首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the first of three experiments, silage constituted 33 or 66% of the dry matter of complete diets, barley being the other component. The barley was either rolled, or treated with 30 g NaOH/kg dry matter. In two further treatments, the NaOH-treated barley was given in separate feeds, while silage was offered ad libitum. The diets were offered ad libitum to 32 Hereford cross steers from 325 kg live weight to slaughter at 450 kg live weight. Growth rate increased and feed conversion ratio decreased as the precentage of barley in the diet increased, but were significantly poorer with NaOH-treated than with rolled barley owing to the significantly lower digestibility of dry matter, organic matter and starch in diets containing NaOH-treated grain.In the second experiment, the effect on digestibility of increasing the NaOH added to the barley used in the mixed diets was investigated with steers. The results showed that the level of NaOH application had to be greater when NaOH-treated barley was used in mixed feeds than when it was used as the sole feed. The optimum rate of application in silage based diets was in the region of 45 g NaOH/kg dry matter.In the third experiment, forty Hereford cross steers were allocated to one of four treatments and were fattened from 325 to about 450 kg live weight. They were given (dry matter basis) 50% silage and 50% of barley, either rolled (RM) or treated with 45 g/kg NaOH (CM), mixed together, or they were given the silage alone until they had eaten the allocated quantity and then the allocated barley; the barley was either rolled (RS) or treated with 30 g/kg of NaOH (CS). The same quantities of silage and grain were given to all steers. The steers fed on silage and grain separately took, on average, 125 days to consume the feed (70 days for consumption of silage), but had similar carcass weights to the steers given mixed diets, which consumed their feed in 91 days. The growth rates for treatments RM, CM, RS and CS, respectively, were 1.15, 1.20, 0.89 and 0.78 kg/day, the food consumption was 737, 741, 728 and 741 kg dry matter and the final carcass weights were 256, 253, 247 and 252 kg. There were no significant differences between steers receiving the diets containing rolled or NaOH-treated barley.  相似文献   

2.
In the first of three experiments, Hereford cross steers were fed ad libitum from 325 kg to slaughter at 425 kg on diets containing 50% hay and 50% rolled or NaOH-treated (30 g/kg) barley. Liveweight gain and food conversion ratios were similar for the two groups (1.24 vs. 1.42 kg/day; 7.0 vs. 7.0 kg dry matter intake/kg gain, respectively). Dry matter and organic matter digestibility was significantly higher (P < 0.01) when the diet contained rolled, rather than NaOH-treated, barley. There were no significant differences in fibre digestibility (51.2 vs. 59.1%, respectively).In the second experiment, the optimum level of NaOH was determined for the treatment of barley when given with hay. The level of NaOH required to achieve a digestibility in whole barley similar to rolled barley was 40 g NaOH/kg, i.e., approximately 10 g/kg more than when NaOH-treated barley formed the sole component of the diet. Dry matter and organic matter digestibility increased linearly as the level of NaOH applied increased (P < 0.05) and tended to peak at 40 g NaOH/kg barley. Starch digestibility also increased linearly (P < 0.001). Fibre digestibility did not vary significantly between treatments.In the third experiment, the voluntary intake of straw by steers given rolled or NaOH-treated barley at two levels of supplementation was determined. The intake of straw was slightly, but not significantly, greater when NaOH-treated rather than rolled barley was used. The digestibility of dry matter, organic matter, starch and fibre was not significantly affected by method of cereal treatment. No problems of animal health arose throughout the three experiments.  相似文献   

3.
The influence of whole, crushed and ground barley and oats on intake, performance and carcass characteristics of lambs was examined. A comparison of diets was conducted with individually-fed male and female lambs in six groups. The study was repeated in three successive years (1995–1997) using the same experimental design. A total of 192 lambs of a mean initial age of 74 days (SD 13.0) and live weight 20.6 kg (SD 4.54) were daily fed their respective concentrates, 72 g dry matter (DM)/kg metabolic live weight (kgW0.75), for 98 days from weaning to slaughter. Hay was provided ad libitum.The lambs adapted more quickly to diets containing barley than to those containing oats. Compared to oats, the total daily DM intake was higher on barley (1162 vs. 990 g DM/lamb, 89 vs. 78 g DM/kgW0.75, P < 0.001). Hay consumption was significantly lower on oats than on barley (182 vs. 344 g DM/day, P < 0.001). On oats the lambs experienced energy and protein deficiencies with their energy and protein intakes being 20% below feeding recommendations. On the barley diets the energy and protein requirements of the lambs were satisfied. When processed cereals were offered, there was no increase in the total DM, energy or protein intakes. Processing did not improve the organic matter digestibility of barley or oats.The growth rate (P < 0.01), carcass weight (P < 0.001) and slaughter percentage (P < 0.001) were higher on a barley diet than on oats. A barley diet resulted in more kidney fat (P < 0.01) and fattier carcasses. Processing had no positive influence on the live weight gain. On the contrary, lambs receiving crushed or ground barley or oats had a lower final live weight than those receiving whole grains (P < 0.001). The utilisation of whole grain was more efficient than that of processed grain. There were no advantages in processing barley and oats for the feeding of lambs.  相似文献   

