首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E Heller  M A Raftery 《Biochemistry》1976,15(6):1199-1203
The egg vitelline envelope of the marine invertebrate, Megathura crenulata, was lyzed either by sperm lysins A, B, C or by dithiothreitol. In each case the lysis mixture consisted of two major fractions, I and II, that could be separated by hydroxylapatite chromatography and had different electrophoretic mobilities on cellulose acetate strips. The amino acid, amino sugar, and neutral sugar compositions of fractions I and II were similar and resembled that of the intact vitelline envelope. Fractions I and II of each lysis mixture emerged in the exclusion volume of a Sepharose 6B column. A vitelline envelope fragment enzymatically formed by lysin was further degraded by dithiothreitol to form smaller fragments. A model of the vitelline envelope of the Megathura crenulata egg is suggested whereby the envelope is composed of polypeptide chains cross-linked by disulfide bonds and built to a large extent of closely spaced threonine residues. Most of the threonine residues are linked to carbohydrate units. Dithiothreitol dissolves the envelope by reducing disulfide bonds, whereas lysins most likely dissolve the envelope by degrading polypeptide chains.  相似文献   

2.
A glycopeptide containing 69% carbohydrate was isolated from human gastric juice. The complex was found to be homogeneous and to have mol.wt. 9600. The glycopeptide consisted of a protein core to which were linked, by O-glycosidic linkages to threonine and N-glycosidic linkages, carbohydrate side chains composed of N-acetylgalactosamine, N-acetylglucosamine, galactose, mannose, fucose and sialic acid, in the proportions 2:10:7:4:12:1.  相似文献   

3.
Some proteolytic digests of chicken egg white ovomucin were fractionated and characterized. It was shown that there are at least three types of carbohydrate side chains in ovomucin; a chain composed of galactose, galactosamine, sialic acid and sulfate in a molar ratio of about 1: 1: 1: 1, a chain composed of galactose and glucosamine in a molar ratio of about 1:1, and a chain composed of mannose and glucosamine in a molar ratio of about 1:1. It was also shown that the carbohydrate side chain composed of galactose, galactosamine, sialic acid and sulfate is linked O-glycosidically to serine or threonine in the protein core of ovomucin.  相似文献   

4.
The carbohydrate structure of rabbit immunoglobulin G isolated from pooled sera was investigated. Amino sugar analysis of fragments of the molecule allowed three oligosaccharides to be located at separate sites on the H-chain. The corresponding glycopeptides were isolated. The average composition of the C1-oligosaccharide was 2 glucosamine, 1 mannose and 2 galactose residues. It appeared to be present in approx. 15% of the H-chains; the carbohydrate was coupled through the amide group of asparagine in a peptide containing asparagine, glycine and threonine within the Fd fragment of the molecule. The average composition of the C2-oligosaccharide was 1 galactosamine, 1 galactose and either 1 or 2 sialic acid residues. It was present on approx. 40% of the H-chains and was attached glycosidically to the OH group of threonine in a peptide Ser-Lys-Pro-Thr-Cys-Pro-Pro-Glu-Leu in the hinge region of the molecule. The average composition of the C3-oligosaccharide was 5 glucosamine, 2 galactose, 5 mannose, 1 fucose and 1 sialic acid residue. It appeared to be present in all the H-chains and was linked through the amide group of asparagine in a peptide Gln-Gln-Phe-Asn-Ser-Thr-Ile-Arg within the Fc fragment of the molecule.  相似文献   

