首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the cloning and characterization of two novel calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4, that are enriched in the testis and brain, respectively. We compare and contrast the steady state and kinetic properties of these beta subunits with the previously cloned mouse beta1 (mKCNMB1) and the human beta2 subunit (hKCNMB2). Once inactivation is removed, we find that hKCNMB2 has properties similar to mKCNMB1. hKCNMB2 slows Hslo1 channel gating and shifts the current-voltage relationship to more negative potentials. hKCNMB3 and hKCNMB4 have distinct effects on slo currents not observed with mKCNMB1 and hKCNMB2. Although we found that hKCNMB3 does interact with Hslo channels, its effects on Hslo1 channel properties were slight, increasing Hslo1 activation rates. In contrast, hKCNMB4 slows Hslo1 gating kinetics, and modulates the apparent calcium sensitivity of Hslo1. We found that the different effects of the beta subunits on some Hslo1 channel properties are calcium-dependent. mKCNMB1 and hKCNMB2 slow activation at 1 microM but not at 10 microM free calcium concentrations. hKCNMB4 decreases Hslo1 channel openings at low calcium concentrations but increases channel openings at high calcium concentrations. These results suggest that beta subunits in diverse tissue types fine-tune slo channel properties to the needs of a particular cell.  相似文献   

2.
Molecular diversity of ion channel structure and function underlies variability in electrical signaling in nerve, muscle, and non-excitable cells. Protein phosphorylation and alternative splicing of pre-mRNA are two important mechanisms to generate structural and functional diversity of ion channels. However, systematic mass spectrometric analyses of in vivo phosphorylation and splice variants of ion channels in native tissues are largely lacking. Mammalian large-conductance calcium-activated potassium (BK(Ca)) channels are tetramers of alpha subunits (BKalpha) either alone or together with beta subunits, exhibit exceptionally large single channel conductance, and are dually activated by membrane depolarization and intracellular Ca(2+). The cytoplasmic C terminus of BKalpha is subjected to extensive pre-mRNA splicing and, as predicted by several algorithms, offers numerous phospho-acceptor amino acids. Here we use nanoflow liquid chromatography tandem mass spectrometry on BK(Ca) channels affinity-purified from rat brain to analyze in vivo BKalpha phosphorylation and splicing. We found 7 splice variations and identified as many as 30 Ser/Thr in vivo phosphorylation sites; most of which were not predicted by commonly used algorithms. Of the identified phosphosites 23 are located in the C terminus, four were found on splice insertions. Electrophysiological analyses of phospho- and dephosphomimetic mutants transiently expressed in HEK-293 cells suggest that phosphorylation of BKalpha differentially modulates the voltage- and Ca(2+)-dependence of channel activation. These results demonstrate that the pore-forming subunit of BK(Ca) channels is extensively phosphorylated in the mammalian brain providing a molecular basis for the regulation of firing pattern and excitability through dynamic modification of BKalpha structure and function.  相似文献   

3.
4.
Diabetic retinopathy is an important cause of visual loss. Functional abnormalities including vasoconstriction precede structural changes. Using the streptozotocin-model of diabetes in rats, we have identified downregulation of the beta1 subunit of the BK channel in arteriole myocytes as a possible molecular mechanism underlying these early changes. BKbeta1 mRNA levels were reduced as early as one month after induction of diabetes, and BK Ca(2+)-sensitivity and caffeine-evoked BK currents were reduced at three months. This effect appears to be selective for the regulatory subunit, as BKalpha subunit expression was not altered at the mRNA level, and voltage-activated BK currents were unaltered. No changes were seen in voltage activated Ca(2+)-current, Ca(2+)-activated Cl(-)current, or A-type voltage activated K(+)-currents. Reduced Ca(2+)-activated BK activity may promote depolarization, Ca(2+)-channel activation and increased contraction under resting conditions or in response to Ca(2+)-mobilizing agonists.  相似文献   

