共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of G-protein coupled receptors and associated proteins in receptor tyrosine kinase signal transduction 总被引:1,自引:0,他引:1
It is well established that stimulation of G-protein coupled receptors (GPCRs) can activate signalling from receptor tyrosine kinases by a process termed transactivation. Indeed, in recent years, it has become apparent that transactivation is a general phenomenon that has been demonstrated for many unrelated GPCRs and receptor tyrosine kinases. In this case the GPCR/G-protein participation is up-stream of the receptor tyrosine kinase. Substantial research has addressed these findings but meanwhile another mechanism of cross talk has been slowly emerging. For over a decade, a growing body of evidence has demonstrated that numerous growth factors use G-proteins and attendant signalling molecules such as beta-arrestins that participate down-stream of the receptor tyrosine kinase to signal to effectors, such as p42/p44 MAPK. This review highlights this novel mechanism of cross talk between receptor tyrosine kinases and GPCRs, which is distinct from growth factor receptor transactivation by GPCRs. 相似文献
2.
Homologues of mammalian Ras conserved in Saccharomyces cerevisiae mediate glucose-stimulated cyclic AMP formation and we used this response to test for regulation of yeast Ras activity by the alpha-mating factor signal transduction pathway. alpha-Mating factor suppresses glucose-stimulated cyclic AMP formation by up to 57 +/- 12.6% (n = 5) and similar inhibition was observed in four different yeast strains (MATa cells). Moreover, this response is potent (IC50 = 0.14 +/- 0.19 microM (n = 4)), rapid (maximal within 1-2 min), and displays an absolute requirement for both the alpha-mating factor receptor (STE2) and associated G-protein beta-subunit (STE4). Inhibition appears independent of both phosphodiesterase activation and alpha-mating factor-stimulated cytoplasmic alkalinization. Also, basal cyclic AMP levels are unaffected by pheromone. This is the first demonstration that a cell-surface receptor linked to a heterotrimeric G-protein can suppress Ras-dependent activity and could provide important insight into mechanisms controlling p21ras in man. Inhibition of Ras-dependent cyclic AMP formation could also be a key event facilitating responses characteristic of yeast mating. 相似文献
3.
G-protein coupled receptors (GPCRs) form a ternary complex of agonist, receptor and G-proteins during primary signal transduction at the cell membrane. Downstream signalling is thought to be preceded by the process of dissociation of Galpha and Gbetagamma subunits, thus exposing new surfaces to interact with downstream effectors. We demonstrate here for the first time, the dissociation of heterotrimeric G-protein subunits (i.e., Galpha and Gbetagamma) following agonist-induced GPCR (alpha(2A)-adrenergic receptor; alpha(2A)-AR) activation in a cell-free assay system. alpha(2A)-AR membranes were reconstituted with the G-proteins (+/-hexahistidine-tagged) Galpha(i1) and Gbeta1gamma2 and functional signalling was determined following activation of the reconstituted receptor:G-protein complex with the potent agonist UK-14304, and [35S]GTPgammaS. In the presence of Ni(2+)-coated agarose beads, the activated his-tagged Galpha(i1)his-[35S]GTPgammaS complex was captured on the Ni(2+)-presenting surface. When his-tagged Gbeta1gamma2 (Gbeta1gamma2his) was used with Galpha(i1), the [35S]GTPgammaS-bound Galpha(i1) was not present on the Ni(2+)-coated beads, but rather, it was separated from the beta1gamma2(his)-beads, demonstrating receptor-induced dissociation of Galpha and Gbetagamma subunits. Treatment of the reconstituted alpha(2A)-AR membranes containing Gbeta1gamma2his:Galpha(i1) with imidazole confirmed the specificity for the Ni2+:G-protein surface dissociation of Galpha(i1) from Gbeta1gamma2his. These data demonstrate for the first time, the complete dissociation of the G-protein subunits and extend observations on the role of G-proteins in the assembly and disassembly of the ternary complex in the primary events of GPCR signalling. 相似文献
4.