5.
The articular lubricating fraction from bovine synovial fluid was prepared by repeated fractionation in three consecutive CsCl density gradients to remove completely traces of hyaluronic acid. The major glycoprotein consituent (LGP-I) was then isolated by repeated gel-permeation chromatography. The yield of the LGP-I component was about 20 mg/litre of synovial fluid. Sedimentation-equilibrium measurements showed that this glycoprotein was homogeneous and the mol.wt. was calculated to be 227500. Amino acids represented 43% (w/w) and carbohydrate constituents 44% (w/w) of the molecule. Threonine, glutamic acid, proline and lysine (224, 127, 242 and 128 residues/1000 residues respectively) were the major amino acids. Galactosamine, galactose and N-acetylneuraminic acid (202, 162 and 114 residues/molecule of LGP-I component respectively) accounted for 98% of the total carbohydrate residues present. Small amounts of mannose and glucosamine (1 and 9mol respectively/mol of LGP-I component) were also present. After treatment of LGP-I component with alkali and NaB3H4 radioactivity was incorporated into alpha-aminobutyric acid and alanine in a molar ratio of 4:1, and radioactive galactosaminitol was isolated by ion-exchange chromatography from a cleaved oligosaccharide fraction. These data demonstrate the presence of threonine and serine -O-GalNAc linkages, but only 25% of the theoretical likages involving threonine were cleaved by a beta-elimination reaction. Digestion of LGP-I component with Pronase followed by chromatography on DEAE-cellulose yielded glycopeptide fractions with a similar amino acid and carbohydrate composition to the intact molecule. Treatment of desialylated and intact LGP-I component with galactose oxidase followed by reduction with NaB3H4 revealed the presence of 52mol of terminal galactose in the intact molecule and 153mol of galactose/mol of LGP-I component after treatment with neuraminidase. The data indicate the LGP-I component is composed of a single polypeptide chain containg more than 150 oligaosaccharide side chains composed of O-GaINAc-Gal distributed over the length of the peptide chain and that terminal sialic acid residues are linked to galactose in two-thirds of these side chains.  相似文献   

6.
Plasma membranes were isolated from an ascites hepatoma, AH 130, by the fluorescein mercuric acetate (FMA) method. Glycopeptides and mucopolysaccharides were prepared by digesting the membranes with pronase, then by fractionating the digest chromatographically and electrophoretically. Isolated fractions were analyzed for their amino acid and carbohydrate compositions. Results were compared with those for corresponding fractions from AH 66 (J. Biochem. 76, 319-333 (1974)). Mucopolysaccharides and a series of glycopeptides were isolated from the fraction excluded from Sephadex G-50. The mucopolysaccharides were identified as a family of heparan sulfates with different electrophoretic mobilities. The glycopeptides contained serine, threonine, galactose, galactosamine, glucosamine, and sialic acid as the major constituents as aspartic acid and mannose as minor ones. This suggests that most of the carbohydrate moieties are linked to serine or threonine (O-glycosidic), and that some are linked to asparagine (N-glycosidic). No nearly purely O-glycosidic glycopeptides were found in this fraction from AH 130, through they were the major glycopeptides from the AH 66 plasma membranes. In the fraction included in the gel, glycopeptides containing fucose, galactose, mannose, glucosamine, glaactosamine, and sialic acid were found. The presence of galactosamine suggests that some of the glycopeptides are O-glycosidic though most are N-glycosidic. In the corresponding fraction from AH 66, nearly purely N-glycosidic glycopeptides were found.  相似文献   

7.
A new acidic glycoprotein containing deaminated neuraminic acid (KDN = 3-deoxy-D-glycero-D-galacto-nonulosonic acid; greater than 50%, w/w) was isolated from vitelline envelope of the unfertilized eggs of rainbow trout (Salmo gairdneri). This glycoprotein is designated as "KDN-glycoprotein" because it contains only KDN but no sialic acid as the acidic carbohydrate moieties. Other major carbohydrate components of KDN-glycoprotein were Gal and GalNAc. Thr and Ala accounted for 71% (mol/mol) of amino acid composition. A possible occurrence of KDN-KDN linkages, i.e. oligoKDN groups has been suggested in the carbohydrate chains presumably linked O-glycosidically to the core protein.  相似文献   

8.
A glycoprotein is isolated from lamb gastric mucosa. It is purified first by reduction with dithiothreitol and then by chromatography on CM-Sephadex followed by gelfiltration on Sephadex G-75. Its homogeneity is investigated by disc electrophoresis, immunoelectrophoresis, analytical ultracentrifugation and identification of the carboxy- and amino-terminal amino acids. This glycoprotein contains 56 p. cent carbohydrates, consisting of N-glycolyneuraminic acid, fucose, galactose, and hexosamines. Hexosamines and galactose are in equimolar ratio ; galactosamine and glucosamine in the ratio 1 :2. The amino acid composition shows that threonine, serine and proline account for half of the amino acid residues. The cysteine origin and function are discussed.  相似文献   

