首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Low temperature represents a form of abiotic stress that varies predictably with latitude and altitude and to which organisms have evolved multiple physiological responses. Plants provide an especially useful experimental system for investigating the ecological and evolutionary dynamics of tolerance to low temperature because of their sessile lifestyle and inability to escape ambient atmospheric conditions. Here, intraspecific variation in freezing tolerance was investigated in Arabidopsis thaliana by conducting freezing tolerance assays on 71 accessions collected from across the native range of the species. Assays were performed at multiple minimum temperatures and on both cold-acclimated and non-cold-acclimated individuals. Considerable variation in freezing tolerance was observed among accessions both with and without a prior cold-acclimation treatment, suggesting that differences among accessions in cold-acclimation capacity as well as differences in intrinsic physiology contribute to variation in this phenotype. A highly significant positive relationship was observed between freezing tolerance and latitude of origin of accessions, consistent with a major role for natural selection in shaping variation in this phenotype. Clinal variation in freezing tolerance in A. thaliana coupled with considerable knowledge of the underlying genetics and physiology of this phenotype should allow evolutionary genetic analysis at multiple levels.  相似文献   

2.
Li W  Li M  Zhang W  Welti R  Wang X 《Nature biotechnology》2004,22(4):427-433
Freezing injury is a major environmental limitation on the productivity and geographical distribution of plants. Here we show that freezing tolerance can be manipulated in Arabidopsis thaliana by genetic alteration of the gene encoding phospholipase Ddelta (PLDdelta), which is involved in membrane lipid hydrolysis and cell signaling. Genetic knockout of the plasma membrane-associated PLDdelta rendered A. thaliana plants more sensitive to freezing, whereas overexpression of PLDdelta increased freezing tolerance. Lipid profiling revealed that PLDdelta contributed approximately 20% of the phosphatidic acid produced in wild-type plants during freezing, and overexpression of PLDdelta increased the production of phosphatidic acid species. The PLDdelta alterations did not affect the expression of the cold-regulated genes COR47 or COR78 or alter cold-induced increases in proline or soluble sugars, suggesting that the PLD pathway is a unique determinant of the response to freezing and may present opportunities for improving plant freezing tolerance.  相似文献   

3.
4.
Low temperature is an important environmental factor influencing plant growth and development. In this study, we report the characterization of a genetic locus, HOS2, which is defined by three Arabidopsis thaliana mutants. The hos2-1, hos2-2 and hos2-3 mutations result in enhanced expression of RD29A and other stress genes under low temperature treatment. Gene expression in response to osmotic stress or ABA is not affected in the hos2 mutants. Genetic analysis indicates that the hos2 mutations are recessive and in a nuclear gene. Compared with the wild-type plants, the hos2-1 mutant plants are less capable of developing freezing tolerance when treated with low non-freezing temperatures. However, the hos2-1 mutation does not impair the vernalization response. These results indicate that HOS2 is a negative regulator of low temperature signal transduction important for plant cold acclimation.  相似文献   

5.
Levels of endogenous glycine betaine in the leaves were measured in response to cold acclimation, water stress and exogenous ABA application in Arabidopsis thaliana. The endogenous glycine betaine level in the leaves increased sharply during cold acclimation treatment as plants gained freezing tolerance. When glycine betaine (10 mM) was applied exogenously to the plants as a foliar spray, the freezing tolerance increased from -3.1 to -4.5 degrees C. In addition, when ABA (1 mM) was applied exogenously, the endogenous glycine betaine level and the freezing tolerance in the leaves increased. However, the increase in the leaf glycine betaine level induced by ABA was only about half of that by the cold acclimation treatment. Furthermore, when plants were subjected to water stress (leaf water potential of approximately -1.6 MPa), the endogenous leaf glycine betaine level increased by about 18-fold over that in the control plants. Water stress lead to significant increase in the freezing tolerance, which was slightly less than that induced by the cold acclimation treatment. The results suggest that glycine betaine is involved in the induction of freezing tolerance in response to cold acclimation, ABA, and water stress in Arabidopsis plants.  相似文献   

