首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Barley endosperm development can be subdivided into the pre-storage, intermediate, storage and desiccation phase. Nothing is known about DNA methylation events involved in different endosperm-specific developmental programmes. A complete set of methylation cycle enzyme genes was identified and investigated by mRNA expression analysis. During the pre-storage phase, methionine synthase and S-adenosylmethionine (AdoMet) synthase genes are expressed at high levels, mainly to produce AdoMet, which might be used for methylation processes as indicated by high expression of methyltransferases HvMET1, HvCMT1 and HvDnmt3-1 as well as AdoHcy hydrolase genes. The methyltransferases, core histones and DNA-unwinding ATPases are co-expressed at the mRNA level. On the contrary, storage protein (prolamin) gene expression is repressed due to CpG methylation. Expression of genes responsible for starch biosynthesis is also developmentally regulated but not methylation-dependent. Thus, during pre-storage phase, activity of HvMET1 and HvCMT1 possibly maintains DNA replication and suppresses specific pathways of maturation. Besides, HvDnmt3-1 might be responsible for differentiation-specific de novo methylation. Expression of methyltransferases HvDnmt3-2 and HvCMT2 peaks during the onset of massive starch accumulation. The enzymes are likely responsible for DNA methylation involved in determining plastid division and amyloplast differentiation as concluded from the patterns of co-expressed genes. Levels of AdoMet decarboxylase mRNA, but not methyltransferase- and AdoHcy mRNA, increase at the beginning of desiccation together with methionine synthase and AdoMet synthase levels. This increase may be indicative for utilization of AdoMet in polyamine production protecting aleuron and embryo cell membranes during desiccation.  相似文献   

2.
DNA methylation is linked to homocysteine metabolism through the generation of S-adenosylmethionine (AdoMet) and S-Adenosylhomocysteine (AdoHcy). The ratio of AdoMet/AdoHcy is often considered an indicator of tissue methylation capacity. The goal of this study is to determine the relationship of tissue AdoMet and AdoHcy concentrations to allele-specific methylation and expression of genomically imprinted H19/Igf2. Expression of H19/Igf2 is regulated by a differentially methylated domain (DMD), with H19 paternally imprinted and Igf2 maternally imprinted. F1 hybrid C57BL/6J x Castaneous/EiJ (Cast) mice with (+/−), and without (+/+), heterozygous disruption of cystathionine-β-synthase (Cbs) were fed a control diet or a diet (called HH) to induce hyperhomocysteinemia and changes in tissue AdoMet and AdoHcy. F1 Cast x Cbs+/− mice fed the HH diet had significantly higher plasma total homocysteine concentrations, higher liver AdoHcy, and lower AdoMet/AdoHcy ratios and this was accompanied by lower liver maternal H19 DMD allele methylation, lower liver Igf2 mRNA levels, and loss of Igf2 maternal imprinting. In contrast, we found no significant differences in AdoMet and AdoHcy in brain between the diet groups but F1 Cast x Cbs+/− mice fed the HH diet had higher maternal H19 DMD methylation and lower H19 mRNA levels in brain. A significant negative relationship between AdoHcy and maternal H19 DMD allele methylation was found in liver but not in brain. These findings suggest the relationship of AdoMet and AdoHcy to gene-specific DNA methylation is tissue-specific and that changes in DNA methylation can occur without changes in AdoMet and AdoHcy.  相似文献   

3.
4.
A fraction of the viral mRNA synthesized in interferon-treated HeLa cells infected with vesicular stomatitis virus (VSV) lacks the 7-methyl group in the 5'-terminal guanosine of the cap; this mRNA is not associated with polyribosomes and does not bind to ribosomes in an assay for initiation of protein synthesis (de Ferra, F., and Baglioni, C. (1981) Virology 112, 426-435). To establish whether this defect in methylation is due to changes in the level of the methyl donor S-adenosylmethionine (AdoMet) and of its competitive inhibitor S-adenosylhomocysteine (AdoHcy), we measured the concentration of these compounds in HeLa cells treated with interferon. An increase in both AdoMet and AdoHcy was detected 3 to 6 h after addition of interferon. The level of these compounds increased gradually and in proportion to the interferon concentration used. With 125 reference units/ml of beta interferon, for example, the AdoHcy concentration increased more than 3-fold and that of AdoMet about 1.5-fold with a consequent change in the AdoHcy/AdoMet ratio. An increased AdoHcy/AdoMet ratio was also found in HeLa cells treated with pure alpha 2 interferon produced in Escherichia coli by recombinant DNA techniques. When the methylation of VSV mRNA was measured in assays carried out with permeabilized virions at the AdoHcy and AdoMet concentrations found in interferon-treated cells, a preferential inhibition of the viral (guanine-7-)methyltransferase activity was observed. Such an inhibition may account for the synthesis of VSV mRNA lacking the 7-methyl group of guanosine in the cap.  相似文献   

