepatoma cells were infected with AdB17 or AdB17-beta with AdLacZ, an adenovirus expressing beta-galactosidase, as a control. Overexpression of apoB-17 and apoB-17-beta in hepatoma cells to levels 2- to 3-fold greater than that of endogenous apoB did not alter endogenous apoB production. This was also true in the presence of oleic acid and N-acetyl-leucyl-leucyl-norleucinal. High levels of apoB-17 or beta-galactosidase expression reduced apoB-100 production; however, control protein production was also reduced. To assess the effects of apoB-17 expression in vivo, mice of three different strains were injected with AdB17. Two days after injection, plasma apoB-17 was approximately 24 times the amount of endogenous apoB in the C57BL/6 mice, 2 times the apoB-100 in human apoB transgenic mice, and 4 times the apoB-48 in apoE knockout mice. Overexpression of apoB-17 did not decrease apoB-100 or apoB-48 concentrations in mouse plasma as assessed by Western blot analysis. These results demonstrate that although the apoB-17 binds to MTP in vitro, it does not alter endogenous apoB expression in mice or in hepatoma cells.  相似文献   

8.
Studies were undertaken to investigate potential interactions among plasma lipoproteins. Techniques used were low density lipoprotein2 (LDL2)-ligand blotting of plasma lipoproteins separated by nondenaturing 2.5-15% gradient gel electrophoresis, ligand binding of plasma lipoproteins by affinity chromatography with either LDL2 or lipoprotein(a) (Lp(a)) as ligands, and agarose lipoprotein electrophoresis. Ligand blotting showed that LDL2 can bind to Lp(a). When apolipoprotein(a) was removed from Lp(a) by reduction and ultracentrifugation, no interaction between LDL2 and reduced Lp(a) was detected by ligand blotting. Ligand binding showed that LDL2-Sepharose 4B columns bound plasma lipoproteins containing apolipoproteins(a), B, and other apolipoproteins. The Lp(a)-Sepharose column bound lipoproteins containing apolipoprotein B and other apolipoproteins. Furthermore, the Lp(a) ligand column bound more lipoprotein lipid than the LDL2 ligand column, with the Lp(a) ligand column having a greater affinity for triglyceride-rich lipoproteins. Lipoprotein electrophoresis of a mixture of LDL2 and Lp(a) demonstrated a single band with a mobility intermediate between that of LDL2 and Lp(a). Chemical modification of the lysine residues of apolipoprotein B (apoB) by either acetylation or acetoacetylation prevented or diminished the interaction of LDL2 with Lp(a), as shown by both agarose electrophoresis and ligand blotting using modified LDL2. Moreover, removal of the acetoacetyl group from the lysine residues of apoB by hydroxylamine reestablished the interaction of LDL2 with Lp(a). On the other hand, blocking of--SH groups of apoB by iodoacetamide failed to show any effect on the interaction between LDL2 and Lp(a). Based on these observations, it was concluded that Lp(a) interacts with LDL2 and other apoB-containing lipoproteins which are enriched in triglyceride; this interaction is due to the presence of apolipoprotein(a) and involves lysine residues of apoB interacting with the plasminogen-like domains (kringle 4) of apolipoprotein(a). Such results suggest that Lp(a) may be involved in triglyceride-rich lipoprotein metabolism, could form transient associations with apoB-containing lipoproteins in the vascular compartment, and alter the intake by the high affinity apoB, E receptor pathway.  相似文献   