4.
A randomised design involving 66 continental cross beef steers (initial live weight 523 kg) was undertaken to evaluate the effects of the inclusion of maize or whole-crop wheat silages in grass silage-based diets on animal performance, carcass composition, and meat quality of beef cattle. Grass silage was offered either as the sole forage or in addition to either maize or whole-crop wheat silages at a ratio of 40:60, on a dry matter (DM) basis, alternative forage: grass silage. For the grass, maize, and whole-crop wheat silages, DM concentrations were 192, 276, and 319 g/kg, ammonia-nitrogen concentrations were 110, 90, and 150 g/kg nitrogen, starch concentrations were not determined, 225, and 209 g/kg DM and in vivo DM digestibilities were 0.69, 0.69, and 0.58; respectively. The forages were offered ad libitum following mixing in a paddle type complete diet mixer wagon once per day, supplemented with either 3 or 5 kg concentrates per steer per day, in two equal feeds, for 92 days. For the grass, grass plus maize and grass plus whole-crop wheat silage-based diets food intakes were 8.38, 9.08, and 9.14 kg DM per day, estimated carcass gains were 514, 602, and 496 g/day and carcass weights were 326, 334, and 325 kg; respectively. Altering the silage component of the diet did not influence carcass composition or meat eating quality. Increasing concentrate feed level tended ( P = 0.09) to increase estimated carcass fat concentration and increased sarcomere length ( P < 0.05), and lean a* ( P < 0.01), b* ( P < 0.05), and chroma ( P < 0.01). There were no significant silage type by concentrate feed level interactions for food intake, steer performance, carcass characteristics or meat eating quality. It is concluded that replacing grass silage with maize silage increased carcass gain, and weight due to higher intakes, and improved utilisation of metabolisable energy. Whilst replacing grass silage with whole-crop wheat silage increased live-weight gain, the reduced dressing proportion resulted in no beneficial effect on carcass gain, probably due to increased food intakes of lower digestible forage increasing gut fill. Meat quality or carcass composition were not altered by the inclusion of maize or whole-crop silages in grass silage based diets.  相似文献   

5.
Inclusion of legume in grass pastures optimizes protein values of the forage and promotes improved digestibility. Therefore, we hypothesized that finishing steers on a novel combination of legumes and grass pasture would produce carcasses with acceptable traits when compared to carcasses from steers finished in feedlot systems. In this study, we evaluated the effects of finishing steers on three systems including: grazing legume–grass pasture containing oats, ryegrass, white and red clover (PAST), grazing PAST plus supplementation with whole corn grain (14 g/kg BW (SUPP)), and on a feedlot-confined system with concentrate only (28 g/kg BW, consisting of 850 g/kg of whole corn grain and 150 g/kg of protein–mineral–vitamin supplement (GRAIN)) on growth performance of steers, carcass traits and digestive disorders. Eighteen steers were randomly assigned to one of three dietary treatments and finished for 91 days. Data regarding pasture and growth performance were collected during three different periods (0 to 28, 29 to 56 and 57 to 91 days). Subsequently, steers were harvested to evaluate carcass traits, presence of rumenitis, abomasitis and liver abscesses. The legume–grass pasture provided more than 19% dry matter of protein. In addition, pasture of paddocks where steers were assigned to SUPP and PAST treatments showed similar nutritional quality. When compared to PAST, finishing on SUPP increased total weight gain per hectare, stocking rate, daily and total weight gains. The increase of weight gain was high to GRAIN than SUPP and PAST. Steers finished on GRAIN had high hot carcass weight, fat thickness and marbling score when compared to PAST. However, these attributes did not differ between GRAIN and SUPP. Abomasum lesions were more prevalent in steers finished on GRAIN when compared to PAST. Results of this research showed that it is possible to produce carcasses with desirable market weight and fat thickness by finishing steers on legume–grass pasture containing oats, ryegrass, white and red clover. Moreover, supplementing steers with corn when grazing on legume–grass pasture produced similar carcass traits when compared to beef fed corn only.  相似文献   