9.
The isolation and partial characterization of a glycoprotein isolated from individual gastric aspirates and extracts of gastric mucosae solubilized with N-acetylcysteine is described.The isolated glycoproteins and the glycoproteins from proteolysed gastric aspirates showed virtually the same carbohydrate and amino acid composition. The results indicate that they consist of a protein core to which are attached carbohydrate side-chains composed of four sugars: N-acetylgalactosamine N-acetylglucosamine, galactose, fucose showing a ratio of 1 : 3 : 4 : 2. Superimposed on this basic structure were additional sugar residues, the blood-group determinants. The results also suggest that the carbohydrate side-chains are linked by an alkali-labile O-glycosidic linkage to the threonine and serine residues of the protein core, N-acetylgalactosamine forming the link.  相似文献   

10.
Sulfated glycopeptides were isolated from pronaisc and tryptic digests of egg shell membranes and hen oviduct. They were precipitated by cationic detergents and separated by preparative electrophoresis, after removal of small quantities of glucuronoglycosaminoglycans detected only in the oviduct (isthmus and magnum). The principal isolated sulfated glycopeptides were divided according to increasing electrophoretic mobilities into two groups A and B. The homogeneity of the purified glycopeptides was confirmed by gel filtration and polyacrylamide gel electrophoresis.Glycopeptides from pool preparation of tissue are analysed and carbohydrate and amino acids average values are estimated. Hexosamines (mainly N-acetylglucosamine), hexoses (galactose, glucose, mannose) and fucose were found in Glycopeptides A. The molar ratio of hexose/hexosamine was 0.4. N-Acetylneuraminic acid and sulfate were also present in Glycopeptides A. The molar ratio of sulfate/hexosamine ranged from 0.1 to 0.25. The Glycopeptides A composition indicated the presence of chains with many glycosyl groups and a few of amino acids residues. The carbohydrate components of Glycopeptides B from egg shell membranes and magnum were found to be hexosamines (N-acetylgalactosamine and N-acetylglucosamine in equimolar proportions), hexoses (galactose mainly and glucose), N-acetylneuraminic acid, and fucose. The molar ratio of hexose/hexosamine was 1. Sulfate was also present and the molar ratio of N-acetylneuraminic acid and sulfate to hexosamine was ranged from 0.8 to 1. The main amino acid residues in these glycopeptides were serine and threonine with destruction of these hydroxyamino acids during alkali treatment. Glycopeptides B probably consist of short carbohydrate chains, linked to the polypeptide through O-glycosidic bonds involving N-acetylgalactosamine and serine and threonine. Approximately 40% of the amino acid residues were linked to carbohydrate chains.Glycopeptides B from egg shell membranes magnum and egg white were very similar in their carbohydrate and amino acid composition and in their properties.Gylcopeptides A from egg shell membranes, isthmus and magnum showed similarities and divergences especially in the amino acid composition. These results suggest that magnum and isthmus in oviduct are both concerned with the synthesis of egg shell membrane glycoproteins.  相似文献   

11.
1. The composition of the hypobranchial mucin from Buccinum undatum is reported. 2. The amino acid composition was determined; aspartic acid and glutamic acid contribute almost 24% of the total amino acids in the mucin. 3. Serine, threonine and alanine, in the proportions 2:1:1 respectively, were detected as N-terminal residues, implying the presence of at least four protein chains. 4. A glycoprotein component was isolated by phenol precipitation. 5. The glycoprotein contained 8% of neutral sugars comprising glucose, galactose, mannose and fucose, and 4.5% of hexosamine, comprising glucosamine and galactosamine in equal proportions. 6. A method is described for the preparation of glycopeptides from the glycoprotein. 7. The comparative biochemistry of the mucin is discussed.  相似文献   

12.
A glycoprotein antigen was purified from human brain by immunoaffinity chromatography using the 44D10-monoclonal IgG, and its chemical nature was investigated. The yield of antigen was estimated at 91% and a 4340-fold purification was obtained relative to the white-matter homogenate. The antigen preparation from brain was further purified by preparative SDS/polyacrylamide-gel electrophoresis (PAGE) to obtain a glycoprotein with an Mr of 80,000 consisting of a single polypeptide. Amino acid analyses revealed a composition which was high in acidic and neutral amino acids, and low in basic residues. The presence of both glucosamine and galactosamine suggested that the glycoprotein contained both N- and O-linked glycans. Neutral sugar analyses showed that fucose, galactose and mannose were present. An assay for sialic acid determined that there were approximately 20 mol of sialic acid per mol of glycoprotein. Chemical cleavage of oligosaccharides by trifluoromethanesulphonic acid followed by SDS/PAGE showed that carbohydrate accounted for 25,000 of the 80,000-Mr glycoprotein.  相似文献   

