首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Efficiency of energy utilisation and voluntary feed intake in ruminants   总被引:1,自引:0,他引:1  
Energy requirements of animals are most readily expressed in terms of net energy (NE), while the energy yield of feed is, at least initially, expressed in terms of metabolisable energy (ME). Energy evaluation systems 'translate' NE requirements into ME requirements (ME systems) or assign NE values to feeds (NE systems). Efficiency of ME utilisation is higher for maintenance than for production and the NE yield of a feed varies, therefore, with ME intake. In addition, energetic efficiency for maintenance and production is thought to be different for lactating and non-lactating animals and to be affected by diet quality. As a result, there are currently many national energy evaluation systems that are complex, differ in their approach and are, as a result, difficult to compare. As ruminants in most production systems are fed ad libitum, this is also the most appropriate intake level at which to estimate energetic efficiency. Analyses of older as well as more recent data suggest that ad libitum feeding (i) abolishes the effects of diet quality on energetic efficiency (almost) completely, (ii) abolishes the differences between lactating and non-lactating animals (almost) entirely and (iii) results in overall energetic efficiencies that are always close to 0.6. The paper argues that there is now sufficient information to develop an international energy evaluation system for ad libitum fed ruminants. Such a system should (i) unify ME and NE systems, (ii) avoid the systematic bias and large errors that can be associated with current systems (iii) be simpler than current systems and (iv) have as a starting point a constant efficiency of ME utilisation, with a value of around 0.6. The remarkably constant efficiency of ME utilisation in ad libitum fed ruminants could be the result of energetic efficiency as well as feed intake regulation being affected by the same variables or of a direct role of energetic efficiency in feed intake regulation. Models to predict intake on the basis of the latter hypothesis are already available for non-reproducing ruminants but remain to be developed for reproducing animals.  相似文献   

2.
The paper describes the energetic feed evaluation systems for ruminants, pigs, poultry and horses presently used in Germany. During the last ten years the “Ausschuß für Bedarfsnormen”; (AfB; Committee of Nutrient Requirements) of the “Gesellschaft für Ernährungsphysiologie”; (GfE, Society of Nutritional Physiology) introduced new recommendations for energy requirements of domestic animals including national and international references.

The energetic requirements were factorially deduced (demand for maintenance and various performances) under consideration of partial efficiency of utilized metabolizable energy (ME) for various performances (k‐values). Except for lactating cows (Net Energy Lactation; NEL) the energy requirements of other ruminants as well as of pigs and poultry are given in ME. At present, the energy requirement of horses is still expressed as digestible energy (DE).

Besides several energy requirements reported there are equations to determine and to calculate the energy content of feeds (GfE, 1986–1998) and corresponding tables which include the nutritive values of feedstuffs for various species. The energy content of mixed feeds may be estimated by specific equations.  相似文献   

3.
Two experiments were conducted to estimate the metabolisable energy (ME) and net energy (NE) of rice straw and wheat straw for beef cattle. In each experiment, 16 Wandong bulls (Chinese indigenous yellow cattle) were assigned to 4 dietary treatments in a completely randomised design. Four dietary treatments included one corn silage-concentrate basal diet and three test diets in which the basal diet was partly substituted by rice straw (Exp. 1) or wheat straw (Exp. 2) at 100, 300 and 600 g/kg. Total collection of faeces and urine was conducted for 5 consecutive days after a 2-week adaption period, followed by a 4-d period where gas exchange measurements were measured by an open-circuit respiratory cage. Linear regression equations of rice straw- or wheat straw-associated ME and NE contribution in test diets against rice straw or wheat straw substitution amount were developed to predict the ME and NE values of rice straw and wheat straw. These regression equations resulted in ME and NE values (dry matter basis) of 6.76 and 3.42 MJ/kg for rice straw and 6.43 and 3.28 MJ/kg for wheat straw, respectively. The NE and ME requirement for maintenance of Wandong cattle fed a straw-based diet were 357 and 562 kJ·kg?0.75·d?1, respectively. The regression-derived ME and NE have lower standard errors and coefficients of variation than those estimated by any single substitution ratio. Our study found that the regression method based on multiple point substitution is more reliable than the substitution method for energy evaluation of feedstuffs for beef cattle.  相似文献   

