首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholinergic actions on subfornical organ (SFO) neurons in rat slice preparations were studied by using whole cell voltage- and current-clamp recordings. In the voltage-clamp recordings, carbachol and muscarine decreased the frequency of GABAergic inhibitory postsynaptic currents (IPSCs) in a dose-dependent manner, with no effect on the amplitudes or the time constants of miniature IPSCs. Meanwhile, carbachol did not influence the amplitude of the outward currents induced by GABA. Furthermore, carbachol and muscarine also elicited inward currents in a TTX-containing solution. From the current-voltage relationship, the reversal potential was estimated to be -7.1 mV. These carbachol-induced responses were antagonized by atropine. In the current-clamp recordings, carbachol depolarized the membrane with increased frequency of action potentials. These observations suggest that acetylcholine suppresses GABA release through muscarinic receptors located on the presynaptic terminals. Acetylcholine also directly affects the postsynaptic membrane through muscarinic receptors, by opening nonselective cation channels. A combination of these presynaptic and postsynaptic actions may enhance activation of SFO neurons by acetylcholine.  相似文献   

2.
GABA参与兔杏仁体抑制内膝体神经元电活动   总被引:2,自引:1,他引:1  
Yang L  Dong XW  Feng MZ  Wu QY  Zhou SC 《生理学报》1998,50(3):257-262
本文采用多管微电极胞外记录技术观察了短纯音引起兔内膝神经元的声反应及刺激杏仁体对声反应的影响,并在此基础上观察电泳GABA及其拮抗剂Bicuculline的效应。实验结果表明:GABA可以抑制MGB神经元的声反应及自发放电活动,而GABAA拮抗剂Bicuculline的作用则相反;电泳GABA对MGB神经元产生同刺激杏仁体一样的抑制产应,并且这种影响可被Bicuculline翻转;嗅鼻沟后缘听区农  相似文献   

3.
Scratching relieves itch, but the underlying neural mechanisms are poorly understood. We presently investigated a role for the inhibitory neurotransmitters GABA and glycine in scratch-evoked inhibition of spinal itch-signaling neurons in a mouse model of chronic dry skin itch. Superficial dorsal horn neurons ipsilateral to hindpaw dry skin treatment exhibited a high level of spontaneous firing that was significantly attenuated by cutaneous scratching, pinch and noxious heat. Scratch-evoked inhibition was nearly abolished by spinal delivery of the glycine antagonist, strychnine, and was markedly attenuated by respective GABA(A) and GABA(B) antagonists bicuculline and saclofen. Scratch-evoked inhibition was also significantly attenuated (but not abolished) by interruption of the upper cervical spinal cord, indicating the involvement of both segmental and suprasegmental circuits that engage glycine- and GABA-mediated inhibition of spinal itch-signaling neurons by noxious counterstimuli.  相似文献   

4.
The effect of cold and immobilization stress on presynaptic GABAergic autoreceptors was examined using the release of [3H]GABA (gamma-aminobutyric acid) from slices of rat striatum. It was found that in vitro addition of delta-aminolevulinic acid, as well as GABA agonists such as muscimol and imidazoleacetic acid, exhibited a significant suppression of the striatal release of [3H]GABA evoked by the addition of high potassium, whereas delta-aminovaleric acid had no significant effects on the evoked release. These suppressive actions were antagonized invariably by the GABA antagonists, bicuculline and picrotoxin, but not by the glycine antagonist, strychnine. Cholinergic agonists, such as pilocarpine and tetramethylammonium, also attenuated significantly the evoked release of [3H]GABA from striatal slices, while none of its antagonists, including atropine, hexamethonium and d-tubocurarine, affected the release. On the other hand, in vitro addition of dopamine receptor agents such as dopamine, apomorphine, and haloperidol, or the inhibitory amino acids, glycine, beta-alanine, and taurine failed to influence the evoked release of [3H]GABA from striatal slices. Application of a cold and immobilization stress for 3 h was found to induce a significant enhancement of the suppressive effects by muscimol and delta-aminolevulinic acid on the evoked release of [3H]GABA, without affecting that by pilocarpine and tetramethylammonium. These results suggest that the release of GABA from striatal GABA neurons may be regulated by presynaptic autoreceptors for this neuroactive amino acid, and may play a significant functional role in the exhibition of various symptoms induced by stress.  相似文献   