13.
1. The sugars and amino sugars of hydrolysates of gastric secretion were determined by gas-liquid chromatography. 2. All the gastric aspirations examined showed on hydrolysis the presence of fucose, galactose, mannose, glucose, galactosamine, glucosamine, N-acetylneuraminic acid and sulphate. 3. Galactose and glucosamine were always found in equimolar amounts, but the galactose/galactosamine ratio in different aspirations was 2:1, 3:1, 4:1 or 5:1. Repeated gastric aspirations of each subject examined showed constant ratios of these carbohydrate components. 4. Fucose and sialic acid appear to be related to glucosamine and galactosamine respectively. 5. The carbohydrate components of extracts from the mucous glands of the body mucosa and antrum did not differ from those of gastric secretion.  相似文献   

14.
The carbohydrate chains present in the tubular basement membrane of bovine kidney were studied. Digestion with collagenase followed with pronase resulted in a complete solubilization of the basement membrane. The different glycopeptides were purified by gel filtration and ion-exchange chromatography. Two kinds of carbohydrate chains could be characterized: oligosaccharides composed of glucosamine, mannose, galactose, fucose and sialic acid, and glucosylgalactose disaccharides. A very small portion of the oligosaccharide chains (ca. 4%) appeared to be free of sialic acid. The bulk of these chains contained sialic acid and fucose, although in small amounts. Only traces of galactosamine were found.  相似文献   

15.
Gum-tears from the leaves of Welwitschia mirabilis contain a polysaccharide composed of arabinose, galactose and glucuronic acid as main constituents with xylose, fucose and rhamnose in smaller quantities. Periodate oxidation and permethylation studies indicated that the gum could consist of a framework of glucuronic acid residues linked 1 → 4 and galactose residues linked 1 → 6 and of short chains of arabinose, xylose, fucose and rhamnose linked 1 → 3 to both residues. All rhamnose and fucose and part of arabinose were found as non-reducing terminal units.  相似文献   

16.
The vitelline layers (VLs) of unfertilized sea urchin eggs were isolated by homogenization in a hypotonic medium containing Triton X- 100 and EDTA. The surface topography of the VL is not changed by isolation. The thickness of the isolated VLs (300-400 A) is greater than that reported for VLs on intact eggs (100-200 A). Sperm adhere to the isolated VLs. When both internal and external VL surfaces are accessible to sperm, the sperm attach only to the external surface, suggesting that the external surface may carry sperm receptor proteins not present on the internal surface. Sodium dodecyl sulfate (SDS)- polyacrylamide gel electrophoresis shows that isolated VLs are composed of numerous proteins ranging from greater than 213,000 to 25,000 daltons. Lactoperoxidase-catalyzed 125I-iodination of unfertilized eggs labels two high molecular weight bands that stain faintly for carbohydrate. VLs are 90% protein and 3.5% carbohydrate. No predominance of a single amino acid or class of amino acids was found. Carbohydrate analysis yields fucose, mannose, galactose, glucose, xylose, glucosamine, galactosamine, and sialic acid. Controls for purity indicate that isolated VLs contain 2% protein of cytoplasmic origin and no more than 2.5% egg jelly.  相似文献   

17.
1. Crystalline beta-lactamase I from Bacillus cereus 569/H yielded only amino acids on acid hydrolysis, but crystalline beta-lactamase II from the same organism yielded also substantial quantities of neutral sugars and amino sugars. 2. Analysis with an amino acid analyser indicated that the two enzymes were similar though not identical in overall amino acid composition. Analysis of neutral and amino sugars as their silyl derivatives by gas-liquid chromatography showed that the carbohydrate moiety of beta-lactamase II contained residues of glucose, galactose, mannose, fucose, glucosamine and galactosamine. 3. After oxidation and hydrolysis both beta-lactamases gave small amounts of cysteic acid. After treatment of inactive Zn(2+)-free beta-lactamase II with N-ethylmaleimide or iodoacetate enzymic activity was not restored by the addition of Zn(2+).  相似文献   