5.
The auxiliary beta-subunit KCNMB2 (beta(2)) endows the non-inactivating large conductance Ca(2+)- and voltage-dependent potassium (BK) channel with fast inactivation. This process is mediated by the N terminus of KCNMB2 and closely resembles the "ball-and-chain"-type inactivation observed in voltage-gated potassium channels. Here we investigated the solution structure and function of the KCNMB2 N terminus (amino acids 1-45, BKbeta(2)N) using NMR spectroscopy and patch clamp recordings. BKbeta(2)N completely inactivated BK channels when applied to the cytoplasmic side; its interaction with the BK alpha-subunit is characterized by a particularly slow dissociation rate and an affinity in the upper nanomolar range. The BKbeta(2)N structure comprises two domains connected by a flexible linker: the pore-blocking "ball domain" (formed by residues 1-17) and the "chain domain" (between residues 20-45) linking it to the membrane segment of KCNMB2. The ball domain is made up of a flexible N terminus anchored at a well ordered loop-helix motif. The chain domain consists of a 4-turn helix with an unfolded linker at its C terminus. These structural properties explain the functional characteristics of BKbeta(2)N-mediated inactivation.  相似文献   

6.
We report here a characterization of two families of calcium-activated K(+) channel beta-subunits, beta2 and beta3, which are encoded by distinct genes that map to 3q26.2-27. A single beta2 family member and four alternatively spliced variants of beta3 were investigated. These subunits have predicted molecular masses of 27. 1-31.6 kDa, share approximately 30-44% amino acid identity with beta1, and exhibit distinct but overlapping expression patterns. Coexpression of the beta2 or beta3a-c subunits with a BK alpha-subunit altered the functional properties of the current expressed by the alpha-subunit alone. The beta2 subunit rapidly and completely inactivated the current and shifted the voltage dependence for activation to more polarized membrane potentials. In contrast, coexpression of the beta3a-c subunits resulted in only partial inactivation of the current, and the beta3b subunit conferred an apparent inward rectification. Furthermore, unlike the beta1 and beta2 subunits, none of the beta3 subunits increased channel sensitivity to calcium or voltage. The tissue-specific expression of these beta-subunits may allow for the assembly of a large number of distinct BK channels in vivo, contributing to the functional diversity of native BK currents.  相似文献   

7.
Hyperpolarizing large-conductance, Ca(2+)-activated K(+) channels (BK) are important modulators of vascular smooth muscle and endothelial cell function. In vascular smooth muscle cells, BK are composed of pore-forming alpha subunits and modulatory beta subunits. However, expression, composition, and function of BK subunits in endothelium have not been studied so far. In patch-clamp experiments we identified BK (283 pS) in intact endothelium of porcine aortic tissue slices. The BK opener DHS-I (0.05-0.3 micromol/l), stimulating BK activity only in the presence of beta subunits, had no effect on BK in endothelium whereas the alpha subunit selective BK opener NS1619 (20 micromol/l) markedly increased channel activity. Correspondingly, mRNA expression of the beta subunit was undetectable in endothelium, whereas alpha subunit expression was demonstrated. To investigate the functional role of beta subunits, we transfected the beta subunit into a human endothelial cell line (EA.hy 926). beta subunit expression resulted in an increased Ca(2+) sensitivity of BK activity: the potential of half-maximal activation (V(1/2)) shifted from 73.4 mV to 49.6 mV at 1 micromol/l [Ca(2+)](i) and an decrease of the EC(50) value for [Ca(2+)](i) by 1 microM at +60 mV was observed. This study demonstrates that BK channels in endothelium are composed of alpha subunits without association to beta subunits. The lack of the beta subunit indicates a substantially different channel regulation in endothelial cells compared to vascular smooth muscle cells.  相似文献   

8.
Large-conductance (BK-type) Ca(2+)-activated potassium channels are activated by membrane depolarization and cytoplasmic Ca(2+). BK channels are expressed in a broad variety of cells and have a corresponding diversity in properties. Underlying much of the functional diversity is a family of four tissue-specific accessory subunits (beta1-beta4). Biophysical characterization has shown that the beta4 subunit confers properties of the so-called "type II" BK channel isotypes seen in brain. These properties include slow gating kinetics and resistance to iberiotoxin and charybdotoxin blockade. In addition, the beta4 subunit reduces the apparent voltage sensitivity of channel activation and has complex effects on apparent Ca(2+) sensitivity. Specifically, channel activity at low Ca(2+) is inhibited, while at high Ca(2+), activity is enhanced. The goal of this study is to understand the mechanism underlying beta4 subunit action in the context of a dual allosteric model for BK channel gating. We observed that beta4's most profound effect is a decrease in P(o) (at least 11-fold) in the absence of calcium binding and voltage sensor activation. However, beta4 promotes channel opening by increasing voltage dependence of P(o)-V relations at negative membrane potentials. In the context of the dual allosteric model for BK channels, we find these properties are explained by distinct and opposing actions of beta4 on BK channels. beta4 reduces channel opening by decreasing the intrinsic gating equilibrium (L(0)), and decreasing the allosteric coupling between calcium binding and voltage sensor activation (E). However, beta4 has a compensatory effect on channel opening following depolarization by shifting open channel voltage sensor activation (Vh(o)) to more negative membrane potentials. The consequence is that beta4 causes a net positive shift of the G-V relationship (relative to alpha subunit alone) at low calcium. At higher calcium, the contribution by Vh(o) and an increase in allosteric coupling to Ca(2+) binding (C) promotes a negative G-V shift of alpha+beta4 channels as compared to alpha subunits alone. This manner of modulation predicts that type II BK channels are downregulated by beta4 at resting voltages through effects on L(0). However, beta4 confers a compensatory effect on voltage sensor activation that increases channel opening during depolarization.  相似文献   