5.
Abstract: For the purpose of demonstrating the action of taurine as a neuromodulator in addition to its suggested neurotransmitter function, the effects of taurine and muscimol on the depolarization-induced Ca-dependent release of [3H]γ-aminobutyric acid (pH]GABA) and l -[3H]glutamate in cerebellar slices from guinea pigs were investigated. The release of [3H]GABA was found to be greatly decreased by a GABA agonist, muscimol, and by taurine, but not by glycine. The release of l -[3H]glutamate was little affected by taurine. The release of [3H]GABA was enhanced by bicuculline and strychnine, but not by picrotoxin, and the suppressive action of muscimol on the GABA release was antagonized by bicuculline, picrotoxin, and strychnine, suggesting the possible existence of presynaptic autoreceptors for GABA in the cerebellum. The suppressive action of taurine on the release of [3H]GABA, on the other hand, was blocked only by bicuculline. These results suggest that taurine reduced the release of [3H]GABA from cerebellar slices by acting on the GABA autoreceptors or, more likely, on other types of receptors that are sensitive to bicuculline. As a possible mechanism for this modulatory action of taurine, the blockade by this amino acid of the influx of Ca2+ into cerebellar tissues was tentatively suggested.  相似文献   

6.
Glycine Antagonists Structurally Related to Muscimol, THIP, or Isoguvacine   总被引:7,自引:4,他引:3  
Microelectrophoretic methods were used to study the effects on cat spinal neurones of a number of compounds structurally related to the gamma-aminobutyric acid (GABA) agonists muscimol, THIP, and isoguvacine. While N-methylmuscimol was an agonist at bicuculline methochloride-sensitive GABA receptors, somewhat weaker than GABA and THIP, neither N,N-dimethylmuscimol nor N-methyl-THIP interfered significantly with GABA receptors in vivo or binding sites in vitro. Both N,N-dimethylmuscimol and N-methyl-THIP, however, reversibly antagonized the depressant action of glycine. The seven-membered ring analogues of THIP, namely THIA (5,6,7,8-tetrahydro-4H-isoxazolo[5,4-c]azepin-3-ol), THAZ (5,6,7,8-tetrahydro-4H-isoxazolo[4,5-d]azepin-3-ol) and iso-THAZ (5,6,7,8-tetrahydro-4H-isoxazolo[3,4-d]azepin-3-ol), also blocked neuronal inhibition by glycine, iso-THAZ being the most potent compound. The conformationally mobile isomer of THAZ and iso-THAZ, 3-PYOL (5-(3-pyrrolidinyl)-3-isoxazolol), was a much less selective glycine antagonist, being also an antagonist of GABA, 3,4-TAZA (2,5,6,7-tetrahydro-1H-azepine-4-carboxylic acid) and 4,5-TAZA (2,3,6,7-tetrahydro-1H-azepine-4-carboxylic acid), which are amino acid analogues of THIA and THAZ, respectively, and ring homologues of isoguvacine, were also shown to be glycine antagonists. The mechanism of action of the present class of zwitterionic glycine antagonists is unknown. The compounds are much less potent than strychnine.  相似文献   

7.
The inhibitory neurotransmitter GABA activates two receptor subtypes that can be distinguished by their pharmacology. The GABA-A site is competitively antagonized by bicuculline and exclusively coupled to a chloride channel. The GABA-B receptor, for which baclofen is the only specific agonist, is resistant to bicuculline inhibition and, depending upon its localization, will activate K currents and/or inhibit Ca currents. Both electrophysiological and biochemical approaches have been applied to the study of each receptor. The membrane and intracellular components that to date have been implicated in GABA-B activation are discussed: G proteins, adenylate cyclase and intracellular calcium levels. This latter factor is also discussed with respect to GABA-A receptor action.  相似文献   