6.
7.
8.
9.
Arabidopsis thaliana is a geographically widely spread species consisting of local accessions differing both genetically and phenotypically. These differences may constitute environmental adaptations and a latitudinal cline in freezing tolerance has been shown previously. Many plants, including Arabidopsis, exhibit increased freezing tolerance after cold exposure (cold acclimation). Here we present evidence for geographical clines (both latitudinal and longitudinal) in acclimated (ACC) and non-acclimated (NA) freezing tolerance, estimated from electrolyte leakage measurements on 54 accessions. Leaf Pro contents were not correlated with freezing tolerance, while sugar contents (Glc, Fru, Suc, Raf) were in the ACC, but not the NA state. Expression levels of 14 cold-induced genes were investigated before and after 2 weeks of cold acclimation by quantitative RT-PCR. Expression of the CBF1, 2 and 3 genes was not correlated with freezing tolerance. The expression of some CBF-regulated (COR) genes, however, was correlated specifically with ACC freezing tolerance. A tight correlation between CBF and COR gene expression was only observed under non-acclimating conditions, where CBF and COR expression were also correlated with the expression of PRR5, a component of the circadian clock. Collectively, this study sheds new light on the molecular determinants of plant-freezing tolerance and cold acclimation and their geographical dependence.  相似文献   

10.
Oil bodies in seeds of higher plants are surrounded with oleosins. Here we demonstrate a novel role for oleosins in protecting oilseeds against freeze/thaw-induced damage of their cells. We detected four oleosins in oil bodies isolated from seeds of Arabidopsis thaliana , and designated them OLE1, OLE2, OLE3 and OLE4 in decreasing order of abundance in the seeds. For reverse genetics, we isolated oleosin-deficient mutants ( ole1 , ole2 , ole3 and ole4 ) and generated three double mutants ( ole1 ole2 , ole1 ole3 and ole2 ole3 ). Electron microscopy showed an inverse relationship between oil body sizes and total oleosin levels. The double mutant ole1 ole2 , which had the lowest levels of oleosins, had irregular enlarged oil-containing structures throughout the seed cells. Germination rates were positively associated with oleosin levels, suggesting that defects in germination are related to the expansion of oil bodies due to oleosin deficiency. We found that freezing followed by imbibition at 4°C abolished seed germination of single mutants ( ole1 , ole2 and ole3 ), which germinated normally without freezing treatment. The treatment accelerated the fusion of oil bodies and the abnormal-positioning and deformation of nuclei in ole1 seeds, which caused seed mortality. In contrast, ole1 seeds that had undergone freezing treatment germinated normally when incubated at 22°C instead of 4°C, because degradation of oils abolished the acceleration of fusion of oil bodies during imbibition. Taken together, our findings suggest that oleosins increase the viability of over-wintering oilseeds by preventing abnormal fusion of oil bodies during imbibition in the spring.  相似文献   

11.
12.
The capacity to tolerate freezing temperatures limits the geographical distribution of many plants, including several species of agricultural importance. However, the genes involved in freezing tolerance remain largely unknown. Here, we describe the variation in constitutive freezing tolerance that occurs among worldwide accessions of Arabidopsis thaliana. We found that although plants from high latitudes tend to be more freezing tolerant than plants from low latitudes, the environmental factors that shape cold adaptation differ across the species range. Consistent with this, we found that the genetic architecture of freezing tolerance also differs across its range. Conventional genome‐wide association studies helped identify a priori and other promising candidate genes. However, simultaneously modelling climate variables and freezing tolerance together pinpointed other excellent a priori candidate genes. This suggests that if the selective factor underlying phenotypic variation is known, multi‐trait mixed models may aid in identifying the genes that underlie adaptation.  相似文献   