18.
The glycoprotein which accounts for approximately 50% of the protein and all of the nonlipid carbohydrate of the cell envelope of Halobacterium salinarium (Mescher, M. F., Strominger, J. L., and Watson S. W. (1974) J. Bacteriol. 120, 945-954) has been purified and partially characterized. The glycoprotein has an apparent molecular weight of 200,000, is extremely acidic, and has a carbohydrate content of approximately 10 to 12%. The carbohydrate included neutral hexoses, amino sugar, and uronic acid. Information regarding the number, composition, and mode of attachment of the carbohydrate chains was obtained by isolation and examination of the glycopeptides derived from degradation of cell envelope protein with trypsin and pronase. Trypsin digestion resulted in two glycopeptides. One of these was large (approximately 55,000 daltons) and had most of the neutral hexose linked to it. The carbohydrate moieties consisted of di- and trisaccharides of glucosylgalactose and (uronic acid, glucose)-galactose attached via O-glycosidic linkages between galactose and threonine. The other tryptic glycopeptide had a relatively large heterosaccharide attached to it via an alkaline-stable linkage. The heterosaccharide contained 1 glucose, 8 to 9 galactose, 1 mannose, and 10 to 11 glucosamine residues, and approximately 6 residues of an unidentified amino augar. The alkaline stability of the linkage and the amino acid composition of glycopeptides resulting from Pronase digestion of the tryptic glycopeptide showed that the heterosaccharide was attached to an asparagine residue, presumably via an N-glycosylamine bond to the amide group. The intact glycoprotein has a single N-linked heterosaccharide, 22 to 24 O-linked disaccharides, and 12 to 14 O-linked trisaccharides per molecule. N- and O-glycosidic linkages are the most common carbohydrate-protein linkages in mammalian glycoproteins but, to our knowledge, this is the first report of either type of linkage in a prokaryotic cell envelope protein.  相似文献   

19.
Plasma membranes were isolated from an ascites hepatoma, AH 130 FN, a free-cell type subline of AH 130, by the fluorescein mercuric acetate (FMA) method. Glycopeptides and mucopolysaccharides were prepared from the membranes by pronase digestion then fractionated chromatographically and electrophoretically. Isolated fractions were analyzed for amino acid and carbohydrate compositions. The results were compared with those for corresponding fractions from AH 66 and AH 130 ((1974) J. Biochem. 76, 319-333; (1975) ibid., 78, 863-872). The fraction excluded from Sephadex G-50 contained mucopolysaccharides and a series of glycopeptides. The mucopolysaccharides were identified as chondroitin sulfate A on the basis of their chemical composition, electrophoretic behavior on cellulose acetate and digestibility with chondroitinase AC [EC 4.2.2.5]. This contrasts with previous findings that mucopolysaccharides from the corresponding fractions from AH 130 and AH 66 were heparan sulfate. The chemical composition of the glycopeptides, which showed high contents of threonine, serine, galactose, galactosamine, glucosamine, and sialic acid, indicated the presence of glycopeptides with O-glycosidic linkages. The glycopeptides also contained a small but significant amount of aspartic acid, suggesting that N-glycosidic glycopeptides were also contained in this fraction. The fraction included in Sepnadex G-50 contaoned N-glycosidic glycopeptides as major components, since the carbohydrate moieties were composed of fucose, galactose, mannose, glucosamine, sialic acid, and a smaller amount of galactosamine. The presence of galactosamine suggested that O-glycosidic glycopeptides were present as minor components. Glycopeptides with both O- and N-glycosidic linkages were isolated from AH 130, but not from AH 66.  相似文献   

20.
The sulfated polysaccharides in the body wall of the sea cucumber occur as three fractions that differ markedly in molecular mass and chemical composition. The fraction containing a high molecular mass component has a high proportion of fucose and small amounts of galactose and amino sugars, whereas another fraction contains primarily a sulfated fucan. The third fraction (F-2), which represents the major portion of the sea cucumber-sulfated polysaccharides, contains approximately equimolar quantities of glucuronic acid, N-acetyl galactosamine, and fucose, and has a sulfate content higher than that in the other two fractions. The structure of fraction F-2 was examined in detail. This polysaccharide has an unusual structure composed of a chondroitin sulfate-like core, containing side chain disaccharide units of sulfated fucopyranosyl linked to approximately half of the glucuronic acid moieties through the O-3 position of the acid. These unusual fucose branches obstruct the access of chondroitinases to the chondroitin sulfate core of F-2. However, after partial acid hydrolysis, which removes the sulfated fucose residues from the polymer, fraction F-2 is degraded by chondroitinases into 6-sulfated and nonsulfated disaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号