4.
Energy evaluation systems translate an animal's net energy (NE) requirements into feed metabolisable energy requirements (MER). The Feed into Milk (FiM) project (Agnew RE, Yan T, France J, Kebreab E and Thomas C 2004. Energy requirement and supply. In Feed into Milk. A new applied feeding system for dairy cows (ed. C Thomas), pp. 11-20. Nottingham University Press, Nottingham, UK) proposed a new system to predict MER of dairy cows that is, in contrast to previous energy evaluation systems for cattle, independent of feed quality. The FiM system shares this characteristic with an energy evaluation system for ad libitum-fed cattle proposed in 1994 by Tolkamp and Ketelaars (T&K). The FiM system requires nine parameters to translate requirements for NE into MER for dairy cows, while the T&K system for cattle requires only two for the same purpose. This paper analyses the contribution of each of the parameters to the final MER predictions, the differences in MER prediction between the two systems and the underlying causes of these differences. The systems differ considerably in their estimates of the NE that is required for maintenance and in their (implicit) assumptions about the partial efficiency of ME utilisation for lactation. The T&K system is based on a constant partial efficiency of ME utilisation, but in the FiM system this efficiency changes with milk yield (MY) and shows a sharp discontinuity that is at odds with the underlying biology. These are the two main causes of the differences in MER predictions. Nevertheless, over a range of MYs between 10 and 40 kg, and for cows maintaining, gaining or losing weight, the MER predictions of the two systems are very similar with maximum differences of up to ±2% only. FiM predictions of MER are systematically higher than T&K predictions for cows with very low and very high MY. It is concluded that the FiM system could reduce parameter requirements with negligible effects on MER predictions. The combination of a very high maintenance NE parameter and a curvilinear model with two subsequent corrections leads to internal inconsistencies in the FiM system. The T&K system is much simpler but it might benefit from including more recent information for the estimation of its parameters.  相似文献   