9.
We investigated the metabolism of very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), and low density lipoprotein (LDL) apolipoprotein B (apoB) in seven patients with combined hyperlipidemia (CHL), using 125I-labeled VLDL and 131I-labeled LDL and compartmental modeling, before and during lovastatin treatment. Lovastatin therapy significantly reduced plasma levels of LDL cholesterol (142 vs 93 mg/dl, P less than 0.0005) and apoB (1328 vs 797 micrograms/ml, P less than 0.001). Before treatment, CHL patients had high production rates (PR) of LDL apoB. Three-fourths of this LDL apoB flux was derived from sources other than circulating VLDL and was, therefore, defined as "cold" LDL apoB flux. Compared to baseline, treatment with lovastatin was associated with a significant reduction in the total rate of entry of apoB-containing lipoproteins into plasma in all seven CHL subjects (40.7 vs. 25.7 mg/kg.day, P less than 0.003). This reduction was associated with a fall in total LDL apoB PR and in "cold" LDL apoB PR in six out of seven CHL subjects. VLDL apoB PR fell in five out of seven CHL subjects. Treatment with lovastatin did not significantly alter VLDL apoB conversion to LDL apoB or LDL apoB fractional catabolic rate (FCR) in CHL patients. In three patients with familial hypercholesterolemia who were studied for comparison, lovastatin treatment increased LDL apoB FCR but did not consistently alter LDL apoB PR. We conclude that lovastatin lowers LDL cholesterol and apoB concentrations in CHL patients by reducing the rate of entry of apoB-containing lipoproteins into plasma, either as VLDL or as directly secreted LDL.  相似文献   

10.
To evaluate factors regulating the concentrations of plasma low density lipoproteins (LDL), apolipoprotein B metabolism was studied in nine Pima Indians (25 +/- 2 yr, 191 +/- 20% ideal wt) with low LDL cholesterol (77 +/- 7 mg/dl) and apoB (60 +/- 4 mg/dl) and in eight age- and weight-matched Caucasians with similar very low density lipoprotein (VLDL) concentrations, but higher LDL (cholesterol = 104 +/- 18; apoB = 82 +/- 10; P less than 0.05). Subjects received autologous 131I-labeled VLDL and 125I-labeled LDL, and specific activities of VLDL-apoB, intermediate density lipoprotein (IDL)-apoB, and LDL-apoB were analyzed using a multicompartmental model. Synthesis of LDL-apoB was similar (1224 +/- 87 mg/d in Pimas vs 1218 +/- 118 mg/d in Caucasians) but in Pimas the fractional catabolic rate (FCR) for LDL-apoB was higher (0.48 +/- 0.02 vs 0.39 +/- 0.04 d-1, P less than 0.05). In the Pimas, a much higher proportion of VLDL-apoB was catabolized without conversion to LDL (47 +/- 3 vs 30 +/- 5%, P less than 0.01). When all subjects were considered together, LDL-apoB concentrations were negatively correlated with both FCR for LDL-apoB (r = -0.79, P less than 0.0001) and the non-LDL pathway (r = -0.43, P less than 0.05). Also, the direct removal (non-LDL) path was correlated with VLDL-apoB production (r = 0.49, P = 0.03), and the direct removal pathway and FCR for LDL-apoB were correlated (r = 0.49, P = 0.03). In conclusion, plasma LDL appear to be regulated by both the catabolism of LDL and the extent of metabolism of VLDL without conversion to LDL; both of these processes may be mediated by the apoB/E receptor, and appear to increase in response to increasing VLDL production.  相似文献   

11.
The lipolysis-stimulated lipoprotein receptor, LSR, is a multimeric protein complex in the liver that undergoes conformational changes upon binding of free fatty acids, thereby revealing a binding site (s) that recognizes both apoB and apoE. Complete inactivation of the LSR gene is embryonic lethal in mice. Here we show that removal of a single LSR allele (LSR(-/+)) caused statistically significant increases in both plasma triglyceride and cholesterol levels, a 2-fold increase in plasma triglyceride changes during the post-prandial phase, and delayed clearance of lipid emulsions or a high fat meal. The longer postprandial lipoprotein clearance time observed in LSR(-/+) mice was further increased in LSR(-/+) mice lacking functional low density lipoprotein (LDL) receptors. LSR(-/+) mice placed on a Western-type diet displayed higher plasma triglycerides and cholesterol levels, increased triglyceride-rich lipoproteins and LDL, and increased aorta lipid content, as compared with control mice on the same diet. Furthermore, a direct correlation was observed between the hyperlipidemia and weight gain but only in the LSR(-/+) mice. Knockdown of LSR expression by small interfering RNA in mouse Hepa1-6 cells led to decreased internalization of both DiI-labeled cyclohexanedione-LDL and very low density lipoprotein in the presence of oleate. These data led us to conclude that LSR contributes to the physiological clearance of atherogenic triglyceride-rich lipoproteins and LDL. We propose that LSR cooperates with the LDL receptor in the final hepatic processing of apoB-containing lipoproteins and represents a novel therapeutic target for the treatment of hyperlipidemia associated with obesity and atherosclerosis.  相似文献   