5.
tRNA methylation complexes consisting of S-adenosylmethionine (AdoMet) synthetase, tRNA methylases, and S-adenosylhomocysteine (AdoHcy) hydrolase have been prepared from rat Novikoff hepatoma cells. The existence of the ternary enzyme complex is supported by dissociation and reconstitution of the ternany tRNA methylation complexes. In rat prostate and testis, two isozymes each for AdoMet synthetase and AdoHcy hydrolase are detected. The Km (methionine) values for the two AdoMet synthetases are 3.1 and 23.7 μm and the Km (adenosine) values for the two AdoHcy hydrolases are 0.33 and 1.8 μm. Correspondingly, two groups of methylation complexes are detectable, sedimenting in a sucrose gradient as 7 S and 8 S. The 7 S complexes are composed of AdoMet synthetase and AdoHcy hydrolase with the higher Km values, and the 8 S complexes are composed of the respective isozymes with the lower Km values. tRNA methylation complexes belong to the 8 S group. In hormone-depleted rat prostates and testes following hypophysectomy, the specific activities of AdoMet synthetases, tRNA methylases, and AdoHcy hydrolases are decreased severely, but are restored promptly after administration of testosterone. Thus, methylation enzymes are responsive to the regulation by steroid hormone. AdoHcy hydrolases from hormone-depleted tissues are unstable, and ternary tRNA methylation complexes are easily dissociable into individual activities. The stability of AdoHcy hydrolases is markedly improved by testosterone, and the integrity of ternary tRNA methylation complexes is maintained in the presence of testosterone. These results suggest that AdoHcy hydrolases are the primary target enzymes in adrogen regulation of methylation complexes.  相似文献   

6.
7.
BACKGROUND/AIMS: The methylation potential (MP) is defined as the ratio of S-adenosylmethionine (AdoMet) to S-adenosylhomocysteine (AdoHcy). It was shown recently that hypoxia increases AdoMet/AdoHcy ratio in HepG2 cells (Hermes et al., Exp Cell Res 294: 325-334, 2004). In the present study, we compared AdoMet/AdoHcy ratio and energy metabolism in HepG2, HEK-293, HeLa, MCF-7 and SK-HEP-1 cell lines under normoxia and hypoxia. METHODS: Metabolite concentrations were measured by HPLC. In addition, AdoHcy hydrolase (AdoHcyase) activity was determined photometrically. RESULTS: Under normoxia HepG2 cells show the highest AdoMet/AdoHcy ratio of 53.4 +/- 3.3 followed by MCF-7 and SK-HEP-1 cells with a AdoMet/AdoHcy ratio of 14.4 +/- 1.1 and 21.1 +/- 1.3, respectively. The lowest AdoMet/AdoHcy ratios are exhibited by HeLa and HEK-293 cells (6.6 +/- 0.7 and 7.1 +/- 0.3). Hypoxia does not significantly change the MP in MCF-7 and HeLa cells, but alters the MP in HepG2, HEK-293 and SK-HEP-1 cells. These alterations are dependent on the cell density. Under normoxia HepG2 cells exhibit AdoHcyase activity of 2.5 +/- 0.2 nmol min(-1) mg(-1) protein. All other cell lines show 3-5 times lower enzyme activity. Interestingly, hypoxia affects AdoHcyase activity only in HepG2 cells. CONCLUSIONS: Our data clearly show that the cell lines are characterized by different MP and different behavior under hypoxia. That implies that a lower MP is not necessarily associated with impaired transmethylation activity and cellular function.  相似文献   