5.
Wild ruminants require energy and protein for the normal function. I developed a system for predicting these energy and protein requirements across ruminant species and life stages. This system defines requirements on the basis of net energy (NE), net protein (NP), and ruminally degraded protein (RDP). Total NE and NP requirements are calculated as the sum of NE and NP required for several functions (maintenance, activity, thermoregulation, gain, lactation, and gestation). To estimate the requirements for each function, I collected data predominantly for wild species and then formulated allometric and other equations that predict requirements across species. I estimated RDP requirements using an equation for cattle. I then related NE, NP, and RDP to quantities more practical for diet formulation (e.g. dry matter intake). I tabulated requirements over a range of body mass and life stages (neonate, juvenile, nonproductive adult, lactating adult, and gestating adult). Tabulated requirements suggest that adults at peak lactation require greatest quantities of energy and neonates generally require greatest quantities of protein, agreeing with suggestions that lactation is energetically expensive and protein is most limiting during growth. Equations used in this system were precise (allometric equations had R2 generally ≥0.89 and coefficient of variation <31.1%) and expected to reliably predict requirements across species. Results showed that a system for beef cattle would overestimate NE and either over‐ or underestimate NP for gain when applied to wild ruminants, showing that systems for wild ruminants should not extrapolate from requirements for domestic ruminants. One prominent system for wild ruminants predicted at times vastly different protein requirements from those predicted by the proposed system. The proposed system should be further evaluated and expanded to include other nutrients. Zoo Biol 30:165–188, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Grass-based diets are of increasing social-economic importance in dairy cattle farming, but their low supply of glucogenic nutrients may limit the production of milk. Current evaluation systems that assess the energy supply and requirements are based on metabolisable energy (ME) or net energy (NE). These systems do not consider the characteristics of the energy delivering nutrients. In contrast, mechanistic models take into account the site of digestion, the type of nutrient absorbed and the type of nutrient required for production of milk constituents, and may therefore give a better prediction of supply and requirement of nutrients. The objective of the present study is to compare the ability of three energy evaluation systems, viz. the Dutch NE system, the agricultural and food research council (AFRC) ME system, and the feed into milk (FIM) ME system, and of a mechanistic model based on Dijkstra et al. [Simulation of digestion in cattle fed sugar cane: prediction of nutrient supply for milk production with locally available supplements. J. Agric. Sci., Cambridge 127, 247–60] and Mills et al. [A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow: model development, evaluation and application. J. Anim. Sci. 79, 1584–97] to predict the feed value of grass-based diets for milk production. The dataset for evaluation consists of 41 treatments of grass-based diets (at least 0.75 g ryegrass/g diet on DM basis). For each model, the predicted energy or nutrient supply, based on observed intake, was compared with predicted requirement based on observed performance. Assessment of the error of energy or nutrient supply relative to requirement is made by calculation of mean square prediction error (MSPE) and by concordance correlation coefficient (CCC). All energy evaluation systems predicted energy requirement to be lower (6–11%) than energy supply. The root MSPE (expressed as a proportion of the supply) was lowest for the mechanistic model (0.061), followed by the Dutch NE system (0.082), FIM ME system (0.097) and AFRC ME system (0.118). For the energy evaluation systems, the error due to overall bias of prediction dominated the MSPE, whereas for the mechanistic model, proportionally 0.76 of MSPE was due to random variation. CCC analysis confirmed the higher accuracy and precision of the mechanistic model compared with energy evaluation systems. The error of prediction was positively related to grass protein content for the Dutch NE system, and was also positively related to grass DMI level for all models. In conclusion, current energy evaluation systems overestimate energy supply relative to energy requirement on grass-based diets for dairy cattle. The mechanistic model predicted glucogenic nutrients to limit performance of dairy cattle on grass-based diets, and proved to be more accurate and precise than the energy systems. The mechanistic model could be improved by allowing glucose maintenance and utilization requirements parameters to be variable.  相似文献   

7.
The aim of this work was to test the robustness of the 0.68 estimate of the efficiency of conversion of metabolisable protein into true milk protein (Agriculture and Food Research Council (AFRC), 1993) for protein-limiting diets and to determine whether a different value is appropriate for practical rationing. Seventy-two multiparous cows were blocked on the basis of milk energy output per unit of dry matter intake (DMI), and allocated at random to one of four treatments. Treatments supplied metabolisable energy (ME) at a fixed level to individuals within a block, but varied metabolisable protein (MP) supply from 25% below the estimated requirements, through -12.5% and +12.5% up to 25% above requirements for the average performance of animals within blocks at the start of the study. Cows were offered diets to meet their predicted ME requirements for each 3-week period with measurements performed in the last week of each period. Milk protein output was regressed against the estimated MP available for production for each cow and the efficiency of conversion of MP into milk true protein was calculated, assuming a maintenance requirement according to the MP system. The efficiency of conversion of MP into milk true protein decreased with the increasing supply of MP from 0.77 to 0.50. Using an iterative approach to determine the best fit of the data when supply matched requirement resulted in a range of efficiency values between 0.62 and 0.64 g of true milk protein per g of MP.  相似文献   