13.
K R Diller 《Cryobiology》1975,12(5):480-485
Human erythrocytes were frozen on the stage of a cryomicroscope at accurately controlled constant-cooling rates with varying degrees of extracellular supercooling. The formation of intracellular ice was detected by direct observation of the frozen cells through the microscope. A significant coupling effect was determined between the minimum cooling rate necessary to produce intracellular freezing and the extent of supercooling. Increased degrees of extracellular supercooling reduced the range of cooling rates for which water would freeze within the cell. Specific data points were obtained at ΔTSC = 0, ?5, and ?12 °C for which the corresponding transition cooling rates were respectively ?845, ?800, and ?11 °C/min.An explanation for the occurrence of this phenomenon is presented based on the physiochemical processes that govern the freezing of a cell suspension.  相似文献   

14.
The location of tryptophan residues in the actin macromolecule was studied on the basis of the known 3D structure. For every tryptophan residue the polarity and packing density of their microenvironments were evaluated. To estimate the accessibility of the tryptophan residues to the solvent molecules it was proposed to analyze the radial dependence of the packing density of atoms in the macromolecule about the geometric center of the indole rings of the tryptophan residues. The proposed analysis revealed that the microenvironment of tryptophan residues Trp-340 and Trp-356 has a very high density. So these residues can be regarded as internal and inaccessible to solvent molecules. Their microenvironment is mainly formed by non-polar groups of protein. Though the packing density of the Trp-86 microenvironment is lower, this tryptophan residue is apparently also inaccessible to solvent molecules, as it is located in the inner region of macromolecule. Tryptophan residue Trp-79 is external and accessible to the solvent. All residues that can affect tryptophan fluorescence were revealed. It was found that in the close vicinity of tryptophan residues Trp-79 and Trp-86 there are a number of sulfur atoms of cysteine and methionine residues that are known to be effective quenchers of tryptophan fluorescence. The most essential is the location of SG atom of Cys-10 near the NE1 atom of the indole ring of tryptophan residue Trp-86. On the basis of microenvironment analysis of these tryptophan residues and the evaluation of energy transfer between them it was concluded that the contribution of tryptophan residues Trp-79 and Trp-86 must be low. Intrinsic fluorescence of actin must be mainly determined by two other tryptophan residues--Trp-340 and Trp-356. It is possible that the unstrained conformation of tryptophan residue Trp-340 and the existence of aromatic rings of tyrosine and phenylalanine and proline residues in the microenvironments of tryptophan residues Trp-340 and Trp-356 are also essential to their blue fluorescence spectrum.  相似文献   

15.
Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC 4.1.1.19) are more sensitive than the wild type to this stress. Although it is speculated that the overexpression of ADC genes may confer tolerance, this is hampered by pleiotropic effects arising from the constitutive expression of enzymes from the polyamine metabolism. Here, we present our work using A. thaliana transgenic plants harboring the ADC gene from oat under the control of a stress-inducible promoter (pRD29A) instead of a constitutive promoter. The transgenic lines presented in this work were more resistant to both cold and dehydration stresses, associated with a concomitant increment in endogenous putrescine levels under stress. Furthermore, the increment in putrescine upon cold treatment correlates with the induction of known stress-responsive genes, and suggests that putrescine may be directly or indirectly involved in ABA metabolism and gene expression.Key words: cold acclimation, dehydration, putrescine, polyamines, stress  相似文献   

16.
Changes in membrane lipid composition play important roles in plant adaptation to and survival after freezing. Plant response to cold and freezing involves three distinct phases: cold acclimation, freezing, and post-freezing recovery. Considerable progress has been made toward understanding lipid changes during cold acclimation and freezing, but little is known about lipid alteration during post-freezing recovery. We previously showed that phospholipase D (PLD) is involved in lipid hydrolysis and Arabidopsis thaliana freezing tolerance. This study was undertaken to determine how lipid species change during post-freezing recovery and to determine the effect of two PLDs, PLDalpha1 and PLDdelta, on lipid changes during post-freezing recovery. During post-freezing recovery, hydrolysis of plastidic lipids, monogalactosyldiacylglycerol and plastidic phosphatidylglycerol, is the most prominent change. In contrast, during freezing, hydrolysis of extraplastidic phospholipids, phosphatidylcholine and phosphatidylethanolamine, occurs. Suppression of PLDalpha1 decreased phospholipid hydrolysis and phosphatidic acid production in both the freezing and post-freezing phases, whereas ablation of PLDdelta increased lipid hydrolysis and phosphatidic acid production during post-freezing recovery. Thus, distinctly different changes in lipid hydrolysis occur in freezing and post-freezing recovery. The presence of PLDalpha1 correlates with phospholipid hydrolysis in both freezing and post-freezing phases, whereas the presence of PLDdelta correlates with reduced lipid hydrolysis during post-freezing recovery. These data suggest a negative role for PLDalpha1 and a positive role for PLDdelta in freezing tolerance.  相似文献   