8.
9.
Adenosine has been shown to initiate apoptosis through different mechanisms: (i) activation of adenosine receptors, (ii) intracellular conversion to AMP and stimulation of AMP-activated kinase, (iii) conversion to S-adenosylhomocysteine (AdoHcy), which is an inhibitor of S-adenosylmethionine (AdoMet)-dependent methyltransferases. Since the pathways involved are still not completely understood, we further investigated the role of AdoHcy hydrolase in adenosine-induced apoptosis. In HepG2 cells, adenosine induced caspase-like activity and DNA fragmentation, a marker of apoptosis. These effects were potentiated by co-incubation with homocysteine or adenosine deaminase inhibitor, pentostatin, and were mimicked by inhibition of AdoHcy hydrolase by adenosine-2',3'-dialdehyde (Adox). Adenosine-induced effects were significantly inhibited by dipyridamole, an inhibitor of adenosine transporter, whereas inhibitors of adenosine kinase did not affect adenosine-induced changes. Various adenosine receptor agonists and AICAR, an activator of AMP-activated kinase, did not mimic the effect of adenosine. Thus, adenosine-induced apoptosis is likely due to intracellular action of AdoHcy and independent of AMP-activated kinase and adenosine receptors. Because elevated AdoHcy levels are associated with reduced mRNA methylation, we studied mRNA expression in Adox-treated cells by microarray analysis. Since several p53-target genes and other apoptosis-related genes were up-regulated by Adox, we conclude that AdoHcy is involved in adenosine-induced apoptosis by altering gene expression.  相似文献   

10.
S-Adenosylhomocysteine hydrolase (AdoHcy hydrolase, E.C. 3.3.1.1) catalyzes the metabolism of S-adenosylhomocysteine (AdoHcy) to adenosine (Ado) and homocysteine (Hcy) in mouse neuroblastoma N2a cells. AdoHcy hydrolase in N2a cells can be inhibited completely by adenosine dialdehyde (Ado dialdehyde) or neplanocin A. The inhibitory effects of Ado dialdehyde (2.5 μM) and neplanocin A (1 μM) on cellular AdoHcy hydrolase were time-dependent, with total enzyme inhibition occurring after 30 min and 15 min of incubation, respectively. The inhibition of AdoHcy hydrolase produced by Ado dialdehyde and neplanocin A persisted for up to 72 h of incubation, and was paralleled by a time-dependent increase in endogenous AdoHcy levels reaching a maximum 4-fold elevation after 8 h of incubation with Ado dialdehyde and an 11-fold increase in the neplanocin A-treated cells. This increase in AdoHcy levels produced a subsequent inhibition of S-adenosylmethionine (AdoMet)-dependent cellular methylations (e.g. protein carboxylmethylation (PCM), lipid methylation). In addition, neplanocin A was metabolically converted to the corresponding AdoMet analog, S-neplanocylmethionine (NepMet), in neuroblastoma N2a cells. NepMet reached maximum levels after 8 h of incubation of the cells with neplanocin A.  相似文献   

11.
12.
13.
14.
Methyltransferases use S-adenosylmethionine (AdoMet) as methyl group donor, forming S-adenosylhomocysteine (AdoHcy) and methylated substrates, including DNA and proteins. AdoHcy inhibits most methyltransferases. Accumulation of intracellular AdoHcy secondary to Hcy elevation elicits global DNA hypomethylation. We aimed at determining the extent at which protein arginine methylation status is affected by accumulation of intracellular AdoHcy. AdoHcy accumulation in human umbilical vein endothelial cells was induced by inhibition of AdoHcy hydrolase by adenosine-2,3-dialdehyde (AdOx). As a measure of protein arginine methylation status, the levels of monomethylarginine (MMA) and asymmetric and symmetric dimethylated arginine residues (ADMA and SDMA, respectively) in cell protein hydrolysates were measured by HPLC. A 10% decrease was observed at a 2.5-fold increase of intracellular AdoHcy. Western blotting revealed that the translational levels of the main enzymes catalyzing protein arginine methylation, protein arginine methyl transferases (PRMTs) 1 and 5, were not affected by AdoHcy accumulation. Global DNA methylation status was evaluated by measuring 5-methylcytosine and total cytosine concentrations in DNA hydrolysates by LC-MS/MS. DNA methylation decreased by 10% only when intracellular AdoHcy concentration accumulated to 6-fold of its basal value. In conclusion, our results indicate that protein arginine methylation is more sensitive to AdoHcy accumulation than DNA methylation, pinpointing a possible new player in methylation-related pathology.  相似文献   