8.
The model LiGAPS-Beef (Livestock simulator for Generic analysis of Animal Production Systems – Beef cattle) has been developed to assess potential and feed-limited growth and production of beef cattle in different areas of the world and to identify the processes responsible for the yield gap. Sensitivity analysis and evaluation of model results with experimental data are important steps after model development. The first aim of this paper, therefore, is to identify which parameters affect the output of LiGAPS-Beef most by conducting sensitivity analyses. The second aim is to evaluate the accuracy of the thermoregulation sub-model and the feed intake and digestion sub-model with experimental data. Sensitivity analysis was conducted using a one-at-a-time approach. The upper critical temperature (UCT) simulated with the thermoregulation sub-model was most affected by the body core temperature and parameters affecting latent heat release from the skin. The lower critical temperature (LCT) and UCT were considerably affected by weather variables, especially ambient temperature and wind speed. Sensitivity analysis for the feed intake and digestion sub-model showed that the digested protein per kg feed intake was affected to a larger extent than the metabolisable energy (ME) content. Sensitivity analysis for LiGAPS-Beef was conducted for ¾ Brahman×¼ Shorthorn cattle in Australia and Hereford cattle in Uruguay. Body core temperature, conversion of digestible energy to ME, net energy requirements for maintenance, and several parameters associated with heat release affected feed efficiency at the herd level most. Sensitivity analyses have contributed, therefore, to insight which parameters are to be investigated in more detail when applying LiGAPS-Beef. Model evaluation was conducted by comparing model simulations with independent data from experiments. Measured heat production in experiments corresponded fairly well to the heat production simulated with the thermoregulation sub-model. Measured ME contents from two data sets corresponded well to the ME contents simulated with the feed intake and digestion sub-model. The relative mean absolute errors were 9.3% and 6.4% of the measured ME contents for the two data sets. In conclusion, model evaluation indicates the thermoregulation sub-model can deal with a wide range of weather conditions, and the feed intake and digestion sub-model with a variety of feeds, which corresponds to the aim of LiGAPS-Beef to simulate cattle in different beef production systems across the world.  相似文献   

9.
The metabolisable energy (ME) values of beef tallow, animal fat and poultry fat were determined by various methods using two- or six-week-old chicks and adult cockerels. The ME value of tallow increased with the age of the bird, but no parallel changes in either digestibility or ME of unsaturated fats were observed. The difference between ME values obtained by digestibility studies and those obtained directly showed that added fat may increase the absorbability of other constituents of the diet, hence the ME obtained by difference may exceed gross energy in some cases.  相似文献   

10.
The mitigation of enteric methane emission in beef cattle production is important for reducing feed energy loss and increasing environmental sustainability. The main objective of this study was to evaluate the effect of different oilseeds included in fermented total mixed rations (whole soyabean seed (SBS, control), whole kapok seed (KPS) and cracked oil palm fruit (OPF)) on feed intake, digestibility, rumen microbial populations, energy partition and methane emissions in different cattle genotypes (Charolais crossbred v. Japanese Black crossbred). Three Charolais crossbred and three Japanese Black crossbred bulls were studied in a replicated 3×3 Latin square experimental design; genotypes were analysed in separate squares including three periods of 21 days each and three dietary oilseed treatments fed ad libitum. The cattle were placed in a metabolic cage equipped with a ventilated head box respiration system for evaluating digestibility and energy balance. As compared with Charolais crossbred individuals, Japanese Black crossbred bulls showed consistently lower dry matter intake (15.5%, P<0.01), metabolisable energy (ME) intake (13.8%, P<0.05), ME requirement for maintenance (10.3%; 386 v. 430 kJ/kg metabolic BW, respectively), faeces energy loss (19.2%, P<0.001) and enteric methane emissions (18.5%, P<0.001). However, these two genotypes did not differ in energy retention (ER) (P=0.80). Among the three dietary oilseed treatments, OPF exhibited higher NDF intake (P<0.01) and digestibility (P<0.01), which was associated with a larger (P<0.05) total number of bacteria in the rumen. In addition, the OPF diet contributed to higher ME intake and ER than that of the KPS diet, whereas the SBS diet presented intermediate values (P<0.05). The methane conversion factor of these crossbreds was not significantly affected by genotype (P>0.05) or diet (P>0.05) under the experimental conditions and ranged from 5.8% to 6.0% of gross energy intake. This value is lower than that reported by the Intergovernmental Panel on Climate Change (6.5%) for cattle fed with low-quality crop residues or by-products. Thus, our results imply that the Japanese Black crossbred cattle consume less feed and emits less enteric methane than the Charolais crossbred does, mainly owing to its lower ME requirement for maintenance. The OPF diet could be used to replace SBS for high beef production, although further studies are required to evaluate their application across a wide range of beef production systems.  相似文献   