17.
Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana   总被引:1,自引:0,他引:1  
Taking into account the strong iron competition in the rhizosphere and the high affinity of pyoverdines for Fe(III), these molecules are expected to interfere with the iron nutrition of plants, as they do with rhizospheric microbes. The impact of Fe-pyoverdine on iron content of Arabidopsis thaliana was compared with that of Fe-EDTA. Iron chelated to pyoverdine was incorporated in a more efficient way than when chelated to EDTA, leading to increased plant growth of the wild type. A transgenic line of A. thaliana overexpressing ferritin showed a higher iron content than the wild type when supplemented with Fe-EDTA but a lower iron content when supplemented with Fe-pyoverdine despite its increased reductase activity, suggesting that this activity was not involved in the iron uptake from pyoverdine. A mutant knock-out iron transporter IRT1 showed lower iron and chlorophyll contents when supplemented with Fe-EDTA than the wild type but not when supplemented with Fe-pyoverdine, indicating that, in contrast to iron from EDTA, iron from pyoverdine was not incorporated through the IRT1 transporter. Altogether these data suggest that iron from Fe-pyoverdine was not incorporated in planta through the strategy I, which is based on reductase activity and IRT1 transporter. This is supported by the presence of pyoverdine in planta as shown by enzyme-linked immunosorbent assay and by tracing 15N of 15N-pyoverdine.  相似文献   

18.
19.
Heterosis is defined as the increased vigour of hybrids in comparison to their parents. We investigated 24 F(1) hybrid lines of Arabidopsis thaliana generated by reciprocally crossing either C24 or Col with six other parental accessions (Can, Co, Cvi, Ler, Rsch, Te) that differ widely in their freezing tolerance. The crosses differed in the degree of heterosis for freezing tolerance, both in the non-acclimated state and after a 14 d cold acclimation period. Crosses with C24 showed more heterosis than crosses with Col, and heterosis was stronger in acclimated than in non-acclimated plants. Leaf content of soluble sugars and proline showed more deviation from mid-parent values in crosses involving C24 than in those involving Col, and deviations were larger in acclimated than in non-acclimated plants. There were significant correlations between the content of different sugars and leaf freezing tolerance, as well as between heterosis effects in freezing tolerance and sugar content. Flavonoid content and composition varied between accessions, and between non-acclimated and acclimated plants. In the crosses, large deviations from the mid-parent values in the contents of different flavonols occurred, and there were strikingly strong correlations between both flavonol content and freezing tolerance, and between heterosis effects in freezing tolerance and flavonol content.  相似文献   

20.
The expression of the gene Osmyb4, detected at low level in rice (Oryza sativa) coleoptiles grown for 3 days at 29 degrees C, is strongly induced by treatments at 4 degrees C. At sublethal temperatures of 10 and 15 degrees C, its expression in rice seedlings is already evident, but this effect cannot be vicariated by other stresses or ABA treatment. We demonstrate by transient expression that Myb4 transactivates the PAL2, ScD9 SAD and COR15a cold-inducible promoters. The Osmyb4 function in vivo is demonstrated overexpressing its cDNA in Arabidopsis thaliana plants (ecotype Wassilewskija) under the control of the constitutive CaMV 35S promoter. Myb4 overexpressing plants show a significant increased cold and freezing tolerance, measured as membrane or Photosystem II (PSII) stability and as whole plant tolerance. Finally, in Osmyb4 transgenic plants, the expression of genes participating in different cold-induced pathways is affected, suggesting that Myb4 represents a master switch in cold tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号