The fungus Arthrobotrys dactyloides produces specialized constricting rings to trap and then consume nematodes. The signal transduction pathway involved in the
nematode-trapping process was examined. Mastoparan, an activator of G-protein, had a stimulatory effect on the inflation of
ring cells, whereas a G-protein inhibitor, pertussis toxin, prevented ring-cell expansion. The 40-kDa Gα of heterotrimeric G-proteins was specifically ADP-ribosylated by pertussis toxin. Using an antibody specific to the 35-kDa
subunit Gβ, we showed that immunogold-labeled Gβ was more concentrated in ring cells than in the hyphae. In the absence of nematodes, the rings could be inflated by either
pressurizing the culture in a syringe, raising intracellular Ca2+ concentrations, or adding warm water. We used these methods to reveal differences in responses to antagonists. The results
support a model in which the pressure exerted by a nematode on the ring activates G-proteins in the ring cells. The activation
leads to an increase in cytoplasmic Ca2+, activation of calmodulin, and finally the opening of water channels. The ring cells expand to constrict the ring and thus
immobilize the nematode.
Received: 13 April 2000 / Accepted: 22 June 2000 相似文献
5.
Protein phosphatase-2A (PP2A) is a multisubunit serine/threonine phosphatase involved in intracellular signaling, gene regulation, and cell cycle progression. Different subunits of PP2A bind to Axin and Adenomatous Polyposis Coli, components of the Wnt signal transduction pathway. Using early Xenopus embryos, we studied how PP2A functions in Wnt signal transduction. The catalytic subunit of PP2A (PP2A-C) potentiated secondary axis induction and Siamois reporter gene activation by Dishevelled, a component of the Wnt pathway, indicating a positive regulatory role of this enzyme in Wnt signaling. In contrast, small t antigen, an antagonist of PP2A-C, inhibited Dishevelled-mediated signal transduction, as did the regulatory PP2A-B'epsilon subunit, consistent with the requirement of PP2A function in this pathway. Although Wnt signaling is thought to occur via regulation of beta-catenin degradation, PP2A-C did not significantly affect beta-catenin stability. Moreover, the pathway activated by a stabilized form of beta-catenin was sensitive to PP2A-C and its inhibitors, suggesting that PP2A-C acts downstream of beta-catenin. Because previous work has suggested that PP2A can act upstream of beta-catenin, we propose that PP2A regulates the Wnt pathway at multiple levels. 相似文献
6.
The yeast G-protein homolog is involved in the mating pheromone signal transduction system. 总被引:1,自引:0,他引:1
下载免费PDF全文

H A Fujimura 《Molecular and cellular biology》1989,9(1):152-158
I have isolated a new type of sterile mutant of Saccharomyces cerevisiae, carrying a single mutant allele, designated dac1, which was mapped near the centromere on chromosome VIII. The dac1 mutation caused specific defects in the pheromone responsiveness of both a and alpha cells and did not seem to be associated with any pleiotropic phenotypes. Thus, in contrast to the ste4, ste5, ste7, ste11, and ste12 mutations, the dac1 mutation had no significant effect on such constitutive functions of haploid cells as pheromone production and alpha-factor destruction. The characteristics of this phenotype suggest that the DAC1 gene encodes a component of the pheromone response pathway common to both a and alpha cells. Introduction of the GPA1 gene encoding an S. cerevisiae homolog of the alpha subunit of mammalian guanine nucleotide-binding regulatory proteins (G proteins) into sterile dac1 mutants resulted in restoration of pheromone responsiveness and mating competence to both a and alpha cells. These results suggest that the dac1 mutation is an allele of the GPA1 gene and thus provide genetic evidence that the yeast G protein homolog is directly involved in the mating pheromone signal transduction pathway. 相似文献
7.
8.
近年来发现一些G蛋白偶联受体(GPCR)能在细胞膜上形成同源或异源双聚体,并证实受体的双聚化为一些有重要生理功能的GPCR在细胞膜上的表达和信号转导的启动所必需,进一步研究表明,一些GPCR的双聚化不仅可以改变受体与配体结合的特异性和亲和力,而且影响GPCR介导的信号转导的调控,这些结果提示,GPCR之间以及GPCR与其它蛋白在细胞膜上的相互作用是调控GPCR转导信号的一个新途径。 相似文献
9.