11.
Two experiments were conducted to evaluate the impact of different energy systems in predicting the energy cost of gain of growing-finishing pigs fed diets containing different levels of dietary fat. The diets in both experiments were based on wheat, corn and soybean meal and supplemented with 0, 1.75, 3.50 and 5.25% tallow. In Experiment 1, 24 crossbred barrows (Duroc x Landrace x Yorkshire) were randomly allocated to one of the four dietary treatments to determine the digestible (DE) and metabolizable (ME) energy content of the diets and net energy (NE) was calculated from DE and ME values. In Experiment 2, 96 crossbred barrows (Duroc x Landrace x Yorkshire) were used to evaluate the effectiveness of the energy systems in predicting the energy cost of gain for growing-finishing pigs fed ad libitum. There were six pens per treatment and four pigs per pen. The results obtained in trial 1 were used for calculating the energy cost of gain in trial 2. During the growing period, there was a linear decrease (p < 0.05) in the DE and ME cost of gain, while the NE cost of gain was not influenced by level of fat. During the finishing period, neither DE, ME or NE cost of gain were influenced by the dietary fat level. For the total experiment, the DE and ME cost of gain decreased (linear effect; p = 0.001), but there was no significant decrease in the NE cost of gain. It is concluded that the NE system can predict the performance of growing-finishing pigs more precisely for diets differing in fat content than can the DE and ME systems.  相似文献   

12.
The advantages and disadvantages of metabolisable and net energy as parameters of energetic feed evaluation are discussed. For a global comprehensive standardisation of the energetic feed evaluation, the metabolisable energy (ME) will have a preference. The principles of an energetic feed evaluation system with ME as parameter are explained according to which the subsystems for all species of animals should be worked out uniformly. The subsystems for the most important farm animals integrate themselves in addition to ME for predicting the energy and food needs of the animal also the net energy (NE) by taking a standard feedstuff to characterise the relative energetic feed value of the feedstuffs for one or more partial performances of the animal species concerned.  相似文献   

13.
The drive to increase the output of animal product in some sectors of ruminant livestock production has led to greater use of feeds such as cereal grains and soyabean meal that are potentially human-edible. This trend has caused concern since, by so doing, ruminants compete not only with monogastric livestock but also with the human population for a limited global area of cultivatable land on which to produce grain crops. Reasons for using potentially human-edible feeds in ruminant diets include increased total daily energy intake, greater supply of essential amino acids and improved ruminal balance between fermentable energy and degradable protein. Soyabean meal, produced on land that has been in arable cultivation for many years can fulfil a useful role as a supplier of undegraded dietary protein in diets for high-yielding dairy cows. However, in the context of sustaining the production of high-quality foods from livestock to meet the demands of a growing human population, the use of potentially human-edible feed resources by livestock should be restricted to livestock with the highest daily nutrient requirements; that is, potentially human-edible feed inputs should be constrained to meeting requirements for energy and protein and to rectifying imbalances in nutrient supply from pastures and forage crops such as high concentrations of nitrogen (N). There is therefore a role for human-edible feeds in milk production because forage-only systems are associated with relatively low output per head and also low N use efficiency compared with systems with greater reliance on human-edible feeds. Profitability on farm is driven by control of input costs as well as product value and examples are given of low-cost bovine milk and meat production with little or no reliance on potentially human-edible feeds. In beef production, the forage-only systems currently under detailed real-time life-cycle analysis at the North Wyke Farm Platform, can sustain high levels of animal growth at low feed cost. The potential of all-forage diets should be demonstrated for a wide range of ruminant milk and meat production systems. The challenge for the future development of ruminant systems is to ensure that potentially human-edible feeds, or preferably human-inedible by-products if available locally, are used to complement pastures and forage crops strategically rather than replace them.  相似文献   