9.
Large conductance, calcium- and voltage-gated potassium (BK) channels are ubiquitous and critical for neuronal function, immunity, and smooth muscle contractility. BK channels are thought to be regulated by phosphatidylinositol 4,5-bisphosphate (PIP(2)) only through phospholipase C (PLC)-generated PIP(2) metabolites that target Ca(2+) stores and protein kinase C and, eventually, the BK channel. Here, we report that PIP(2) activates BK channels independently of PIP(2) metabolites. PIP(2) enhances Ca(2+)-driven gating and alters both open and closed channel distributions without affecting voltage gating and unitary conductance. Recovery from activation was strongly dependent on PIP(2) acyl chain length, with channels exposed to water-soluble diC4 and diC8 showing much faster recovery than those exposed to PIP(2) (diC16). The PIP(2)-channel interaction requires negative charge and the inositol moiety in the phospholipid headgroup, and the sequence RKK in the S6-S7 cytosolic linker of the BK channel-forming (cbv1) subunit. PIP(2)-induced activation is drastically potentiated by accessory beta(1) (but not beta(4)) channel subunits. Moreover, PIP(2) robustly activates BK channels in vascular myocytes, where beta(1) subunits are abundantly expressed, but not in skeletal myocytes, where these subunits are barely detectable. These data demonstrate that the final PIP(2) effect is determined by channel accessory subunits, and such mechanism is subunit specific. In HEK293 cells, cotransfection of cbv1+beta(1) and PI4-kinaseIIalpha robustly activates BK channels, suggesting a role for endogenous PIP(2) in modulating channel activity. Indeed, in membrane patches excised from vascular myocytes, BK channel activity runs down and Mg-ATP recovers it, this recovery being abolished by PIP(2) antibodies applied to the cytosolic membrane surface. Moreover, in intact arterial myocytes under physiological conditions, PLC inhibition on top of blockade of downstream signaling leads to drastic BK channel activation. Finally, pharmacological treatment that raises PIP(2) levels and activates BK channels dilates de-endothelized arteries that regulate cerebral blood flow. These data indicate that endogenous PIP(2) directly activates vascular myocyte BK channels to control vascular tone.  相似文献   

10.
Bile acids and other steroids modify large conductance, calcium- and voltage-gated potassium (BK) channel activity contributing to non-genomic modulation of myogenic tone. Accessory BK beta(1) subunits are necessary for lithocholate (LC) to activate BK channels and vasodilate. The protein regions that sense steroid action, however, remain unknown. Using recombinant channels in 1-palmitoyl-2-oleoyl-phosphatidylethanolamine/1-palmitoyl-2-oleoyl-phosphatidylserine bilayers we now demonstrate that complex proteolipid domains and cytoarchitecture are unnecessary for beta(1) to mediate LC action; beta(1) and a simple phospholipid microenvironment suffice. Since beta(1) senses LC but beta(4) does not, we made chimeras swapping regions between these subunits and, following channel heterologous expression, demonstrate that beta(1) TM2 is a bile acid-recognizing sensor.  相似文献   

