首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previously we had demonstrated by photoaffinity labeling that a 57-kDa protein of the endoplasmic reticulum can bind and become covalently linked to glycosylatable photoreactive peptides containing the sequence-Asn-Xaa-Ser/Thr-. Subsequently, it was found that this protein, called glycosylation site-binding protein, was a multifunctional protein, i.e. it was identical to protein disulfide isomerase (PDI), the beta-subunit of prolyl hydroxylase and thyroid hormone-binding protein. In this study, the peptide specificity for binding to this 57-kDa protein, hereafter called PDI, has been investigated in more detail using photoaffinity probes. The results reveal that although N-glycosylation by oligosaccharyl transferase in the endoplasmic reticulum has an absolute requirement for an hydroxyamino acid in the third amino acid residue of the glycosylation site sequence, no such specificity is observed in the binding of such peptides to PDI. In addition to the lack of specificity for an hydroxyamino acid in the third residue position, no specificity was observed for the asparagine residue in the first position. Thus, binding is not restricted to peptides containing N-glycosylation sites. We have investigated the discrepancy between this apparent lack of sequence specificity and earlier results indicating that binding of peptides to PDI was specific for N-glycosylation site sequences. We now demonstrate that PDI in the lumen of microsomes is more efficiently labeled by peptides containing photoreactive-Asn-Xaa-Ser/Thr- sequences than by nonacceptor site sequences because the former become glycosylated. This increased labeling does not occur because the glycosylated form of the probes are preferentially recognized by PDI. Rather, it appears that increased polarity of the affinity probe after attachment of the oligosaccharide chain prevents its exit from the sealed microsomes, in effect concentrating it within the lumen of the microsome. These results, coupled with other studies on the multifunctional nature of PDI, suggest that the observed peptide binding may be a manifestation of the ability of PDI to recognize the backbone of polypeptides in the lumen of the endoplasmic reticulum.  相似文献   

2.
Protein disulfide isomerase (PDI) is a folding assistant of the eukaryotic endoplasmic reticulum, but it also binds the hormones, estradiol, and 3,3',5-triiodo-l-thyronine (T(3)). Hormone binding could be at discrete hormone binding sites, or it could be a nonphysiological consequence of binding site(s) that are involved in the interaction PDI with its peptide and protein substrates. Equilibrium dialysis, fluorescent hydrophobic probe binding (4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS)), competition binding, and enzyme activity assays reveal that the hormone binding sites are distinct from the peptide/protein binding sites. PDI has one estradiol binding site with modest affinity (2.1 +/- 0.5 microm). There are two binding sites with comparable affinity for T(3) (4.3 +/- 1.4 microm). One of these overlaps the estradiol site, whereas the other binds the hydrophobic probe, bis-ANS. Neither estradiol nor T(3) inhibit the catalytic or chaperone activity of PDI. Although the affinity of PDI for the hormones estradiol and T(3) is modest, the high local concentration of PDI in the endoplasmic reticulum (>200 microm) would drive hormone binding and result in the association of a substantial fraction (>90%) of the hormones in the cell with PDI. High capacity, low affinity hormone sites may function to buffer hormone concentration in the cell and allow tight, specific binding to the true receptor while preserving a reasonable number of hormone molecules in the very small volume of the cellular environment.  相似文献   

3.
Native protein disulfide bond formation in the endoplasmic reticulum (ER) requires protein disulfide isomerase (PDI) and Ero1p. Here we show that oxidizing equivalents flow from Ero1p to substrate proteins via PDI. PDI is predominantly oxidized in wild-type cells but is reduced in an ero1-1 mutant. Direct dithiol-disulfide exchange between PDI and Ero1p is indicated by the capture of PDI-Ero1p mixed disulfides. Mixed disulfides can also be detected between PDI and the ER precursor of carboxypeptidase Y (CPY). Further, PDI1 is required for the net formation of disulfide bonds in newly synthesized CPY, indicating that PDI functions as an oxidase in vivo. Together, these results define a pathway for protein disulfide bond formation in the ER. The PDI homolog Mpd2p is also oxidized by Ero1p.  相似文献   