14.
Quantifying energy dissipation by grazing animals in harsh environments   总被引:1,自引:0,他引:1  
Grazing systems in harsh environments are common throughout the world, and animal production is the mainstay of the livelihoods of many resource-poor farmers. The energy cost of the various activities involved in the process of harvesting the pasture to transform it into animal product can be estimated through an energy balance. This cost would be the difference between the metabolizable energy intake (MEI) and the energy expenditures for maintenance (MEm), temperature regulation (MEtr), and the energy for production (MEp). Each of the ME has its own net energy (NE) and its associated efficiency (K). When MEI>MEm+MEtr+MEp, the difference is attributable to the energy dissipated during grazing. The efficiency of converting the energy consumed into animal products depends on the magnitude of the dissipation. The inefficiency is associated with the energy spent in locomotion and the stress produced when there is low availability of energy in the pasture. This paper presents a method to quantify the dissipation of energy by grazing animals by considering it as a function of available energy. Such an understanding is required in order to develop management strategies to increase conversion efficiency.  相似文献   

15.
Twenty-four early-weaned pigs were fed three different rations, with and without the addition of 16 mg. iodinated casein/lb. feed. In general, supplementation did not result in any change in liveweight gain, feed intake or feed efficiency, but brought about a noticeable, though not statistically significant, increase in the apparent digestibility of dry matter, gross energy, crude protein, ether extract, and total carbohydrates. An examination of the results of supplementing individual rations revealed that in one case iodinated casein had adversely affected liveweight gain, feed intake and efficiency of feed conversion. This particular ration, in comparison with the other two feeds, contained a high level of soybean oilmeal and a low level of feed of animal origin.  相似文献   

16.
Efficiency in animal protein production can be defined in different ways, for example the amount of human-digestible essential amino acids (HDEAA) in the feed ration relative to the amount of HDEAA in the animal products. Cattle production systems are characterised by great diversity and a wide variety of feeds and feed ration compositions, due to ruminants’ ability to digest fibrous materials inedible to humans such as roughage and by-products from the food and biofuel industries. This study examined the upgrading of protein quality through cattle by determining the quantity of HDEAA in feeds and animal products and comparing different milk and beef production systems. Four different systems for milk and beef production were designed, a reference production system for milk and beef representing typical Swedish production systems today and three alternative improved systems: (i) intensive cattle production based on maize silage, (ii) intensive systems based on food industry by-products for dairy cows and high-quality forage for beef cattle, and (iii) extensive systems based on forage with only small amounts of concentrate. In all four production systems, the quantity of HDEAA in the products (milk and meat) generally exceeded the quantity of HDEAA in the feeds. The intensive production models for beef calves generally resulted in output of the same magnitude as input for most HDEAA. However, in beef production based on calves from dairy cows, the intensive rearing systems resulted in lower output than input of HDEAA. For the extensive models, the amounts of HDEAA in meat were of the same magnitude as the amounts in the feeds. The extensive models with beef calves from suckler cows resulted in higher output in meat than input in feeds for all HDEAA. It was concluded that feeding cattle plants for production of milk and meat, instead of using the plants directly as human food, generally results in an upgrading of both the quantity and quality of protein, especially when extensive, forage-based production models are used. The results imply that the key to efficiency is the utilisation of human-inedible protein by cattle and justifies their contribution to food production, especially in regions where grasslands and/or forage production has comparative benefits over plant food production. By fine-tuning estimation of the efficiency of conversion from human-edible protein to HDEAA, comparisons of different sources of protein production may be more complete and the magnitude of amino acid upgrading in plants through cattle more obvious.  相似文献   