11.
12.
High conductance, calcium- and voltage-activated potassium (BK, MaxiK) channels are widely expressed in mammals. In some tissues, the biophysical properties of BK channels are highly affected by coexpression of regulatory (beta) subunits. The most remarkable effects of beta1 and beta2 subunits are an increase of the calcium sensitivity and the slow down of channel kinetics. However, the detailed characteristics of channels formed by alpha and beta1 or beta2 are dissimilar, the most remarkable difference being a reduction of the voltage sensitivity in the presence of beta1 but not beta2. Here we reveal the molecular regions in these beta subunits that determine their differential functional coupling with the pore-forming alpha-subunit. We made chimeric constructs between beta1 and beta2 subunits, and BK channels formed by alpha and chimeric beta subunits were expressed in Xenopus laevis oocytes. The electrophysiological characteristics of the resulting channels were determined using the patch clamp technique. Chimeric exchange of the different regions of the beta1 and beta2 subunits demonstrates that the NH3 and COOH termini are the most relevant regions in defining the behavior of either subunit. This strongly suggests that the intracellular domains are crucial for the fine tuning of the effects of these beta subunits. Moreover, the intracellular domains of beta1 are responsible for the reduction of the BK channel voltage dependence. This agrees with previous studies that suggested the intracellular regions of the alpha-subunit to be the target of the modulation by the beta1-subunit.  相似文献   

13.
High conductance, calcium- and voltage-activated potassium (BK) channels are widely expressed in mammals. In some tissues, the biophysical properties of BK channels are highly affected by coexpression of regulatory (beta) subunits. beta1 and beta2 subunits increase apparent channel calcium sensitivity. The beta1 subunit also decreases the voltage sensitivity of the channel and the beta2 subunit produces an N-type inactivation of BK currents. We further characterized the effects of the beta1 and beta2 subunits on the calcium and voltage sensitivity of the channel, analyzing the data in the context of an allosteric model for BK channel activation by calcium and voltage (Horrigan and Aldrich, 2002). In this study, we used a beta2 subunit without its N-type inactivation domain (beta2IR). The results indicate that the beta2IR subunit, like the beta1 subunit, has a small effect on the calcium binding affinity of the channel. Unlike the beta1 subunit, the beta2IR subunit also has no effect on the voltage sensitivity of the channel. The limiting voltage dependence for steady-state channel activation, unrelated to voltage sensor movements, is unaffected by any of the studied beta subunits. The same is observed for the limiting voltage dependence of the deactivation time constant. Thus, the beta1 subunit must affect the voltage sensitivity by altering the function of the voltage sensors of the channel. Both beta subunits reduce the intrinsic equilibrium constant for channel opening (L0). In the allosteric activation model, the reduction of the voltage dependence for the activation of the voltage sensors accounts for most of the macroscopic steady-state effects of the beta1 subunit, including the increase of the apparent calcium sensitivity of the BK channel. All allosteric coupling factors need to be increased in order to explain the observed effects when the alpha subunit is coexpressed with the beta2IR subunit.  相似文献   

14.
Mice with a disrupted beta(1) (BK beta(1))-subunit of the large-conductance Ca(2+)-activated K(+) (BK) channel gene develop systemic hypertension and cardiac hypertrophy, which is likely caused by uncoupling of Ca(2+) sparks to BK channels in arterial smooth muscle cells. However, little is known about the physiological levels of global intracellular Ca(2+) concentration ([Ca(2+)](i)) and its regulation by Ca(2+) sparks and BK channel subunits. We utilized a BK beta(1) knockout C57BL/6 mouse model and studied the effects of inhibitors of ryanodine receptor and BK channels on the global [Ca(2+)](i) and diameter of small cerebral arteries pressurized to 60 mmHg. Ryanodine (10 microM) or iberiotoxin (100 nM) increased [Ca(2+)](i) by approximately 75 nM and constricted +/+ BK beta(1) wild-type arteries (pressurized to 60 mmHg) with myogenic tone by approximately 10 microm. In contrast, ryanodine (10 microM) or iberiotoxin (100 nM) had no significant effect on [Ca(2+)](i) and diameter of -/- BK beta(1)-pressurized (60 mmHg) arteries. These results are consistent with the idea that Ca(2+) sparks in arterial smooth muscle cells limit myogenic tone through activation of BK channels. The activation of BK channels by Ca(2+) sparks reduces the voltage-dependent Ca(2+) influx and [Ca(2+)](i) through tonic hyperpolarization. Deletion of BK beta(1) disrupts this negative feedback mechanism, leading to increased arterial tone through an increase in global [Ca(2+)](i).  相似文献   