8.
Summary The functional role of GABA and glycine in monaural and binaural signal analysis was studied in single unit recordings from the central nucleus of the inferior colliculus (IC) of horseshoe bats (Rhinolophus rouxi) employing microiontophoresis of the putative neurotransmitters and their antagonists bicuculline and strychnine.Most neurons were inhibited by GABA (98%; N=107) and glycine (92%; N=118). Both neurotransmitters appear involved in several functional contexts, but to different degrees.Bicuculline-induced increases of discharge activity (99% of cells; N=191) were accompanied by changes of temporal response patterns in 35% of neurons distributed throughout the IC. Strychnine enhanced activity in only 53% of neurons (N=147); cells exhibiting response pattern changes were rare (9%) and confined to greater recording depths. In individual cells, the effects of both antagonists could markedly differ, suggesting a differential supply by GABAergic and glycinergic networks.Bicuculline changed the shape of the excitatory tuning curve by antagonizing lateral inhibition at neighboring frequencies and/or inhibition at high stimulation levels. Such effects were rarely observed with strychnine.Binaural response properties of single units were influenced either by antagonization of inhibition mediated by ipsilateral stimulation (bicuculline) or by changing the strength of the main excitatory input (bicuculline and strychnine).Abbreviations BF best frequency - Bic bicuculline - C control - CF constant frequency - CN cochlear nucleus - DNLL dorsal nucleus of the lateral lemniscus - FM frequency modulation - GABA gamma amino butyric acid - IC inferior colliculus - LSO lateral superior olive - Str strychnine  相似文献   

9.
Ohno-Shosaku T  Maejima T  Kano M 《Neuron》2001,29(3):729-738
Endogenous cannabinoids are considered to function as diffusible and short-lived modulators that may transmit signals retrogradely from postsynaptic to presynaptic neurons. To evaluate this possibility, we have made a paired whole-cell recording from cultured hippocampal neurons with inhibitory synaptic connections. In about 60% of pairs, a cannabinoid agonist greatly reduced the release of the inhibitory neurotransmitter GABA from presynaptic terminals. In most of such pairs but not in those insensitive to the agonist, depolarization of postsynaptic neurons and the resultant elevation of intracellular Ca2+ concentration caused transient suppression of inhibitory synaptic currents, which is mainly due to reduction of GABA release. This depolarization-induced suppression was completely blocked by selective cannabinoid antagonists. Our results reveal that endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals to cause the reduction of transmitter release.  相似文献   

10.
Miniature inhibitory postsynaptic potentials (mlPSPs) were recorded from motoneurons of the frog isolated spinal cord after blocking action potentials and ionotropic glutamate receptors (TTX 1 mcm: CNQX 25 mcm, D-AP5 50 mcm). Three types of mlPSPs were selected by their time characteristics) fast, slow and mlPSPs with two decay time constants. We classified 8.7% of mlPSPs as dual-component, 64.5% as fast mlPSPs, and 26.8% as slow mlPSPs. The GABA(A)R blocker bicuculline (20 mcm) diminished the number of the slow and dual-component events while the number of mlPSP with a fast kinetics was increased. The GlyR antagonist strychnine (1 mcm) reduced the frequency of fast mlPSPs and increased this parameter of slow mlPSPs. These data suggest existence of three different mlPSP groups distinguished by their kinetics and sensitivity to receptor antagonists: fast events mediated by glycine, slow events mediated by GABA and dual-component mlPSPs corresponding to glycine and GABA co-release.  相似文献   