6.
Barley straw treated with anhydrous ammonia at a rate of 40 g per kg of straw dry matter (DM) and rolled barley were offered to 20 steers weighing initially 350 kg. Each steer was offered in total approximately 600 kg of straw DM and approximately 525 kg of barley DM. Ten steers were offered the straw alone in the long form at the beginning of the trial followed by the rolled barley alone. The remaining 10 steers were offered straw which had been ground through a 40-mm screen and mixed with the rolled barley in a complete diet. Dry matter digestibility coefficients of the ammonia-treated straw and the mixed straw plus barley diet were 0.52 and 0.57 ± 0.026, respectively. The DM digestibility coefficient of rolled grain in the mixed diet was predicted from the digestibility of starch to be 0.78 and the DM digestibility of straw in the mixed diet, determined by difference, was 0.39. Although steers offered the straw followed by rolled barley took on average 39 days longer to consume their total food allowance, cold dressed carcass weights of the two groups were not significantly different nor was there any difference in the carcass composition of the two groups of steers as determined by specific gravity measurements. Maintenance energy requirements were calculated for the two groups of steers and although the same amount of food was consumed by both groups and the energy required for maintenance was higher in the group offered straw followed by barley, the depression in the energy available from straw offered in a mixed diet caused the same total amount of metabolizable energy to be available for carcass gain to both groups.  相似文献   

7.
Three groups of eight Bonsmara steers per dietary treatment with initial mean masses of ∼ 230 kg were allocated to two whole maize grain-based diets until slaughtered at a final group mass of ca. 385 kg. Two maize cultivars, a soft, yellow, high-lysine (HL2) and a hard, yellow, normal (CG4502) cultivar, mixed with molasses and a urea-mineral mix, were given ad libitum to the steers. Milled maize-crop residue was given separately at 10% of each group's mean intake of the whole maize grain diet. Both cultivars had the same grading and did not differ in their protein and starch content. The high-lysine cultivar's hardness was 19.4 percentage units less than the normal cultivar.The animals fed on the high-lysine cultivar had average daily live (1.55 versus 1.21 kg) and carcass (1.02 versus 0.84 kg) mass gains which were significantly (P ⩽ 0.01) higher than that of the normal cultivar. Both gains were adjusted for the covariate (initial mass) and the nested effect of groups within diets. The mean total dry-matter intake (6.70 versus 6.38 kg day−1) did not differ significantly between treatments. The efficiency of feed conversion (kg DM intake kg−1 gain) per unit of live (4.33 versus 5.29) and warm carcass (6.55 versus 7.67) mass gains was significantly superior (P ⩽ 0.01) for the high lysine cultivar. It is postulated that the softer high-lysine maize grain is broken into smaller particles by mastication during eating and rumination because of its physico-chemical characteristics, thus resulting in its overall better utilization.  相似文献   

8.
A completely randomised design study involving 132 continental crossbred beef steers was undertaken to evaluate the effects of method of grain treatment and feed level, and grass silage feed value on animal performance, carcass characteristics and meat quality of beef cattle. Winter wheat was harvested and the grain was stored either ensiled crimped and treated with 4.5 l/t of a proprietary acid-based additive (crimped), ensiled whole and treated with 20 kg feed-grade urea per t (urea) or stored conventionally in an open bin treated with 3 l propionic acid per t. Two grass silages, of contrasting feed value (L and H) were ensiled. For the conventional, crimped and urea treatments, grain dry matter (DM) concentrations were 802, 658 and 640 g/kg, respectively. For the L- and H-feed value silages, DM concentrations were 192 and 240 g/kg and D values were 671 and 730 g/kg DM, respectively. The silages were offered as the sole forage supplemented with either conventional, crimped or urea-treated grain-based concentrate at either 3.5 or 6.0 kg DM per steer per day. The grain supplement consisted of 850 and 150 g/kg DM of grain and citrus pulp, respectively. For the conventional, urea and crimped treatments, DM intakes were 8.85, 9.43 and 9.04 kg/day (standard error (s.e.) = 0.129); estimated carcass gains were 0.60, 0.55 and 0.61 kg/day (s.e. = 0.020), respectively. For the low- and high- feed value grass silages, estimated carcass gains were 0.56 and 0.61 kg/day (s.e. = 0.014), respectively. For the low and high grain feed levels, estimated carcass gains were 0.56 and 0.61 kg/day, respectively. Grain treatment, grain feed level or silage feed value did not alter (P > 0.05) meat quality, lean colour or fat colour. There were significant silage feed value × grain feed level interactions (P < 0.05) for final live weight (LW) and daily live-weight gain (DLWG). Increasing grain feed level increased final LW and DLWG when offered with the low-feed value silage, however, grain feed level had no effect on final LW or DLWG when offered with the high-feed value silage. It is concluded that urea treatment of grain increased silage intake and feed conversion ratio (kg DM intake per kg carcass) and tended to decrease carcass gain. Crimping provides a biologically equally effective method to store grain as conventional methods. Improving grass silage feed value had a greater impact on animal performance than increasing grain feed level by 2.4 kg DM per day.  相似文献   