15.
Estrogen and xenoestrogens (i.e. agents that are not steroids but possess estrogenic activity) increase the open probability (P(o)) of large conductance Ca(2+)-activated K(+) (BK) channels in smooth muscle. The mechanism of action may involve the regulatory beta1 subunit. We used beta1 subunit knockout (beta1-/-) mice to test the hypothesis that the regulatory beta1 subunit is essential for the activation of BK channels by tamoxifen, 4-OH tamoxifen (a major biologically active metabolite), and 17beta-estradiol in native myocytes. Patch clamp recordings demonstrate BK channels from beta1-/- mice were similar to wild type with the exception of markedly reduced Ca(2+)/voltage sensitivity and faster activation kinetics. In wild type myocytes, (xeno)estrogens increased NP(o) (P(o) x the number of channels, N), shifted the voltage of half-activation (V(12)) to more negative potentials, and decreased unitary conductance. These effects were non-genomic and direct, because they were rapid, reversible, and observed in cell-free patches. None of the (xeno)estrogens increased the NP(o) of BK channels from beta1-/- mice, but all three agents decreased single channel conductance. Thus, (xeno)estrogens increase BK NP(o) through a mechanism involving the beta1 subunit. The decrease in conductance did not require the beta1 subunit and probably reflects an interaction with the pore-forming alpha subunit. We demonstrate regulation of smooth muscle BK channels by physiological (steroid hormones) and pharmacological (chemotherapeutic) agents and reveal the critical role of the beta1 subunit in these responses in native myocytes.  相似文献   

16.
Large conductance, voltage and Ca2+ activated K+ channels (BK channels) are abundantly expressed throughout the body and are important regulators of smooth muscle tone and neuronal excitability. Their dysfunction is implicated in various diseases including overactive bladder, hypertension and erectile dysfunction. Therefore, BK channel openers bear significant therapeutic potential to treat the above diseases. GoSlo-SR compounds were designed to be potent and efficacious BK channel openers. Although their structural activity relationships, activation in both BKα and BKαβ channels and the hypothetical mode of action of these compounds has been studied in detail in recent years, their effectiveness to open the BKαγ channels still remains unexplored. In this study, we have examined the efficacy of 3 closely related GoSlo-SR openers, GoSlo-SR-5-6 (SR-5-6), GoSlo-SR-5-44 (SR-5-44) and GoSlo-SR-5-130 (SR-5-130) using inside out patches on BKα channels coexpressed with 4 different LRRC (γ1–4) subunits in HEK293 cells. Our data suggests that the activation effects due to SR-5-6 were not significantly affected in the presence of γ1–4 subunits. Interestingly, the effects of more efficacious BK channel opener SR-5-44 were altered by different γ subunits. In cells expressing BKα channels, the shift in V1/2 (ΔV1/2) induced by SR-5-44 (3 μM) was ?76 ± 3 mV, whereas it was significantly reduced by ~70 % in BKαγ1 channels (ΔV1/2= ?23 ± 3, p < 0.001, ANOVA). In BKαγ2 channels the ΔV1/2 was ?36 ± 1 mV, which was less than that observed in BKαγ3 and BKαγ4 channels where the ΔV1/2 was ?47 ± 5 mV, and ?82 ± 5 mV, respectively. Additionally, the excitatory effects of a ‘β specific’ BK channel opener, SR-5-130 were only partially restored in the patches containing BKαγ1–4 channels. Together this data highlights that subtle modifications in GoSlo-SR structures alter their effectiveness on BK channels with accessory γ subunits and this study might provide a scaffold for the development of more tissue specific BK channel openers.  相似文献   

17.
Ha TS  Heo MS  Park CS 《Biophysical journal》2004,86(5):2871-2882
Large-conductance calcium-activated potassium (BK(Ca)) channels are composed of the pore-forming alpha-subunit and the auxiliary beta-subunits. The beta4-subunit is dominantly expressed in the mammalian central nervous system. To understand the physiological roles of the beta4-subunit on the BK(Ca) channel alpha-subunit (Slo), we isolated a full-length complementary DNA of rat beta4-subunit (rbeta4), expressed heterolgously in Xenopus oocytes, and investigated the detailed functional effects using electrophysiological means. When expressed together with rat Slo (rSlo), rbeta4 profoundly altered the gating characteristics of the Slo channel. At a given concentration of intracellular Ca(2+), rSlo/rbeta4 channels were more sensitive to transmembrane voltage changes. The activation and deactivation rates of macroscopic currents were decreased in a Ca(2+)-dependent manner. The channel activation by Ca(2+) became more cooperative by the coexpression of rbeta4. Single-channel recordings showed that the increased Hill coefficient for Ca(2+) was due to the changes in the open probability of the rSlo/rbeta4 channel. Single BK(Ca) channels composed of rSlo and rbeta4 also exhibited slower kinetics for steady-state gating compared with rSlo channels. Dwell times of both open and closed events were significantly increased. Because BK(Ca) channels are known to modulate neuroexcitability and the expression of the beta4-subunit is highly concentrated in certain subregions of brain, the electrophysiological properties of individual neurons should be affected profoundly by the expression of this second subunit.  相似文献   