4.
Protein disulfide isomerase (PDI) interacts with secretory proteins, irrespective of their thiol content, late during translocation into the ER; thus, PDI may be part of the quality control machinery in the ER. We used yeast pdi1 mutants with deletions in the putative peptide binding region of the molecule to investigate its role in the recognition of misfolded secretory proteins in the ER and their export to the cytosol for degradation. Our pdi1 deletion mutants are deficient in the export of a misfolded cysteine-free secretory protein across the ER membrane to the cytosol for degradation, but ER-to-Golgi complex transport of properly folded secretory proteins is only marginally affected. We demonstrate by chemical cross-linking that PDI specifically interacts with the misfolded secretory protein and that mutant forms of PDI have a lower affinity for this protein. In the ER of the pdi1 mutants, a higher proportion of the misfolded secretory protein remains associated with BiP, and in export-deficient sec61 mutants, the misfolded secretory protein remain bounds to PDI. We conclude that the chaperone PDI is part of the quality control machinery in the ER that recognizes terminally misfolded secretory proteins and targets them to the export channel in the ER membrane.  相似文献   

5.
Protein disulfide isomerase (PDI) is a protein-thiol oxidoreductase that catalyzes the oxidation, reduction and isomerization of protein disulfides. In the endoplasmic reticulum PDI catalyzes both the oxidation and isomerization of disulfides on nascent polypeptides. Under the reducing condition of the cytoplasm, endosomes and cell surface. PDI catalyzes the reduction of protein disulfides. At those locations, PDI has been demonstrated to participate in the regulation of reception function, cell-cell interaction, gene expression, and actin filament polymerization. These activities of PDI will be discussed, as well as its activity as a chaperone and subunit of prolyl 4-hydroxylase and microsomal triglyceride transfer protein.  相似文献   

6.
7.
The endoplasmic reticulum (ER) is an essential cellular compartment in which an enormous number of secretory and cell surface membrane proteins are synthesized and subjected to cotranslational or posttranslational modifications, such as glycosylation and disulfide bond formation. Proper maintenance of ER protein homeostasis (sometimes termed proteostasis) is essential to avoid cellular stresses and diseases caused by abnormal proteins. Accumulating knowledge of cysteine-based redox reactions catalyzed by members of the protein disulfide isomerase (PDI) family has revealed that these enzymes play pivotal roles in productive protein folding accompanied by disulfide formation, as well as efficient ER-associated degradation accompanied by disulfide reduction. Each of PDI family members forms a protein–protein interaction with a preferential partner to fulfill a distinct function. Multiple redox pathways that utilize PDIs appear to function synergistically to attain the highest quality and productivity of the ER, even under various stress conditions. This review describes the structures, physiological functions, and cooperative actions of several essential PDIs, and provides important insights into the elaborate proteostatic mechanisms that have evolved in the extremely active and stress-sensitive ER.  相似文献   

8.
In vitro, protein disulfide isomerase (Pdi1p) introduces disulfides into proteins (oxidase activity) and provides quality control by catalyzing the rearrangement of incorrect disulfides (isomerase activity). Protein disulfide isomerase (PDI) is an essential protein in Saccharomyces cerevisiae, but the contributions of the catalytic activities of PDI to oxidative protein folding in the endoplasmic reticulum (ER) are unclear. Using variants of Pdi1p with impaired oxidase or isomerase activity, we show that isomerase-deficient mutants of PDI support wild-type growth even in a strain in which all of the PDI homologues of the yeast ER have been deleted. Although the oxidase activity of PDI is sufficient for wild-type growth, pulse-chase experiments monitoring the maturation of carboxypeptidase Y reveal that oxidative folding is greatly compromised in mutants that are defective in isomerase activity. Pdi1p and one or more of its ER homologues (Mpd1p, Mpd2p, Eug1p, Eps1p) are required for efficient carboxypeptidase Y maturation. Consistent with its function as a disulfide isomerase in vivo, the active sites of Pdi1p are partially reduced (32 +/- 8%) in vivo. These results suggest that PDI and its ER homologues contribute both oxidase and isomerase activities to the yeast ER. The isomerase activity of PDI can be compromised without affecting growth and viability, implying that yeast proteins that are essential under laboratory conditions may not require efficient disulfide isomerization.  相似文献   