12.
13.
Transgenic (Tg) mice that overexpress the human apolipoprotein A-V gene (APOA5) yet lack an endogenous mouse apoa5 gene (APOA5 Tg mice) were generated. Subsequently, the effect of human apoA-V expression on plasma triglyceride (TG) concentration and lipoprotein and apolipoprotein distribution was determined and compared with that in mice deficient in apoA-V (apoa5(-/-) mice). NMR analysis of plasma lipoproteins revealed that APOA5 Tg mice had a very low VLDL concentration (26.4 +/- 7.7 nmol/dl), whereas VLDL in apoa5(-/-) mice was 18- fold higher (467 +/- 152 nmol/dl). SDS-PAGE analysis of the d < 1.063 g/ml plasma fraction revealed that the apoB-100/apoB-48 ratio was 14-fold higher in APOA5 Tg versus apoa5(-/-) mice and that the apoE/total apoB ratio was 7-fold greater in APOA5 Tg versus apoa5(-/-) mice. It is anticipated that a reduction in apoB-100/apoB-48 ratio as well as that for apoE/apoB would impair the uptake of VLDL and remnants in apoa5(-/-) mice, thereby contributing to increased plasma TG levels. The concentration of apoA-V in APOA5 Tg mice was 12.5 +/- 2.9 microg/ml, which is approximately 50- to 100-fold higher than that reported for normolipidemic humans. ApoA-V was predominantly associated with HDL but was rapidly and efficiently redistributed to apoA- V-deficient VLDL upon incubation. Consistent with findings reported for human subjects, apoA-V concentration was positively correlated with TG levels in normolipidemic APOA5 Tg mice. It is conceivable that, in a situation in which apoA-V is chronically overexpressed, complex interactions among factors regulating TG homeostasis may result in a positive correlation of apoA-V with TG concentrations.  相似文献   

14.
Phosphatidylethanolamine N-methyltransferase (PEMT)is involved in a secondary pathway for production of phosphatidylcholine (PC) in liver. We fed Pemt-/-mice a high fat/high cholesterol diet for 3 weeks to determine whether or not PC derived from PEMT is required for very low density lipoprotein secretion. Lipid analyses of plasma and liver indicated that male Pemt-/- mice accumulated triacylglycerols in their livers and were unable to secrete the same amount of triacylglycerols from the liver as did Pemt+/+ mice. Plasma levels of triacylglycerol and both apolipoproteins B100 and B48 were significantly decreased only in male Pemt-/- mice. Experiments in which mice were injected with Triton WR1339 showed that, whereas hepatic apoB100 secretion was decreased in male Pemt-/- mice, the decrease in plasma apoB48 in male Pemt-/- mice was not due to reduced secretion. Moreover, female and, to a lesser extent, male Pemt-/- mice showed a striking 40% decrease in plasma PC and cholesterol in high density lipoproteins. These results suggest that, even though the content of hepatic PC was normal in PEMT-deficient mice, plasma lipoprotein levels were profoundly altered in a gender-specific manner.  相似文献   