9.
The effects of maturity of maize at harvest, level of inclusion and potential interactions on the performance, carcass composition, meat quality and potential concentrate-sparing effect when offered to finishing beef cattle were studied. Two maize silages were ensiled that had dry matter (DM) concentrations of 217 and 304 g/kg and starch concentrations of 55 and 258 g/kg DM, respectively. Grass silage was offered as the sole forage supplemented with either 4 or 8 kg concentrate/steer daily or in addition with one of the two maize silages at a ratio 0.5 : 0.5, on a DM basis, maize silage : grass silage supplemented with 4 kg concentrate daily. The two maize silages were also offered as the sole forage supplemented with 4 kg concentrate/steer daily. The forages were offered ad libitum. The six diets were offered to 72 steers (initial live weight 522 s.d. 23.5 kg) for 146 days. There were significant interactions (P < 0.05) between maize maturity and inclusion level for food intake, fibre digestibility and daily gain. For the grass silage supplemented with 4 or 8 kg concentrate, and the maize silages with DM concentrations of 217 and 304 g/kg offered as 0.5 or 1.0 of the forage component of the diet, total DM intakes were 8.3, 9.8, 8.9, 8.2, 9.2 and 9.8 kg DM/day (s.e. 0.27); live-weight gains were 0.74, 1.17, 0.86, 0.71, 0.88 and 1.03 kg/day (s.e. 0.057); and carcass gains were 0.48, 0.73, 0.56, 0.46, 0.56 and 0.63 kg/day (s.e. 0.037), respectively. Increasing the level of concentrate (offered with grass silage), maize maturity and level of maize inclusion reduced (P < 0.05) fat b* (yellowness). The potential daily concentrate-sparing effect, as determined by carcass gain, for the maize silages with DM concentrations of 217 and 304 g/kg offered as 0.5 and 1.0 of the forage component of the diet were 1.3, −0.3, 1.3 and 2.4 kg fresh weight, respectively. It is concluded that the response, in animal performance, including maize silage is dependent on the stage of maturity and level of inclusion in the diet. Maize silage with a DM of 304 g/kg offered ad libitum increased carcass gain by 31%, because of a combination of increased metabolizable energy (ME) intake and improved efficiency of utilization of ME, and produced carcasses with whiter fat.  相似文献   

10.
An experiment was conducted to determine the effects of soy isoflavone daidzein on carcass characteristics, fat deposition, meat quality, and blood metabolites in finishing steers. Fourteen crossbred steers were used in a 120-d finishing study. These steers were stratified by weight into groups and randomly allotted by group to one of two dietary treatments: (1) control and (2) daidzein (500 mg/kg concentrate). The steers were fed a 90% concentrate diet. Supplemental daidzein did not affect slaughter weight, hot carcass weight, and dressing percentage, but tended to reduce fat proportion (not including intramuscular fat) in carcass and backfat thickness of steers. The carcass bone proportion was greater in steers fed daidzein diets than those fed control diets. Daidzein supplementation reduced pH at 24 h after slaughtered and moisture content and increased isocitrate dehydrogenase activity, fat content (16.28% and 7.94%), marbling score (5.29 and 3.36), redness (a*), and chroma (C*) values in longissimus muscle relative to control treatment. The concentrations of blood metabolites including glucose, blood urea nitrogen, triglyceride, total cholesterol, non-esterified fatty acid, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were all lower in steers fed daidzein diets than those fed control diets. Current results suggest that supplemental daidzein can affect lipid metabolism, increase intramuscular fat content and marbling score, and improve meat quality in finishing steers. Daidzein should be a promising feed additive for production of high-quality beef meat.  相似文献   

11.
A total of 120 commercial crossbred steer calves (284±1.9 kg) were allocated in a 2×2 arrangement to two barley processing methods; whole (W) or rolled (R) barley and two ammoniation treatments; ammoniated (A) or non-ammoniated (N) barley. Steers were randomly allocated to twelve pens with 10 steers per pen and 3 pens (replications) per diet. The study was divided into two stages, growing (0–84 day) and finishing (85–196 day). Average daily gain (ADG) for the overall 196 day period was affected by processing (p<0.01) averaging 1.10 and 1.20 kg day−1 for steers on W and R barley, respectively. Steers on the R barley gained 19.6% more than those on W barley during the growing stage and 0.8% more during the finishing stage. There was a trend towards an improvement (p=0.06) in overall ADG by ammoniation. The ADG of steers was significantly higher (p<0.01) during the finishing (1.22 kg day−1) than during the growing (1.06 kg day−1) stage. Feed efficiency was better with R than with W barley (6.8 vs. 7.7; p=0.02). Processing and ammoniation had no effect (p>0.05) on carcass traits or grades.  相似文献   