17.
The objectives of the present study were to examine relationships between methane (CH4) output and animal and dietary factors, and to use these relationships to develop prediction equations for CH4 emission from beef cattle. The dataset was obtained from 108 growing-to-finishing beef steers in five studies and CH4 production and energy metabolism data were measured in indirect respiration calorimeter chambers. Dietary forage proportion ranged from 29.5% to 100% (dry matter (DM) basis) and forages included grass silage, fresh grass, dried grass and fodder beet. Linear and multiple regression techniques were used to examine relationships between CH4 emission and animal and dietary variables, with the effects of experiment or forage type removed. Total CH4 emission was positively related to live weight (LW), feeding level and intake of feed (DM and organic matter) and energy (gross energy (GE), digestible energy (DE) and metabolisable energy (ME)) (P < 0.001), while CH4/DM intake (DMI) was negatively related to energy digestibility and ME/GE (P < 0.05 or less). Using LW alone to predict CH4 emission produced a poor relationship when compared to DMI and GE intake (GEI) (R2 = 0.26 v. 0.68 and 0.70 respectively). Adding feeding level, dietary NDF concentration and CP/ME or feeding level, energy digestibility and ME/GE to support LW resulted in a R2 of 0.66 or 0.84. The high R2 (0.84) was similar to that obtained using DMI or GEI together with energy digestibility and ME/GE as predictors. Further inclusion of dietary forage proportion and ADF and NDF concentration to the multiple relationships using GEI as the primary predictor resulted in a R2 of 0.87. These equations were evaluated through internal validation, by developing a range of similar new equations from two-thirds of the present data and then validating these new equations with the remaining one-third of data. The validation indicated that addition of energy digestibility and ME/GE to support LW with feeding level, DMI and GEI considerably increased the prediction accuracy. It is concluded that CH4 emission of beef steers can be accurately predicted from LW plus feeding level, DMI or GEI together with energy digestibility and ME/GE. The dataset was also used to validate a range of prediction equations for CH4 production of cattle published elsewhere.  相似文献   

18.
Single concentrate feeds are mixed together forming compound feeds for cattle. However, knowledge regarding the potential interactions (associative effects) between the feeding values of single feeds in compound feeds is lacking. The main objective of the present study was to evaluate ruminal fermentation characteristics and feeding values of eight industrially produced compound feeds in mash form from their constituent single feeds for dairy cows through in vitroassays. Additivity was given for gas production (GP), digestibility of organic matter (dOM) and utilisable CP at the duodenum (uCP). Additivity of CP fractions (determined using the Cornell Net Carbohydrate and Protein System (CNCPS)) was dependent on the fraction and compound feed type; however, the effective degradation calculated from CP fractions (EDCNCPS) showed additivity. Additivity was not given for intestinal digestibility of rumen-undegraded protein (IDRUP) for five out of eight compound feeds. Precise calculation of metabolisable energy (ME) of compound feeds from ME of single feeds was possible when using the same ME equations for all single and compound feeds. Compound feeds are often provided in pellet form; therefore, our second objective was to evaluate the effects of pelleting on ruminal fermentation characteristics and feeding values of compound feeds. Pelleting affected GP at 24 h (GP24; up to 2.4 ml/200 mg DM), dOM (up to 2.3 percentage point (pp)) and ME (up to 0.3 MJ/kg DM), but these differences were overall small. More considerable effects of pelleting were observed for uCP, which was increased in all compound feeds except the two with the highest CP concentrations. The IDRUPwas lower in most compound feeds following pelleting (up to 15 pp). Pelleting also affected CP fractions in a non-systematic way. Overall, the effects of pelleting were not considerable, which could be because pelleting conditions were mild. Our third objective was to compare in situruminal CP degradation (EDIN_SITU) of compound feeds with ED using two prediction methods based on CP fractions. EDIN_SITUreference data were obtained from a companion study using the same feeds. Prediction accuracy of EDIN_SITUand EDCNCPSwas variable and depended on the compound feed and prediction method. However, future studies are needed as to date not enough data are published to draw overall conclusions for the prediction of EDIN_SITUfrom CP fractions.  相似文献   