9.
10.
We present the first identification of transient folding intermediates of endogenous thyroglobulin (Tg; a large homodimeric secretory glycoprotein of thyrocytes), which include mixed disulfides with endogenous oxidoreductases servicing Tg folding needs. Formation of disulfide-linked Tg adducts with endoplasmic reticulum (ER) oxidoreductases begins cotranslationally. Inhibition of ER glucosidase activity blocked formation of a subgroup of Tg adducts containing ERp57 while causing increased Tg adduct formation with protein disulfide isomerase (PDI), delayed adduct resolution, perturbed oxidative folding of Tg monomers, impaired Tg dimerization, increased Tg association with BiP/GRP78 and GRP94, activation of the unfolded protein response, increased ER-associated degradation of a subpopulation of Tg, partial Tg escape from ER quality control with increased secretion of free monomers, and decreased overall Tg secretion. These data point towards mixed disulfides with the ERp57 oxidoreductase in conjunction with calreticulin/calnexin chaperones acting as normal early Tg folding intermediates that can be "substituted" by PDI adducts only at the expense of lower folding efficiency with resultant ER stress.  相似文献   

11.
The product of the EUG1 gene of Saccharomyces cerevisiae is a soluble endoplasmic reticulum protein with homology to both the mammalian protein disulfide isomerase (PDI) and the yeast PDI homolog encoded by the essential PDI1 gene. Deletion or overexpression of EUG1 causes no growth defects under a variety of conditions. EUG1 mRNA and protein levels are dramatically increased in response to the accumulation of native or unglycosylated proteins in the endoplasmic reticulum. Overexpression of the EUG1 gene allows yeast cells to grow in the absence of the PDI1 gene product. Depletion of the PDI1 protein in Saccharomyces cerevisiae causes a soluble vacuolar glycoprotein to accumulate in its endoplasmic reticulum form, and this phenotype is only partially relieved by the overexpression of EUG1. Taken together, our results indicate that PDI1 and EUG1 encode functionally related proteins that are likely to be involved in interacting with nascent polypeptides in the yeast endoplasmic reticulum.  相似文献   

12.
13.
Protein disulfide isomerase (PDI) is the archetypal enzyme involved in the formation and reshuffling of disulfide bonds in the endoplasmic reticulum (ER). PDI achieves its redox function through two highly conserved thioredoxin domains, and PDI can also operate as an ER chaperone. The substrate specificities and the exact functions of most other PDI family proteins remain important unsolved questions in biology. Here, we characterize a new and striking member of the PDI family, which we have named protein disulfide isomerase-like protein of the testis (PDILT). PDILT is the first eukaryotic SXXC protein to be characterized in the ER. Our experiments have unveiled a novel, glycosylated PDI-like protein whose tissue-specific expression and unusual motifs have implications for the evolution, catalytic function, and substrate selection of thioredoxin family proteins. We show that PDILT is an ER resident glycoprotein that liaises with partner proteins in disulfide-dependent complexes within the testis. PDILT interacts with the oxidoreductase Ero1alpha, demonstrating that the N-terminal cysteine of the CXXC sequence is not required for binding of PDI family proteins to ER oxidoreductases. The expression of PDILT, in addition to PDI in the testis, suggests that PDILT performs a specialized chaperone function in testicular cells. PDILT is an unusual PDI relative that highlights the adaptability of chaperone and redox function in enzymes of the endoplasmic reticulum.  相似文献   