11.
BICUCULLINE has been shown to have an action essentially similar to Picrotoxin in antagonizing both synaptically evoked postsynaptic inhibition and the depressant action of γ-amino-butyric acid (GABA) on cuneate neurones1. This supports the hypothesis that GABA is the postsynaptic inhibitory transmitter in the cuneate2. However, evidence3 indicates that GABA has a dual action in the cuneate, not only depressing the excitability of postsynaptic neurones, but also increasing the excitability of primary afferent terminals in a manner which might be expected of a presynaptic inhibitory transmitter. The experiments reported here show that the alkaloids bicuculline and picrotoxin block presynaptic inhibition and that this action is consistent with them exerting a GABA-antagonist action at primary afferent terminals.  相似文献   

12.
Seven antagonists of putative neurotransmitters were applied to bulbar respiratory neurons and, for comparison, also to unspecific cells. The antagonists exerted distinct effects when released alone, permitting to draw conclusions about receptor properties of the various cell types. With strychnine, specific antagonist of glycine, excitation prevailed in EI, I and E neurons. With bicuculline, specific antagonist of GABA, excitation preponderated in EI and E cells. About half of the unspecific neurons were activated and the remainder were unresponsive. GDEE (glutamatediethylester), antagonist of glutamate, excited part of the IE neurons and inhibited part of the E units, while the remainder of both types as well as 2 EI cells tested were not affected. With flupentixol, antagonist of dopamine, excitation prevailed in I neurons. About half of the IE and E units remained unaffected, while in the remainder E cells inhibition preponderated over excitation. With yohimbine, an alpha-adrenoceptor blocker, inhibition prevailed in E units. The two EI as well as the majority of the I neurons remained unaffected, with two cells of the latter type being activated. Propranolol, a beta-adrenoceptor blocker, inhibited about half of the E neurons, while the remainder as well as most IE and the 2 EI cells tested were not affected. Cyproheptadine, an antagonist of 5-HT, excited most E neurons. As concerns NE-receptors, those of the alpha-type might be involved in activation of part of the E cells only, whereas all other NE effects (inhibition or activation) are mediated by CNS-specific receptors different from the alpha- and beta-type. 5-HT effects apparently are mediated by two different receptor types.  相似文献   

13.
Activation of baroreceptors causes efferent sympathetic nerve activity (SNA) to fall. Two mechanisms could account for this sympathoinhibition: disfacilitation of sympathetic preganglionic neurons (SPN) and/or direct inhibition of SPN. The roles that spinal GABA and glycine receptors play in the baroreceptor reflex were examined in anesthetized, paralyzed, and artificially ventilated rats. Spinal GABA(A) receptors were blocked by an intrathecal injection of bicuculline methiodide, whereas glycine receptors were blocked with strychnine. Baroreceptors were activated by stimulation of the aortic depressor nerve (ADN), and a somatosympathetic reflex was used as control. After an intrathecal injection of vehicle, there was no effect on any measured variable or evoked reflex. In contrast, bicuculline caused a dose-dependent increase in arterial pressure, SNA, phrenic nerve discharge, and it significantly facilitated the somatosympathetic reflex. However, bicuculline did not attenuate either the depressor response or sympathoinhibition evoked after ADN stimulation. Similarly, strychnine did not affect the baroreceptor-induced depressor response. Thus GABA(A) and glycine receptors in the spinal cord have no significant role in baroreceptor-mediated sympathoinhibition.  相似文献   

14.
P Dutar  R A Nicoll 《Neuron》1988,1(7):585-591
Pharmacological properties of pre- and postsynaptic GABAB receptors were compared in CA1 hippocampal pyramidal neurons in vitro. The postsynaptic effects mediated by GABAB receptors, i.e., the baclofen-induced hyperpolarization, the bicuculline-resistant GABA response, and the slow inhibitory postsynaptic potential elicited by CA1 afferent stimulation, are all blocked by pertussis toxin (which inactivates some G proteins). These events are also suppressed by stimulating protein kinase C by phorbol esters and blocked by the selective GABAB antagonist phaclofen. In contrast, the baclofen-induced presynaptic depression of the excitatory postsynaptic potential elicited by CA1 afferent stimulation is resistant to the action of pertussis toxin and is not antagonized by phaclofen. However, this presynaptic inhibition can be antagonized by phorbol esters. These results indicate that the pre- and postsynaptic effects mediated by GABAB receptors in hippocampus have distinctly different pharmacological properties and possibly a different coupling mechanism.  相似文献   