12.
The objectives of this study were to determine: (1) the effect of wheat dried distillers grain with solubles (DDGS) inclusion, and (2) dietary feed enzyme (FE; Econase XT) supplementation in a finishing diet containing wheat DDGS on fatty acid profile of the pars costalis diaphragmatis muscle of beef cattle. A total of 160 crossbred yearling steers with initial BW of 495±38 kg were blocked by BW and randomized into 16 pens (10 head/pen). The pens were randomly assigned to one of the four treatments: (1) control (CON; 10% barley silage and 90% barley grain-based concentrate, dry matter (DM) basis); (2) diet containing 30% wheat DDGS in place of barley grain without FE (WDG); (3) WDG diet supplemented with low FE (WDGL; 1 ml FE/kg DM); and (4) WDG diet supplemented with high FE (2 ml FE/kg DM). The pars costalis diaphragmatis muscle samples were collected from cattle at slaughter at the end of the finishing period (120 days) with a targeted live weight of 650 kg. No differences in organic matter intake, final BW and average daily gain were observed among treatments. However, steers fed WDG had greater (P<0.01) feed conversion ratio than those fed CON, and increasing FE application in wheat DDGS-based diets tended (P<0.10) to linearly decrease feed conversion ratio. In assessing the effects of including WDG diets without FE, concentration of total polyunsaturated fatty acids (PUFA) in muscle tended to be greater (P<0.10) for steers fed WDG than steers fed CON. In addition, inclusion of wheat DDGS into the diet increased (P<0.05) concentration of CLA and vaccenic acid (VA) in muscle and also resulted in a higher (P<0.05) ratio of n-6/n-3 PUFA compared with that from steers fed CON diet. Increasing FE application in wheat DDGS-based diets did not modify the concentrations of individual or total fatty acids. These results suggest that inclusion of wheat DDGS in finishing diets may improve fatty acid profile of beef muscle which could benefit human health.  相似文献   

13.
The effects of (i) medium and high feed value (MFV and HFV) maize silages and (ii) MFV and HFV grass silages, each in combination with a range of concentrate feed levels, on the performance of finishing lambs were evaluated using 280 Suffolk-X lambs (initial live weight 36.1 kg). The MFV and HFV maize silages represented crops with dry matter (DM) concentrations of 185 and 250 g/kg, respectively, at harvest, and had starch and metabolisable energy (ME) concentrations of 33 and 277 g/kg DM and 9.6 and 11.0 MJ/kg, respectively. HFV and MFV grass silages had DM and ME concentrations of 216 and 294 g/kg and 11.0 and 11.5 MJ/kg DM, respectively. A total of 13 treatments were involved. The four silages were offered ad libitum with daily concentrate supplements of 0.2, 0.5 or 0.8 kg per lamb. A final treatment consisted of concentrate offered ad libitum with 0.5 kg of the HFV grass silage daily. Increasing the feed value of grass silage increased (P < 0.001) forage intake, daily carcass and live weight gains, final live weight and carcass weight. Increasing maize silage feed value tended to increase (P = 0.07) daily carcass gain. Increasing concentrate feed level increased total food and ME intakes, and live weight and carcass gains. There was a significant interaction between silage feed value and the response to concentrate feed level. Relative to the HFV grass silage, the positive linear response to increasing concentrate feed level was greater with lambs offered the MFV grass silage for daily live weight gain (P < 0.001), daily carcass gain (P < 0.01) and final carcass weight (P < 0.01). Relative to the HFV maize silage, there was a greater response to increasing concentrate feed level from lambs offered the MFV maize silage in terms of daily carcass gain (P < 0.05) and daily live weight gain (P = 0.06). Forage type had no significant effect on the response to increased concentrate feed level. Relative to the MFV grass silage supplemented with 0.2 kg concentrate, the potential concentrate-sparing effect of the HFV grass silage, and the MFV and HFV maize silages was 0.41, 0.09 and 0.25 kg daily per lamb, respectively. It is concluded that increasing forage feed value increased forage intake and animal performance, and maize silage can replace MFV grass silage in the diet of finishing lambs as performance was equal to or better (depending on maturity of maize at harvest) than that for MFV grass silage.  相似文献   