14.
We have cloned, sequenced, and expressed full length cDNA clones encoding two abundant, luminal endoplasmic reticulum proteins (ERp), ERp59/PDI and ERp72. ERp59/PDI has been identified as the microsomal enzyme protein disulfide isomerase (PDI). An analysis of the amino acid sequence of ERp72 showed that it shared sequence identity with ERp59/PDI at three discrete regions, having three copies of the sequences that are thought to be the CGHC-containing active sites of ERp59/PDI. Thus, ERp72 appears to be a newly described member of the family of CGHC-containing proteins. ERp59/PDI has the sequence KDEL at its COOH terminus while ERp72 has the related sequence KEEL. Removal of the KDEL of ERp59/PDI or the KEEL of ERp72 by in vitro mutagenesis techniques and subsequent analysis of the mutants in transient expression assays, showed that both sequences are endoplasmic reticulum retention signals for their respective proteins. The most dramatic difference in secretion between the wild type and the mutant forms of the protein was seen in the case of ERp72.  相似文献   

15.
Apolipoprotein (apo) B is an obligatory component of very low density lipoprotein (VLDL), and its cotranslational and posttranslational modifications are important in VLDL synthesis, secretion, and hepatic lipid homeostasis. ApoB100 contains 25 cysteine residues and eight disulfide bonds. Although these disulfide bonds were suggested to be important in maintaining apoB100 function, neither the specific oxidoreductase involved nor the direct role of these disulfide bonds in apoB100-lipidation is known. Here we used RNA knockdown to evaluate both MTP-dependent and -independent roles of PDI1 in apoB100 synthesis and lipidation in McA-RH7777 cells. Pdi1 knockdown did not elicit any discernible detrimental effect under normal, unstressed conditions. However, it decreased apoB100 synthesis with attenuated MTP activity, delayed apoB100 oxidative folding, and reduced apoB100 lipidation, leading to defective VLDL secretion. The oxidative folding–impaired apoB100 was secreted mainly associated with LDL instead of VLDL particles from PDI1-deficient cells, a phenotype that was fully rescued by overexpression of wild-type but not a catalytically inactive PDI1 that fully restored MTP activity. Further, we demonstrate that PDI1 directly interacts with apoB100 via its redox-active CXXC motifs and assists in the oxidative folding of apoB100. Taken together, these findings reveal an unsuspected, yet key role for PDI1 in oxidative folding of apoB100 and VLDL assembly.  相似文献   

16.
Human genome projects have enabled whole genome mapping and improved our understanding of the genes in humans. However, many unknown genes remain to be functionally characterized. In this study, we characterized human chromosome 4 open reading frame 34 gene (hC4orf34). hC4orf34 was highly conserved from invertebrate to mammalian cells and ubiquitously expressed in the organs of mice, including the heart and brain. Interestingly, hC4orf34 is a novel ER-resident, type I transmembrane protein. Mutant analysis showed that the transmembrane domain (TMD) of hC4orf34 was involved in ER retention. Overall, our results indicate that hC4orf34 is an ER-resident type I transmembrane protein, and might play a role in ER functions including Ca2+ homeostasis and ER stress. [BMB Reports 2014; 47(10): 563-568]  相似文献   

17.
We recently isolated a protein disulfide isomerase (PDI) from the Rubiaceae (coffee family) plant Oldenlandia affinis (OaPDI) and demonstrated that it facilitates the production of disulfide-knotted defense proteins called cyclotides. PDIs are major folding catalysts in the eukaryotic ER where they are responsible for formation, breakage, or shuffling of disulfide bonds in substrate polypeptides and are important chaperones in the secretory pathway. Here, we report the first detailed analysis of the oligomerization behavior of a plant PDI, based on characterization of OaPDI using various biochemical and biophysical techniques, including size-exclusion chromatography, NMR spectroscopy, surface plasmon resonance and atomic force microscopy. In solution at low concentration OaPDI comprises mainly monomers, but fractions of dimers and/or higher-order oligomers were observed at increased conditions, raising the possibility that dimerization and/or oligomerization could be a mechanism to adapt to the various-sized polypeptide substrates of PDI. Unlike mammalian PDIs, oligomerization of the plant PDI is not driven by the formation of intermolecular disulfide bonds, but by noncovalent interactions. The information derived in this study advances our understanding of the oligomerization behavior of OaPDI in particular but is potentially of broader interest for understanding the mechanism and role of oligomerization, and hence the catalytic and physiological mechanism, of the ubiquitous folding catalyst PDI.  相似文献   