The present studies were undertaken to examine if the impaired vascular function observed in diabetes is attributed to the altered levels of G-protein. Diabetes was induced in Sprague Dawley rats by a single intraperitoneal injection of streptozotocin (STZ) (60 mg/kg body wt) and after a period of 5 days, the aorta were used for adenylyl cyclase activity determination and protein quantification. A temporal relationship between the expression of Gi proteins and development of diabetes was also examined on day 1, 2, 3, 4 and 5 of injection of STZ. Blood glucose levels were significantly increased from day 1 in STZ-rats as compared to their counterpart control rats and reached to about 20 mM on 3rd day and 30 mM on 5th day. The expression of Gi-2 and Gi-3 proteins as determined by immunoblotting techniques was decreased by about 70 and 50% respectively in aorta from STZ rats compared to the control rats after 5 days of treatment, whereas 40% decrease in Gi-2 and Gi-3 was observed after 3rd day of STZ injection. On the other hand, the expression of Gs was unaltered in STZ rats. In addition, the stimulatory effect of cholera toxin (CT) on GTP-mediated stimulation of adenylyl cyclase was not different in STZ as compared to the control group. However, the stimulatory effects of isoproterenol, glucagon, NaF and FSK on adenylyl cyclase activity were significantly enhanced in STZ rats as compared to control rats, whereas basal adenylyl cyclase activity was significantly lower in STZ-rats as compared to control rats. In addition, GTPS inhibited FSK-stimulated adenylyl cyclase activity in concentration-dependent manner (receptor-independent functions of Gi) in control rats which was completely attenuated in STZ-rats. In addition, receptor-mediated inhibitions of adenylyl cyclase by angiotensin II, oxotremorine, atrial natriuretic peptide (ANP99–126) and C-ANP4–23 were also attenuated (receptor-dependent functions of Gi) in STZ-rats. These results indicate that aorta from diabetic rats exhibit decreased levels of cAMP and decreased expression of Gi. The decreased expression of Gi may be responsible for the altered responsiveness of adenylyl cyclase to hormonal stimulation and inhibition in STZ-rats. It may thus be suggested that the impaired adenylyl cyclase-Gi protein signaling may be one of the possible mechanisms responsible for the impaired vascular functions in diabetes. 相似文献
10.
11.
We have examined the role of autophosphorylation in insulin signal transmission by oligonucleotide directed mutagenesis of seven potential tyrosine autophosphorylation sites in the human insulin receptor. Chinese hamster ovary cells transfected with these receptors were analyzed for insulin stimulated 2-deoxyglucose uptake, thymidine incorporation, endogenous substrate phosphorylation, and in vitro kinase activity. We found that phosphorylation on tyrosine residues 953, 1316, and 1322 were not necessary for receptor-mediated signal transduction. Mutation of tyrosine 960 reduced but did not abolish the signaling capabilities of the receptor. Finally, the simultaneous mutation of tyrosine residues 1146, 1150, and 1151 (the numbering system is that of Ullrich et al. (Ullrich, A., Bell, J. R., Chen, E. Y., Herrera, R., Petruzzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y. C., Tsubokawa, M., Mason, A., Seeburg, P.H., Grunfeld, C., Rosen, O. M., and Ramachandran, J. (1985) Nature 313, 756-761) resulted in a biologically inactive receptor, suggesting that the insulin receptor can be inactivated by removal of key autophosphorylation sites. 相似文献
12.
J A Maassen B M Burgering R H Medema A P Osterop G C van der Zon W M?ller J L Bos 《Hormones et métabolisme》1992,24(5):214-218
Ras-proteins are guanine nucleotide binding proteins, which, in the GTP bound state emit a strong mitogenic signal. In the GDP bound state, the protein appears inactive. We have found that stimulation by insulin of cells expressing elevated levels of insulin receptors results in a rapid conversion of Ras-GDP into Ras-GTP. This process is part of the signalling pathway leading to immediate-early gene expression and a mitogenic response. There seems to be no involvement of Ras-GTP formation in the process of insulin stimulated glucose transport. Though the precise mechanism by which Ras is converted to the GTP bound state remains to be established, a tight correlation exists between receptor autophosphorylation and Ras-GTP formation. 相似文献
13.