19.
Livestock, particularly ruminants, can eat a wider range of biomass than humans. In the drive for greater efficiency, intensive systems of livestock production have evolved to compete with humans for high-energy crops such as cereals. Feeds consumed by livestock were analysed in terms of the quantities used and efficiency of conversion of grassland, human-edible ('edible') crops and crop by-products into milk, meat and eggs, using the United Kingdom as an example of a developed livestock industry. Some 42 million tonnes of forage dry matter were consumed from 2008 to 2009 by the UK ruminant livestock population of which 0.7 was grazed pasture and 0.3 million tonnes was conserved forage. In addition, almost 13 million tonnes of raw material concentrate feeds were used in the UK animal feed industry from 2008 to 2009 of which cereal grains comprised 5.3 and soyabean meal 1.9 million tonnes. The proportion of edible feed in typical UK concentrate formulations ranged from 0.36 for milk production to 0.75 for poultry meat production. Example systems of livestock production were used to calculate feed conversion ratios (FCR - feed input per unit of fresh product). FCR for concentrate feeds was lowest for milk at 0.27 and for the meat systems ranged from 2.3 for poultry meat to 8.8 for cereal beef. Differences in FCR between systems of meat production were smaller when efficiency was calculated on an edible input/output basis, where spring-calving/grass finishing upland suckler beef and lowland lamb production were more efficient than pig and poultry meat production. With the exception of milk and upland suckler beef, FCR for edible feed protein into edible animal protein were >1.0. Edible protein/animal protein FCR of 1.0 may be possible by replacing cereal grain and soyabean meal with cereal by-products in concentrate formulations. It is concluded that by accounting for the proportions of human-edible and inedible feeds used in typical livestock production systems, a more realistic estimate of efficiency can be made for comparisons between systems.  相似文献   

20.
The objective of this study was to evaluate the nutritional and ecological aspects of feeding systems practiced under semi-arid environments in Jordan. Nine dairy farms representing the different dairy farming systems were selected for this study. Feed samples (n = 58), fecal samples (n = 108), and milk samples (n = 78) were collected from the farms and analysed for chemical composition. Feed samples were also analysed for metabolisable energy (ME) contents and in vitro organic matter digestibility according to Hohenheim-Feed-Test. Furthermore, fecal nitrogen concentration was determined to estimate in vivo organic matter digestibility. ME and nutrient intakes were calculated based on the farmer’s estimate of dry matter intake and the analysed composition of the feed ingredients. ME and nutrient intakes were compared to recommended standard values for adequate supply of ME, utilizable crude protein, rumen undegradable crude protein (RUCP), phosphorus (P), and calcium (Ca). Technology Impact Policy Impact Calculation model complemented with a partial life cycle assessment model was used to estimate greenhouse gas emissions of milk production at farm gate. The model predicts CH4, N2O and CO2 gases emitted either directly or indirectly. Average daily energy corrected milk yield (ECM) was 19 kg and ranged between 11 and 27 kg. The mean of ME intake of all farms was 184 MJ/d with a range between 115 and 225 MJ/d. Intake of RUCP was lower than the standard requirements in six farms ranging between 19 and 137 g/d, was higher (32 and 93 g/d) in two farms, and matched the requirements in one farm. P intake was higher than the requirements in all farms (mean oversupply = 19 g/d) and ranged between 3 and 30 g/d. Ca intake was significantly below the requirements in small scale farms. Milk nitrogen efficiency N-eff (milk N/intake N) varied between 19% and 28% and was mainly driven by the level of milk yield. Total CO2 equivalent (CO2 equ) emission ranged between 0.90 and 1.88 kg CO2/kg ECM milk, where the enteric and manure CH4 contributed to 52% of the total CO2 equ emissions, followed by the indirect emissions of N2O and the direct emissions of CO2 gases which comprises 17% and 15%, respectively, from total CO2 equ emissions. Emissions per kg of milk were significantly driven by the level of milk production (r2 = 0.93) and of eDMI (r2 = 0.88), while the total emissions were not influenced by diet composition. A difference of 16 kg ECM/d in milk yield, 9% in N-eff and of 0.9 kg CO2 equ/kg in ECM milk observed between low and high yielding animals. To improve the nutritional status of the animals, protein requirements have to be met. Furthermore, low price by-products with a low carbon credit should be included in the diets to replace the high proportion of imported concentrate feeds and consequently improve the economic situation of dairy farms and mitigate CO2 equ emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号