14.
Demand for beef produced from pasture-based diets is rising as it is perceived to be healthier, animal friendly and good for the environment. Animals reared on a solely grass forage diet, however, have a lower growth rate than cereal-fed animals and consequently are slaughtered at an older age. This study focused on the former by conducting life cycle assessments of beef production systems offering only fresh or conserved grass, and comparing them to a conventional pasture-based beef production system offering concentrate feeding during housing. The four suckler weanling-to-beef production systems simulated were: (i) Steers produced to slaughter entirely on a grass forage diet at 20 months (GO-20); (ii) Steers produced to slaughter entirely on a grass forage diet at 24 months (GO-24); (iii) Steers produced to slaughter on a grass forage diet with concentrate supplementation during housing (GC-24), and (iv) Steers produced to slaughter entirely on a grass forage diet at 28 months (GO-28). Two breed types were evaluated: early-maturing and late-maturing (LM). The environmental impacts assessed were global warming potential (GWP), non-renewable energy (NRE), acidification potential (AP), eutrophication potential (marine (MEP) and freshwater) were expressed per animal, per kg live weight gain (LWG), kg carcass weight gain, and kg meat weight gain (MWG). The GO-20 production system had the lowest environmental impact across all categories and functional units for both breeds. Extending age at slaughter increased environmental impact across all categories per animal. The LWG response of EM steers to concentrate feed supplementation in GC-24 was greater than the increase in total environmental impact resulting in GC-24 having a lower environmental impact across categories per kg product than GO-24. Concentrate feed supplementation had a similar effect on LM steers with the exception of NRE and AP. The increase in daily LWG in the third grazing season in comparison to the second grazing and housing resulted in GO-28 having lower GWP, NRE, AP, and MEP per kg product than GO-24. Early-maturing steers had lower environmental impact than LM when expressed per kg LWG. However the opposite occurred when impacts were expressed per kg MWG, despite LM steers producing the least LWG. The LM steers compensated for poor LWG performance by having superior carcass traits, which caused the breed to have the lowest environmental impact per kg MWG. The results reaffirms the importance of functional unit and suggests reducing the environmental impact of LWG does not always translate into improvements in the environmental performance of meat.  相似文献   

15.
The effects of treating Neepawa wheat straw with anhydrous ammonia (35 kg t?1), sodium hydroxide (50 kg t?1) and pelleting were evaluated in two experiments. The diets consisted of 51% rolled barley, 40% straw, 4% rapeseed meal, 2% tallow, plus minerals and a vitamin supplement. Straw was treated as follows: (1) shredded into 2.0-cm lengths; (2) shredded into 0.64-cm lengths and pelleted; (3) ammoniated and shredded; (4) ammoniated and pelleted; (5) sodium hydroxide and pelleted; (6) ammoniated, sodium hydroxide and pelleted.Apparent digestibility was measured with six steers per treatment. Pelleting had no effect on organic matter (OM) digestibility, but decreased neutral detergent fibre (NDF) and cellulose digestion. Respective increases for OM and NDF digestibility following chemical treatment of the straw were as follows: ammoniation — 15 and 17%; sodium hydroxide — 4 and 13%.The six diets were given to 144 Hereford steers (240 kg) for 92 days in the second experiment. Feed consumption ranged from 8.51 to 10.39 kg day?1 for diets 1 and 4, and body weight gains ranged from 0.83 to 1.26 kg day?1 for diets 1 and 6, respectively. Respective increases for intake, gain and feed efficiency compared to untreated shredded straw were as follows: pelleting — 11, 34 and 17%; ammoniation — 12, 36 and 17%. Sodium hydroxide treatment prior to pelleting improved intake, gain and feed efficiency by 5, 10 and 5%, respectively. There was no evidence of additive effects between ammoniation and either pelleting or alkali treatment, though treatment with sodium hydroxide prior to pelleting did result in the highest gains and feed efficiency.  相似文献   