15.
Administration of methionine sulfoximine (MSO) to rats and mice significantly decreased cerebral levels ofS-adenosyl-l-homocysteine (AdoHcy). Concurrent administration of methionine prevented this decrease and, when methionine was given alone, significantly elevated AdoHcy levels resulted in both species. Regionally, AdoHcy levels varied from 20 nmol/g in rat cerebellum and spinal cord to about 60 nmol/g in hypothalamus and midbrain. MSO decreased AdoHcy in all regions tested except striatum, midbrain, and spinal cord. AdoMet/AdoHcy ratios (methylation index) varied from 0.48 in hypothalamus to 2.4 in cerebellum, and MSO administration decreased these ratios in all regions except hypothalamus. AdoHcy hydrolase activity was lowest in hypothalamus, highest in brainstem and, generally, varied inversely with regional AdoHcy levels. MSO decreased AdoHcy hydrolase activity in all regions except hypothalamus and spinal cord. Cycloleucine administration resulted in significantly decreased levels of mouse brain AdoHcy, whereas the administration of dihydroxyphenylalanine (DOPA) failed to affect AdoHcy levels. It is concluded that (a) cerebral AdoHcy levels are more tightly regulated than are those of AdoMet after MSO administration, (b) slight fluctuations of AdoHcy levels may be important in regulating AdoHcy hydrolase activity and hence AdoHcy catabolism in vivo, (c) the AdoMet/AdoHcy ratio reflects the absolute AdoMet concentration rather than the transmethylation flux, (d) the decreased AdoMet levels in midbrain, cortex, and striatum after MSO with no corresponding decrease in AdoHcy suggest an enhanced AdoMet utilization, hence an increased transmethylation in the MSO preconvulsant state.Supported by USPHS, NINCDS grant NS-06294.  相似文献   

16.
S-adenosyl-L-methionine (AdoMet)-dependent methylation is central to the regulation of many biological processes: more than 50 AdoMet-dependent methyltransferases methylate a broad spectrum of cellular compounds including nucleic acids, proteins and lipids. Common to all AdoMet-dependent methyltransferase reactions is the release of the strong product inhibitor S-adenosyl-L-homocysteine (AdoHcy), as a by-product of the reaction. S-adenosyl-L-homocysteine hydrolase is the only eukaryotic enzyme capable of reversible AdoHcy hydrolysis to adenosine and homocysteine and, thus, relief from AdoHcy inhibition. Impaired S-adenosyl-L-homocysteine hydrolase activity in humans results in AdoHcy accumulation and severe pathological consequences. Hyperhomocysteinemia, which is characterized by elevated levels of homocysteine in blood, also exhibits a similar phenotype of AdoHcy accumulation due to the reversal of the direction of the S-adenosyl-L-homocysteine hydrolase reaction. Inhibition of S-adenosyl-L-homocysteine hydrolase is also linked to antiviral effects. In this review the advantages of yeast as an experimental system to understand pathologies associated with AdoHcy accumulation will be discussed.  相似文献   

17.
Aim of this article is to review the topic of epigenetic control of gene expression, especially regarding DNA methylation, in chronic kidney disease and uremia. Hyperhomocysteinemia is considered an independent cardiovascular risk factor, although the most recent intervention studies utilizing folic acid are negative. The accumulation of homocysteine in blood leads to an intracellular increase of S-adenosylhomocysteine (AdoHcy), a powerful competitive methyltransferase inhibitor, which is itself considered a predictor of cardiovascular events. The extent of methylation inhibition of each individual methyltransferase depends on the methyl donor S-adenosylmethionine (AdoMet) availability, on the [AdoMet]/[AdoHcy] ratio, and on the individual Km value for AdoMet and Ki for AdoHcy. DNA methyltransferases are among the principal targets of hyperhomocysteinemia, as studies in several cell culture and animal models, as well as in humans, almost unequivocally show. In vivo, DNA methylation may be also influenced by various factors in different tissues, for example by rate of cell growth, folate status, etc. and importantly inflammation.  相似文献   