18.
The beta(2) subunit of the large conductance Ca(2+)- and voltage-activated K(+) channel (BK(Ca)) modulates a number of channel functions, such as the apparent Ca(2+)/voltage sensitivity, pharmacological and kinetic properties of the channel. In addition, the N terminus of the beta(2) subunit acts as an inactivating particle that produces a relatively fast inactivation of the ionic conductance. Applying voltage clamp fluorometry to fluorescently labeled human BK(Ca) channels (hSlo), we have investigated the mechanisms of operation of the beta(2) subunit. We found that the leftward shift on the voltage axis of channel activation curves (G(V)) produced by coexpression with beta(2) subunits is associated with a shift in the same direction of the fluorescence vs. voltage curves (F(V)), which are reporting the voltage dependence of the main voltage-sensing region of hSlo (S4-transmembrane domain). In addition, we investigated the inactivating mechanism of the beta(2) subunits by comparing its properties with the ones of the typical N-type inactivation process of Shaker channel. While fluorescence recordings from the inactivated Shaker channels revealed the immobilization of the S4 segments in the active conformation, we did not observe a similar feature in BK(Ca) channels coexpressed with the beta(2) subunit. The experimental observations are consistent with the view that the beta(2) subunit of BK(Ca) channels facilitates channel activation by changing the voltage sensor equilibrium and that the beta(2)-induced inactivation process does not follow a typical N-type mechanism.  相似文献   

19.
As high-conductance calcium- and voltage-dependent potassium channels, BK channels consist of pore-forming, voltage-, and Ca2+-sensing α and auxiliary subunits. The leucine-rich repeat (LRR) domain–containing auxiliary γ subunits potently modulate the voltage dependence of BK channel activation. Despite their dominant size in whole protein masses, the function of the LRR domain in BK channel γ subunits is unknown. We here investigated the function of these LRR domains in BK channel modulation by the auxiliary γ1–3 (LRRC26, LRRC52, and LRRC55) subunits. Using cell surface protein immunoprecipitation, we validated the predicted extracellular localization of the LRR domains. We then refined the structural models of mature proteins on the membrane via molecular dynamic simulations. By replacement of the LRR domain with extracellular regions or domains of non-LRR proteins, we found that the LRR domain is nonessential for the maximal channel-gating modulatory effect but is necessary for the all-or-none phenomenon of BK channel modulation by the γ1 subunit. Mutational and enzymatic blockade of N-glycosylation in the γ1–3 subunits resulted in a reduction or loss of BK channel modulation by γ subunits. Finally, by analyzing their expression in whole cells and on the plasma membrane, we found that blockade of N-glycosylation drastically reduced total expression of the γ2 subunit and the cell surface expression of the γ1 and γ3 subunits. We conclude that the LRR domains play key roles in the regulation of the expression, cell surface trafficking, and channel-modulation functions of the BK channel γ subunits.  相似文献   

20.
Large conductance, Ca(2+)-sensitive potassium (BK) channels are critical components of the O(2) signalling cascade in a number of cells, including the carotid body and central neurones. Although the nature of the BK channel O(2) sensor is still unknown, evidence suggests redox modulators might form part of the O(2) sensing channel complex. By metabolising glutathione, gamma-glutamyl transpeptidase (gammaGT) could act as such an O(2) sensor. Western blotting and immunocytochemistry revealed high gammaGT expression in HEK293 cells expressing the alpha- and beta-subunits of human recombinant BK and gammaGT co-immunoprecipitated with BKalpha. Acivicin blockade of gammaGT reversibly inhibited BK channels, suggesting that this BKalpha protein partner contributes to tonic channel activity. However, knock-out of gammaGT using siRNA had no effect on hypoxic BK channel inhibition. Together, these data indicate that gammaGT is a BKalpha protein partner, that its activity regulates BK channels but that it is not the BK O(2) sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号