16.
This experiment aimed to quantify the relative intake, digestibility, rumen fermentation, performance and carcass characteristics of beef cattle fed diets based on good quality whole-crop wheat and barley silages, each harvested at two cutting heights, and to rank these relative to good quality maize silage and an ad libitum concentrates-based diet. Ninety beef steers, initial live-weight 438 ± 31.0 kg, were allocated to one of the following dietary treatments in a randomised complete block design: maize silage (MS), whole-crop wheat harvested at a normal cutting height (WCW) (stubble height 0.12 m) or an elevated cutting height (HCW) (stubble height 0.29 m), whole-crop barley harvested at a normal cutting height (WCB) (stubble height 0.13 m) or an elevated cutting height (HCB) (stubble height 0.30 m), each being supplemented with 3 kg concentrates/head/day, and ad libitum concentrates (ALC) supplemented with 5 kg grass silage/head/day for the duration of the 160-day study. Mean dry matter (DM) of the maize silage, whole-crop wheat, head-cut wheat, whole-crop barley and head-cut barley was 301, 488, 520, 491 and 499 g/kg, respectively. There were no differences in total DM intake among treatments, or in rumen fermentation characteristics (except ammonia), or in DM digestibility among the forage-based treatments. Neutral detergent fibre digestibility was lower (P<0.05) for whole-crop wheat than head-cut barley, and starch digestibility was lower (P<0.05) for whole-crop barley and head-cut barley than maize silage. Steers fed ALC had a higher carcass gain (P<0.001) and carcass weight (P<0.05) than all other treatments, but there were no differences between any of the forage-based treatments. Steers fed MS had a better feed conversion efficiency (FCE) than those on WCW or WCB (P<0.05) but were similar to HCW and HCB. The FCE was better for ALC versus any of the other treatments, particularly compared to WCW or WCB (P<0.001). Subcutaneous fat from steers fed ALC was more yellow (P<0.01) than that from steers fed the other treatments. Neither intake nor performance were altered by raising the cutting height of cereals or by replacing whole-crop wheat by barley. However, head-cut cereals numerically favoured DM intake, carcass gain and feed conversion efficiency values nearer to that of maize than whole-crop cereal silages. Ad libitum concentrates supported superior levels of growth by steers compared to all other treatments.  相似文献   

17.
A feeding trial was carried out to examine the effect of supplementary protein on the performance of pigs, when swede dry matter replaced 40% of the dry matter supplied by barley in two diets providing different amounts of protein. One hundred and twenty pigs of about 60 kg initial live weight were given one of four diets, each of which provided a constant amount of dry matter daily for 42 days, after which the pigs were slaughtered at about 90 kg live weight. The two basal diets were, on a dry matter basis; barley 2.0 kg plus either 0.2 or 0.4 kg soya bean meal. A mineral and vitamin supplement was given with each diet. There was no significant interaction between the effects of the inclusion of swedes or additional soya bean meal in the diet. The averaged results for pairs of diets showed that the use of swedes decreased carcass-weight gain from 0.62 to 0.51 kg/day and that the increment of soya bean meal increased it from 0.54 to 0.59 kg/day (P < 0.001 for both). It is suggested that the failure of swede dry matter to give an equivalent response to that of barley is not due to the nutritional value of its crude protein component per se but to other physical and chemical factors which may affect its utilization as an energy feed-source for pigs.  相似文献   

18.
This study examined the relationship of residual feed intake (RFI) with digestion, body composition, carcass traits and visceral organ weights in beef bulls offered a high concentrate diet. Individual dry matter (DM) intake (DMI) and growth were measured in a total of 67 Simmental bulls (mean initial BW 431 kg (s.d.=63.7)) over 3 years. Bulls were offered concentrates (860 g/kg rolled barley, 60 g/kg soya bean meal, 60 g/kg molasses and 20 g/kg minerals per vitamins) ad libitum plus 0.8 kg grass silage DM daily for 105 days pre-slaughter. Ultrasonic muscle and fat depth, body condition score (BCS), muscularity score, skeletal measurements, blood metabolites, rumen fermentation and total tract digestibility (indigestible marker) were determined. After slaughter, carcasses and perinephric and retroperitoneal fat were weighed, carcasses were graded for conformation and fat score and weight of non-carcass organs, liver, heart, kidneys, lungs, gall bladder, spleen, reticulo-rumen full and empty and intestines full, were determined. The residuals of the regression of DMI on average daily gain (ADG), mid-test metabolic BW (BW0.75) and the fixed effect of year, using all animals, were used to compute individual RFI coefficients. Animals were ranked on RFI and assigned to high (inefficient), medium or low groupings. Overall mean ADG and daily DMI were 1.6 kg (s.d.=0.36) and 9.4 kg (s.d.=1.16), respectively. High RFI bulls consumed 7 and 14% more DM than medium and low RFI bulls, respectively (P<0.001). No differences between high and low RFI bulls were detected (P>0.05) for ADG, BW, BCS, skeletal measurements, muscularity scores, ultrasonic measurements, carcass weight, perinephric and retroperitoneal fat weight, kill-out proportion and carcass conformation and fat score. However, regression analysis indicated that a 1 kg DM/day increase in RFI was associated with a decrease in kill-out proportion of 20 g/kg (P<0.05) and a decrease in carcass conformation of 0.74 units (P<0.05). Weight of non-carcass organs did not differ (P>0.05) between RFI groups except for the empty weight of reticulo-rumen, which was 8% lighter (P=0.05) in low RFI compared with high RFI bulls. Regression analysis indicated that a 1 kg DM/day increase in RFI was associated with a 1 kg increase in reticulo-rumen empty weight (P<0.05). Of the visceral organs measured, the reticulo-rumen may be a biologically significant contributory factor to variation in RFI in beef bulls finished on a high concentrate diet.  相似文献   