We previously reported that endothelin-1 or platelet-derived growth factor promoted in aortic smooth muscle cells a rapid hydrolysis of 1-O-alkyl-2-acyl-sn-glycero-3-phosphoethanolamine (alkyl-PE) which was immediately converted into 1-O-alkyl-2,3-diacyl-sn-glycerol (alkyl-TG) within 5 s or 60 s respectively [C. Comminges et al. (1996) Biochem. Biophys. Res. Commun. 220, 1008-1013 and C. Comminges et al. (1997) Biochim. Biophys. Acta 1355, 69-80]. In this study, we show that this alkyl-PE hydrolysis is triggered by a transient activation of a specific phospholipase C (PLC) regulated by pertussis toxin-sensitive heterotrimeric G-proteins. Moreover, this PLC can be triggered through a Ca2+ influx depending on L-type Ca2+ channel activation, as suggested by the use of a specific 'activator' S(-)-BayK 8644 and of selective inhibitors such as nimodipine. Interestingly, low concentrations (10(-8)-10(-7)M) of alkyl-TG block the opening of L-type Ca2+ channels, whereas identical concentrations of DG do not alter L-type Ca2+ channels. This study thus unravels a hitherto unrecognized signaling pathway generating alkyl-TG as a novel lipid second messenger, potentially acting as a negative feedback regulator of L-type Ca2+ channels. 相似文献
14.
15.
Shiraiwa T Kashiwayanagi M Iijima T Murakami M 《Biochemical and biophysical research communications》2007,355(4):1019-1024
Despite the expression of voltage-dependent Ca2+ channels in nasal turbinate epithelium, their role in odorant chemosensation has remained obscure. Therefore, we investigated olfactory neurotransduction in beta3-deficient mice. RT-PCR and Western blots confirmed the expression of various types of Ca2+ channels in the nasal turbinate. Electrophysiological evaluations revealed that beta3-null mice had a 60% reduction in the high-voltage-dependent Ca2+ currents in olfactory receptor neurons due to reduced N- and L-type channel currents. The beta3-null mice showed increased olfactory neuronal activity to triethylamine, and this effect was mimicked by the perfusion of the specific N-type Ca2+ channel inhibitor omega-conotoxin GVIA in the electro-olfactogram. Diluted male urine odors induced higher Fos immunoreactivity in the main olfactory bulbs of beta3-deficient mice, indicating enhanced signal transduction of odor information in these mice. Our data indicate the involvement of voltage-dependent Ca2+ channels and importance of the beta3 subunit in olfactory signal transduction. 相似文献
16.
17.
18.
19.
Alessandro Didonna 《Cellular & molecular biology letters》2013,18(2):209-230
Prion diseases are a class of fatal neurodegenerative disorders that can be sporadic, genetic or iatrogenic. They are characterized by the unique nature of their etiologic agent: prions (PrPSc). A prion is an infectious protein with the ability to convert the host-encoded cellular prion protein (PrPC) into new prion molecules by acting as a template. Since Stanley B. Prusiner proposed the “protein-only” hypothesis for the first time, considerable effort has been put into defining the role played by PrPC in neurons. However, its physiological function remains unclear. This review summarizes the major findings that support the involvement of PrPC in signal transduction. 相似文献
20.
New perspectives in arsenic-induced cell signal transduction 总被引:10,自引:0,他引:10
Although the carcinogenicity of arsenic has been well established, the underlying molecular mechanisms have not yet been fully identified. Accumulating evidence indicates that the alteration of cellular signal transduction is directly related to the carcinogenesis of arsenic. This review focuses on recent advances in arsenic-induced signal transduction, including reactive oxygen species (ROS) production, tyrosine phosphorylation, MAPK signaling, NF-kappaB activation, cell cycle arrest, and apoptosis. 相似文献