15.
LDL receptor-related protein 5 (LRP5) plays multiple roles, including embryonic development and bone accrual development. Recently, we demonstrated that LRP5 is also required for normal cholesterol metabolism and glucose-induced insulin secretion. To further define the role of LRP5 in the lipoprotein metabolism, we compared plasma lipoproteins in mice lacking LRP5, apolipoprotein E (apoE), or both (apoE;LRP5 double knockout). On a normal chow diet, the apoE;LRP5 double knockout mice (older than 4 months of age) had approximately 60% higher plasma cholesterol levels compared with the age-matched apoE knockout mice. In contrast, LRP5 deficiency alone had no significant effects on the plasma cholesterol levels. High performance liquid chromatography analysis of plasma lipoproteins revealed that cholesterol levels in the very low density lipoprotein and low density lipoprotein fractions were markedly increased in the apoE;LRP5 double knockout mice. There were no apparent differences in the pattern of apoproteins between the apoE knockout mice and the apoE;LRP5 double knockout mice. The plasma clearance of intragastrically loaded triglyceride was markedly impaired by LRP5 deficiency. The atherosclerotic lesions of the apoE;LRP5 double knockout mice aged 6 months were approximately 3-fold greater than those in the age-matched apoE-knockout mice. Furthermore, histological examination revealed highly advanced atherosclerosis, with remarkable accumulation of foam cells and destruction of the internal elastic lamina in the apoE;LRP5 double knockout mice. These data suggest that LRP5 mediates both apoE-dependent and apoE-independent catabolism of plasma lipoproteins.  相似文献   

16.
Through its interaction with the low density lipoprotein (LDL) receptor, apolipoprotein (apo) B-100 is a major determinant of LDL metabolism and plasma cholesterol. Its receptor binding ability is conformation-dependent and requires its expression on the right lipoprotein particles. The structural signal that targets apoB-100 to LDL is unknown. We have microinjected a human apoB-100 minigene construct comprising less than 25% of the apoB-100 sequence driven by the natural apoB promoter to produce transgenic mice. The transgene product was expressed at a high level and was present exclusively in the LDL of these animals. Analysis of the responsible sequence (residues 2878-3925 of apoB-100) reveals unique structural features that may be important in its role as an LDL-targeting domain.  相似文献   

17.
CTP:phosphocholine cytidylyltransferase (CT) is the key regulatory enzyme in the CDP-choline pathway for the biosynthesis of phosphatidylcholine. Hepatic cells express both an alpha and a beta2 isoform of CT and can also synthesize phosphatidylcholine via the sequential methylation of phosphatidylethanolamine catalyzed by phosphatidylethanolamine N-methyltransferase. To ascertain the functional importance of CTalpha, we created a mouse in which the hepatic CTalpha gene was specifically inactivated by the Cre/LoxP procedure. In CTalpha knockout mice, hepatic CT activity (due to residual CTbeta2 activity as well as activity in nonhepatic cells) was 15% of normal, whereas phosphatidylethanolamine N-methyltransferase activity was elevated 2-fold compared with controls. Lipid analyses of the liver indicated that female knockout mice had reduced phosphatidylcholine levels and accumulated triacylglycerols. The plasma phosphatidylcholine concentration was reduced in the CTalpha knockout (independent of gender), as were levels of high density lipoproteins (cholesterol and apoAI) and very low density lipoproteins (triacylglycerols and apoB100). Experiments in which mice were injected with Triton WR1339 indicated that apoB secretion was decreased in hepatic-specific CTalpha knockout mice compared with controls. These results suggest an important role for hepatic CTalpha in regulating both hepatic and systemic lipid and lipoprotein metabolism.  相似文献   