18.
I Braakman  J Helenius    A Helenius 《The EMBO journal》1992,11(5):1717-1722
Addition of the reducing agent dithiothreitol (DTT) to the medium of living cells prevented disulfide bond formation in newly synthesized influenza hemagglutinin (HA0) and induced the reduction of already oxidized HA0 inside the ER. The reduced HA0 did not trimerize or leave the ER. When DTT was washed out, HA0 was rapidly oxidized, correctly folded, trimerized and transported to the Golgi complex. We concluded that protein folding and the redox conditions in the ER can be readily manipulated by addition of DTT without affecting most other cellular functions, that the reduced influenza HA0 remains largely unfolded, and that folding events that normally take place on the nascent HA0 chains can be delayed and induced post-translationally without loss in efficiency.  相似文献   

19.
Endothelial cells (EC) exposed to hypoxia upregulate a unique set of five stress proteins. These proteins are upregulated in human and bovine aortic and pulmonary artery EC and are distinct from heat shock or glucose-regulated proteins. We previously identified two of these proteins as the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase and enolase and postulated that the remaining proteins were also glycolytic enzymes. Using SDS-PAGE, tryptic digestion, and NH(2)-terminal amino acid sequencing, we report here the identification of the 56-kDa protein as protein disulfide isomerase (PDI). PDI is upregulated by hypoxia at the mRNA level and follows a time course similar to that of the protein, with maximal upregulation detected after exposure to 18 h of 0% O(2). Neither smooth muscle cells nor fibroblasts upregulate PDI to the same extent as EC, which correlates with their decreased hypoxia tolerance. Upregulation of PDI specifically in EC may contribute to their ability to tolerate hypoxia and may occur through PDI's functions as a prolyl hydroxylase subunit, protein folding catalyst, or molecular chaperone.  相似文献   

20.
Based on topological studies mannosylphosphoryldolichol (Man-P-Dol) is synthesized on the cytoplasmic face of the RER, but functions as a mannosyl donor in Glc3Man9GlcNAc2-P-P-dolichol biosynthesis after the mannosyl-phosphoryl headgroup diffuses transversely to the luminal compartment. The transport of mannosylphosphorylcitronellol (Man-P- Cit), a water-soluble analogue of Man-P-Dol, by microsomal vesicles from mouse liver, has been investigated as a potential experimental approach to determine if a membrane protein(s) mediates the transbilayer movement of Man-P-Dol. For these studies beta-[3H]Man-P- Cit was synthesized enzymatically with a partially purified preparation of Man-P-undecaprenol synthase from Micrococcus luteus. The uptake of the radiolabeled water-soluble analogue was found to be (a) time dependent; (b) stereoselective; (c) dependent on an intact permeability barrier; (d) saturable; (e) protease-sensitive; and (f) highest in ER- enriched vesicles relative to Golgi complex-enriched vesicles and intact mitochondria. Consistent with the involvement of a membrane protein, the analogue did not enter synthetic phosphatidylcholine- liposomes. [3H]Man-P-Cit also was not transported by human erythrocytes. These results indicate that the transport of Man-P-Cit by sealed microsomal vesicles from mouse liver is mediated by a membrane protein transport system. It is possible that the same membrane protein(s) participates in the transbilayer movement of Man-P-Dol in the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号