15.
频率和强度是声音的两个重要参数,通常以听觉神经元动作电位发放频次编码这两个参数 . 研究表明,声反应潜伏期也可编码声音频率和强度,但尚不清楚潜伏期编码这两个参数究竟发生于哪一级听觉核团 . 如果声音参数由同级中枢编码,则这样的编码方式可能发生改变 . 反之,如果编码方式未发生变化,则意味着声音信息是由低位神经元编码的 . GABA 和甘氨酸 (Gly) 是听中枢普遍分布的抑制性递质 . 通过施加它们的拮抗剂荷包牡丹碱和马钱子碱,观测小鼠皮层和下丘听觉神经元声反应潜伏期的变化 . 结果表明,由反应潜伏期表征声音频率和强度的关系不因 GABA 和 Gly 作用的改变而发生变化,提示频率和强度与反应潜伏期之间的编码关系可能是由低位听神经元编码并向上传递的,而不是在同级中枢 ( 皮层或下丘 ) 完成的 .  相似文献   

16.
Iontophoretic studies on rat hippocampus with some novel GABA antagonists   总被引:1,自引:0,他引:1  
Twelve substances which appear to be GABA antagonists, judging by their ability to reverse the inhibitory effect of GABA on 35S-TBPS binding to rat brain membranes, were tested iontophoretically on population spikes in the rat hippocampus. Eight of them, including seven which completely reversed the inhibitory action of GABA on 35S-TBPS binding, caused a marked enhancement of population spikes, with slow onset and long duration and they antagonized the inhibition of population spikes by GABA. These effects were similar to those produced by bicuculline. Electrophysiologically, the most potent of the "complete reversers" were bathophenanthroline disulfonate and brucine. In vitro, amoxapine and brucine most effectively reversed the inhibitory action of GABA on 35S-TBPS binding. Of the five substances which only partly reversed the inhibitory effect of GABA on 35S-TBPS binding, four depressed the population spikes and potentiated the inhibitory action of GABA. The fifth "partial reverser", pipazethate, potently increased the population spikes, like the "complete reversers". Although other interpretations are possible the results are consistent with the existence of several GABA-A receptor types in brain, only some of which are blocked by certain partial reversers.  相似文献   

17.
Opiates have effects on respiratory neurons that depress tidal volume and air exchange, reduce chest wall compliance, and slow rhythm. The most dose-sensitive opioid effect is slowing of the respiratory rhythm through mechanisms that have not been thoroughly investigated. An in vivo dose-response analysis was performed on medullary respiratory neurons of adult cats to investigate two untested hypotheses related to mechanisms of opioid-mediated rhythm slowing: 1) Opiates suppress intrinsic conductances that limit discharge duration in medullary inspiratory and expiratory neurons, and 2) opiates delay the onset and lengthen the duration of discharges postsynaptically in phase-regulating postinspiratory and late-inspiratory neurons. In anesthetized and unanesthetized decerebrate cats, a threshold dose (3 microg/kg) of the mu-opioid receptor agonist fentanyl slowed respiratory rhythm by prolonging discharges of inspiratory and expiratory bulbospinal neurons. Additional doses (2-4 microg/kg) of fentanyl also lengthened the interburst silent periods in each type of neuron and delayed the rate of membrane depolarization to firing threshold without altering synaptic drive potential amplitude, input resistance, peak action potential frequency, action potential shape, or afterhyperpolarization. Fentanyl also prolonged discharges of postinspiratory and late-inspiratory neurons in doses that slowed the rhythm of inspiratory and expiratory neurons without altering peak membrane depolarization and hyperpolarization, input resistance, or action potential properties. The temporal changes evoked in the tested neurons can explain the slowing of network respiratory rhythm, but the lack of significant, direct opioid-mediated membrane effects suggests that actions emanating from other types of upstream bulbar respiratory neurons account for rhythm slowing.  相似文献   