18.
We have used an extraction procedure, which released membrane-bound apoB-100, to study the assembly of apoB-48 VLDL (very low density lipoproteins). This procedure released apoB-48, but not integral membrane proteins, from microsomes of McA-RH7777 cells. Upon gradient ultracentrifugation, the extracted apoB-48 migrated in the same position as the dense apoB-48-containing lipoprotein (apoB-48 HDL (high density lipoprotein)) secreted into the medium. Labeling studies with [(3)H]glycerol demonstrated that the HDL-like particle extracted from the microsomes contains both triglycerides and phosphatidylcholine. The estimated molar ratio between triglyceride and phosphatidylcholine was 0.70 +/- 0.09, supporting the possibility that the particle has a neutral lipid core. Pulse-chase experiments indicated that microsomal apoB-48 HDL can either be secreted as apoB-48 HDL or converted to apoB-48 VLDL. These results support the two-step model of VLDL assembly. To determine the size of apoB required to assemble HDL and VLDL, we produced apoB polypeptides of various lengths and followed their ability to assemble VLDL. Small amounts of apoB-40 were associated with VLDL, but most of the nascent chains associated with VLDL ranged from apoB-48 to apoB-100. Thus, efficient VLDL assembly requires apoB chains of at least apoB-48 size. Nascent polypeptides as small as apoB-20 were associated with particles in the HDL density range. Thus, the structural requirements of apoB to form HDL-like first-step particles differ from those to form second-step VLDL. Analysis of proteins in the d < 1.006 g/ml fraction after ultracentrifugation of the luminal content of the cells identified five chaperone proteins: binding protein, protein disulfide isomerase, calcium-binding protein 2, calreticulin, and glucose regulatory protein 94. Thus, intracellular VLDL is associated with a network of chaperones involved in protein folding. Pulse-chase and subcellular fractionation studies showed that apoB-48 VLDL did not accumulate in the rough endoplasmic reticulum. This finding indicates either that the two steps of apoB lipoprotein assembly occur in different compartment or that the assembled VLDL is transferred rapidly out of the rough endoplasmic reticulum.  相似文献   

19.
The conversion of very low density (VLDL) to low density lipoproteins (LDL) is a two-step process. The first step is mediated by lipoprotein lipase, but the mechanism responsible for the second is obscure. In this study we examined the possible involvement of receptors at this stage. Apolipoprotein B (apoB)-containing lipoproteins were separated into three fractions, VLDL (Sf 100-400), an intermediate fraction IDL (Sf 12-100), and LDL (Sf 0-12). Autologous 125I-labeled VLDL and 131I-labeled 1,2-cyclohexanedione-modified VLDL were injected into the plasma of four normal subjects and the rate of transfer of apoB radioactivity was followed through IDL to LDL. Modification did not affect VLDL to IDL conversion. Thereafter, however, the catabolism of modified apoB in IDL was retarded and its appearance in LDL was delayed. Hence, functional arginine residues (and by implication, receptors) are required in this process. Confirmation of this was obtained by injecting 125I-labeled IDL and 131I-labeled cyclohexanedione-treated IDL into two additional subjects. Again, IDL metabolism was delayed by approximately 50% as a result of the modification. These data are consistent with the view that receptors are involved in the metabolism of intermediate density lipoprotein.  相似文献   

20.
Apolipoprotein E (apoE) is essential for the clearance of plasma chylomicron and VLDL remnants. The human APOE locus is polymorphic and 5-10% of APOE*2 homozygotes exhibit type-III hyperlipoproteinemia (THL), while the remaining homozygotes have less than normal plasma cholesterol. In contrast, mice expressing APOE*2 in place of the mouse Apoe (Apoe(2/2) mice) are markedly hyperlipoproteinemic, suggesting a species difference in lipid metabolism (e.g., editing of apolipoprotein B) enhances THL development. Since apoB-100 has an LDLR binding site absent in apoB-48, we hypothesized that the Apoe(2/2) THL phenotype would improve if all Apoe(2/2) VLDL contained apoB-100. To test this, we crossed Apoe(2/2) mice with mice lacking the editing enzyme for apoB (Apobec(-/-)). Consistent with an increase in remnant clearance, Apoe(2/2). Apobec(-/-) mice have a significant reduction in IDL/LDL cholesterol (IDL/LDL-C) compared with Apoe(2/2) mice. However, Apoe(2/2).Apobec(-/-) mice have twice as much VLDL triglyceride as Apoe(2/2) mice. In vitro tests show the apoB-100-containing VLDL are poorer substrates for lipoprotein lipase than apoB-48-containing VLDL. Thus, despite a lowering in IDL/LDL-C, substituting apoB-48 lipoproteins with apoB-100 lipoproteins did not improve the THL phenotype in the Apoe(2/2).Apobec(-/-) mice, because apoB-48 and apoB-100 differentially influence the catabolism of lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号