19.
The aim of this study was to test the effect of various dietary protein contents (CP) on the carcass traits and the meat quality of Cinta Senese pigs. A total of 60 Cinta Senese pigs were equally distributed in four dietary groups that were balanced for sex (barrows and gilts) and live weight. The animals in the groups were fed one of four diets (80CP, 100CP, 130CP and 160CP) containing different CP contents (80, 100, 130 and 160 g/kg, respectively). The diets were administered to the pigs during the entire growing–fattening period in a controlled dose of 90 g/kg W0.75, to a maximum of 2.5 kg/day per animal. The duration of the trial was ~250 days, ending when the animals reached the target slaughter weight of 145 kg. The 80CP diet produced fatter carcasses than did the other diets; no differences in carcass composition were found among the animals fed the other three diets (total lean cuts: 57.4%, 61.4%, 60.8% and 61.3% for 80CP, 100CP, 130CP and 160CP diet, respectively). The sample joint composition confirmed the highest fatness and the lowest meatiness of pigs fed 80CP. This same pattern was evident for the composition of the muscle (Longissimus lumborum) containing the largest amount of i.m. fat, and the lowest protein content in the 80CP group. Moreover, the 80CP diet resulted in the lightest and yellowest meat with the highest cooking loss. A principal component analysis of the physical and chemical traits of the meat revealed three first factors that explained 56% of the total variance. Among them, only the intersection of Factor1, which combined mainly lower pH at 24 h postmortem and higher drip loss, cooking loss, lightness and yellowness, with Factor2, which associated higher toughness, higher protein and lower fat content, graphically appeared to discriminate the 80CP diet from the other ones. In conclusion, a diet with 80 g/kg of CP content was inadequate for this local breed, while, in consideration of the cost of protein feed and the need to reduce N pollution, the 100CP diet would be an optimal compromise for the growth–fattening of Cinta Senese pigs.  相似文献   

20.
In order to accurately estimate body composition at slaughter and to meet specific market targets, the influence of age at time of castration (surgical or immunological) on body composition and boar taint indicators must be determined for male pigs. In all, 48 males were randomly assigned to one of four management regimens: (1) entire male pigs (EM), (2) EM surgically castrated at ~40 kg BW and 10 weeks of age (late castrates; LC), (3) conventional, early surgical castrates (within 4 days of birth; EC) and (4) EM immunized with a gonadotropin-releasing hormone (GnRH) analog (primary dose at 30 kg BW and 8 weeks of age; booster dose at 70 kg and 14 weeks of age; IM). Pigs were fed corn and soybean meal-based diets that were not limiting in essential nutrients. Back fat was sampled on days −3, 8, 18 and 42, relative to administering the booster dose of GnRH analog at day 0, to determine androstenone concentrations (n=8 or 9/group). Fat androstenone concentrations in IM were lower than EM between days 8 and 42 after administering the booster dose (173 v. 863 ng/g, respectively; P<0.01), and were not different from surgically castrated males (EC and LC) after day 18. Slaughter occurred at ~115 kg BW, 42 days (6 weeks) after administering the booster dose for IM, and 10 and 20 weeks after surgical castration for LC and EC, respectively (n=8 or 9/group). At slaughter, live BW, liver weight as a percent of live BW, dissectible bone as a percent of cold carcass side, body protein and water contents and whole-body protein deposition decreased with time after surgical castration (linear; P<0.05), whereas dressing percentage, dissectible fat, probe fat depth and body fat content increased with time after surgical castration (linear; P<0.05). The IM had intermediate dressing percentage and dissected fat to EM and EC, whereas liver weight as a percent of live BW and body protein and lipid contents were not different from EM. Whole-body lipid deposition tended to be greater in IM than in EM between 14 and 20 weeks of age (373 v. 286 g/d; P=0.051). In conclusion, castration of male pigs after 6 weeks of age has a lasting effect on physical and chemical body composition. The relationship between time after castration and body composition may be developed to predict carcass composition and can be used to determine the ideal immunization schedule aimed at specific markets in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号