18.
He DF  Chen FJ  Zhou SC 《生理学报》2004,56(3):374-378
在SD大鼠上应用多顺利完成微电极方法,观察微电泳CABA及其受体的拮抗剂或激动剂对杏仁外侧核(LA)抑制皮层AⅠ神经元声反应效应的影响。结果显示,电泳GABA能抑制皮层AⅠ区神经元的电活动,电泳GABAA受体拮抗剂bicuculline(BIC)则能易化其反应;电刺激LA能抑制皮层AⅠ区听神经元声反应,电泳GABA产生类拟于刺激LA的抑制效应;LA对皮层AⅠ区神经的抑制效应能被BIC所翻转,而不能被什氨酸受体拮抗剂strychnine所翻转,电泳GABAB型受体例激动剂baclofen对神经元声反应无影响。上术结果表明,GABA可能是介民LA抑制皮层AⅠ区神经元声反应的最终递质,并且是通过GABAA受体作用的。  相似文献   

19.
Earlier studies from our laboratory have shown that the frequency selectivity of neurons in the frog inferior colliculus is direction dependent. The goal of this study was to test the hypotheses that gamma-aminobutyric acid or GABA (but not glycine)-mediated synaptic inhibition was responsible for the direction-dependence in frequency tuning, and that GABA acted through creation of binaural inhibition. We performed single unit recordings and investigated the unit's free-field frequency tuning, and/or the unit's response to the interaural level differences (under dichotic stimulation), before and during local applications of antagonists specific to gamma-aminobutyric acid a and glycine receptors. Our results showed that application of bicuculline produced a broadening of free-field frequency tuning, and differential changes in free-field frequency tuning depending on sound direction, i.e., more pronounced at azimuths at which the unit exhibited narrower frequency tuning under the pre-drug condition, thereby typically abolishing direction dependence in tuning. Application of strychnine produced no change in frequency tuning. The results from dichotic stimulation further revealed that bicuculline typically elevated and/or flattened the unit's interaural-level-difference response function, indicating a reduction in the strength of binaural inhibition. Our study provides evidence that gamma-aminobutyric acid-mediated binaural inhibition is important for direction dependence in frequency tuning. Accepted: 24 July 1998  相似文献   

20.
GABA- and strychnine-sensitive glycine-activated currents in post-natal tissue-cultured hippocampal neurons were studied by using patch-clamp techniques. Current-voltage relations for both agonists in symmetrical Cl- solutions showed outward rectification. Strychnine-sensitive glycine-activated currents have not been studied in detail before in post-natal tissue-cultured hippocampal neurons. Partial desensitization of whole-cell currents was observed in symmetrical Cl- solutions during bath application of GABA- and glycine. In F-/Cl- solutions, both agonists gave a PF/Pcl value of about 0.06. The reversal potentials in mixtures of Cl- and SO4(2-) solutions were close to the equilibrium potentials of Cl- in the presence of both GABA and glycine. Single channels in inside-out excised patches with 2 mumol l-1 GABA and 5 mumol l-1 glycine in the pipette showed outward current rectification. The dose-response curves for GABA and glycine gave Kd values of 52 and 61 mumol l-1, respectively, and Hill coefficients close to 2. GABA and glycine binding were competitively blocked by their respective antagonists (bicuculline and strychnine). The similarities between GABA- and glycine-activated currents and the response in a combination of saturating concentrations of both GABA and glycine implied that the two agonists activated comparable numbers of anatomically distinct channels with very similar permeation properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号