18.
Although oxygen concentrations affect the growth and function of mesenchymal stem cells (MSCs), the impact of hypoxia on osteoblastic differentiation is not understood. Likewise, the effect of hypoxia‐induced epigenetic changes on osteoblastic differentiation of MSCs is unknown. The aim of this study was to examine the in vitro hypoxic response of human periosteum‐derived cells (hPDCs). Hypoxia resulted in greater proliferation of hPDCs as compared with those cultured in normoxia. Further, hypoxic conditions yielded decreased expression of apoptosis‐ and senescence‐associated genes by hPDCs. Osteoblast phenotypes of hPDCS were suppressed by hypoxia, as suggested by alkaline phosphatase activity, alizarin red‐S‐positive mineralization, and mRNA expression of osteoblast‐related genes. Chromatin immunoprecipitation assays showed an increased presence of H3K27me3, trimethylation of lysine 27 on histone H3, on the promoter region of bone morphogenetic protein‐2. In addition, mRNA expression of histone lysine demethylase 6B (KDM6B) by hPDCs was significantly decreased in hypoxic conditions. Our results suggest that an increased level of H3K27me3 on the promoter region of bone morphogenetic protein‐2, in combination with downregulation of KDM6B activity, is involved in the suppression of osteogenic phenotypes of hPDCs cultured in hypoxic conditions. Although oxygen tension plays an important role in the viability and maintenance of MSCs in an undifferentiated state, the effect of hypoxia on osteoblastic differentiation of MSCs remains controversial. In addition, evidence regarding the importance of epigenetics in regulating MSCs has been limited. This study was to examine the role hypoxia on osteoblastic differentiation of hPDCs, and we examined whether histone methylation is involved in the observed effect of hypoxia on osteogenic differentiation of hPDCs.  相似文献   

19.
Hypoxia inducible factor-1alpha (HIF-1alpha) mRNA expression is significantly decreased under hypoxia in different cell lines exposed directly to hypoxia or treated with dimethyloxalylglycine which mimics hypoxic effects under normoxic conditions. However, the decreased expression of HIF-1alpha mRNA is accompanied by an increase of HIF-1alpha protein (pHIF-1alpha) level as well as by overexpression of known HIF-dependent genes (VEGF, Glut1, PFKFB-3 and PFKFB-4) under hypoxic conditions or with the use of dimethyloxalylglycine. Expression of HIF-1alpha mRNA also depends on iron because desferrioxamine and cobalt chloride produce similar to hypoxia effects on the levels of this mRNA. It was shown that HIF-1alpha mRNA expression did not change significantly in some cell lines (SKBR3, MDA-MB468 and BT549) under hypoxia. However, in these cell lines hypoxia decreases expression of HIF-2alpha mRNA, another member of HIF-alpha gene family, as a result of cell specific regulation of HIF-alpha genes under hypoxia. Moreover, hypoxia slightly induces expression of PFKFB-4 mRNA in SKBR3, MDA-MB468 and BT549 as compared to other cell lines where this effect of hypoxia was much stronger and adaptation to hypoxia is controlled by HIF-1alpha. Hypoxia slightly reduces expression of tumor suppressor VHL which targets HIF-1alpha for ubiquitination. Thus, our results clearly demonstrated down regulation of HIF-1alpha or HIF-2alpha in different cell lines by hypoxia.  相似文献   

20.
Angiogenesis is an essential process for the establishment, development, and dissemination of several malignant tumors including bladder cancer. The hypoxic condition promotes the stabilization of hypoxia-inducible factor 1 alpha (HIF-1α), which translocates to the nucleus to mediate angiogenic factors including the vascular endothelial growth factor A (VEGF-A). AnaeroGen system was developed for microbiology area to create a low oxygen tension required to the growth of anaerobic bacteria. Here, we hypothesized the use of AnaeroGen system to induce hypoxia in T24 human bladder carcinoma cells, in order to promote the overexpression of VEGF-A. T24 cells were cultured in six-well plates containing McCoy medium. Exposures of T24 cells to hypoxia for 1, 8, 24, and 48 h were performed using the Oxoid AnaeroGen system, while T24 cells under normoxia were used as control. The expression of VEGF-A and HIF-1α was analyzed by real-time PCR. ELISA for HIF-1α was carried out. The VEGF-A expression increased significantly by Oxoid AnaeroGen-induced hypoxia in a time-depending manner, reaching the peak in 48 h of hypoxia. Although HIF-1α mRNA was not changed, HIF-1α protein was increased in the presence of hypoxia, reaching a peak at 8 h. These results demonstrated that the Oxoid AnaeroGen system is a simple method to expose T24 cells to hypoxia and efficiently to upregulate VEGF expression in T24 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号