首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A physical map of the streptococcal macrolides, lincomycin, and streptogramin B (MLS) resistance plasmid pDB101 was constructed using six different restriction endonucleases. Ten recognition sites were found for HindIII, seven for HindII, eight for HaeII, and one each for EcoRI, HpaII, and KpnI. The localization of the restriction cleavage sites was determined by double and triple digestions of the plasmid DNA or sequential digestions of partial cleavage products and isolated restriction fragments, and all sites were aligned with a single EcoRI reference site. Plasmid pDB101 meets all requirements essential for a potential molecular cloning vehicle in streptococci; i.e., single restriction sites, a MLS selection marker, and a multiple plasmid copy number. The vector plasmid described here makes it possible to clone selectively any fragment of DNA cleaved with EcoRI, HpaII, or KpnI, or since the sites are close to each other in map position, any combination of two of these restriction enzymes.  相似文献   

2.
Summary Some physico-chemical properties of the DNAs released from the actinophages SH3, SH10, SH11, and SH12 are described. The four phage DNAs have a linear double-stranded secondary structure and are unique with respect to their high G·C contents which, from melting studies and buoyant density experiments, were found to be in the range of 68–73 mol-%. The DNA molecular weights were determined by sedimentation velocity experiments and by electron microscopic length measurements, the mean values of the two corresponding data sets being 34.0·106 (SH3), 26.7·106 (SH10), 26.1·106 (SH11), and 28.7·106 (SH12) with a mean relative error of ±5%. From different observations it was concluded that SH10 DNA, and possibly also SH11 and SH12 DNA, have cohesive ends and can undergo intramolecular or intermolecular association to form ring-like monomers or linear and ring-like multimers. Cleavage of the DNAs of SH3, SH10, SH11, and SH12 by EcoRI restriction endonuclease delivered two, one, zero, and two cleavage sites, respectively, and by BamHI restriction endonuclease eight, zero, zero, and zero cleavage sites, respectively.  相似文献   

3.
A plasmid cloning vector for Kpnl-cleaved DNA   总被引:9,自引:0,他引:9  
K Beckingham 《Plasmid》1980,4(3):354-356
A plasmid cloning vector containing a single site for KpnI has been generated by insertion of a 3.5-kb EcoRI/HindIII fragment of pCR1 into the EcoRI/HindIII sites of pBR322. KpnI cleavage yields 3′ rather than 5′ “sticky ends” which allows reconstitution of the recognition site after cloning by a homopolymer joining procedure. This is an advantage shared with only one or two other commercially available restriction enzymes.  相似文献   

4.
A physical map of bacteriophage MB78 DNA indicating the cleavage sites for the enzymeBglII,ClaI,EcoRI,PvuII,SalI andSmaI comprising of a total of 34 cleavage sites have been constructed earlier. The cleavage sites for a few more restriction endonucleases likeApaI,AvaI,BglI,HindIII,KpnI andXhoI have now been mapped. A total of 72 cleavage sites on MB78 DNA are known by now. Relative positions ofEcoRI I and J fragments which could not be decided earlier has now been determined.  相似文献   

5.
The locations of thirty restriction endonuclease cleavage sites were determined on the genome of adenovirus type 4 (Ad4), the sole member of the subgroup E adenovirions. The restriction endonucleases BglII, EcoRI, HindIII, HpaI, KpnI, SalI, and XbaI cut Ad4 DNA 10, 3, 2, 3, 5, 5 and 3 times, respectively. Orientation of the linear Ad4 map with respect to left and right molecular ends was accomplished by taking advantage of the limited sequence homology between Ad2 and Ad4. Ten non-overlapping fragments of Ad4 DNA representing 98% of the genome, map units 1.6 to 99.6, have been cloned into the plasmid vector pKC7.  相似文献   

6.
A plasmid cloning vector containing a single site for KpnI has been generated by insertion of a 3.5-kb EcoRI/HindIII fragment of pCR1 into the EcoRI/HindIII sites of pBR322. KpnI cleavage yields 3′ rather than 5′ “sticky ends” which allows reconstitution of the recognition site after cloning by a homopolymer joining procedure. This is an advantage shared with only one or two other commercially available restriction enzymes.  相似文献   

7.
A new plasmid designated pEA566 was isolated from Erwinia aroideae. The molecular weight of the plasmid, as determined by neutral and alkaline sucrose gradient centrifugation, electron microscopy, and agarose gel electrophoresis, was 6.6 × 106. The plasmid replicated under relaxed control, had three cleavage sites for KpnI restriction endonuclease, and no sites for EcoRI, BamHI, SalI, PstI, and HindIII.  相似文献   

8.
A restriction map of chicken embryo lethal orphan (CELO) virus DNA was reported with ten restriction endonucleases (XbaI, XhoI, SalI, HindIII, EcoRI, BglI, KpnI, BamHI, PstI and SstI). CELO virus DNA was estimated by comparing CELO virus DNA fragments with marker DNA fragments to have a molecular weight of 29.3·106.  相似文献   

9.
The break in the complementary DNA strand of early G4 replicative form II DNA (RFII) and in the viral DNA strand of late RFII DNA was located using two single cleavage restriction enzymes (EcoRI and PstI) and by limited nick translation of the break using DNA polymerase I and 32P-labelled deoxyribonucleotides followed by digestion with the restriction enzymes HaeIII and HindII. The break in the complementary DNA strand was unique and in HaeIII Z5 close to the EcoRI cleavage site whereas the break in the viral DNA strand was on the other side of the molecule in HaeIII Z2 approxiately 50% away from the EcoRI cleavage site. Distribution of a short 3H pulse in early G4 replicating intermediates that were synthesising both DNA strands at the same time showed that synthesis of the strands started on opposite sides of the molecule and proceeded in opposite convergent directions, suggesting that initiation of synthesis of the two strands was independent and not unified in a single growing fork.  相似文献   

10.
Summary The plasmid designated pAD1 was isolated from the cells of four variants of Bacillus brevis var. G.-B. The plasmid DNA has a molecular weight of about 47.1×106 daltons and contains 43.4 mole % G+C. The bulk of pAD1 DNA (96–98%) is associated with the fraction of chromosome DNA and membranes.Restriction endonucleases SmaI, SalI and BamHI cleaved the plasmid DNA into two, two and six fragments, respectively. The cleavage map of the pAD1 genome has been constructed for these three endonucleases. Restriction enzymes EcoRI, HindIII, KpnI and PstI hydrolized the plasmid DNA into 16, 21, 10 and 9 fragments, respectively. The presence of repeated sequences in the plasmid genome was shown based on pAD1 DNA cleavage by these endonucleases.  相似文献   

11.
The non-defective (heavy) virions from a simian virus 40-like virus (DAR virus) isolated from human brain have been serially passaged at high input multi-plicities in primary monkey kidney cells. The 32P-labeled, progeny DAR-viral genomes have been purified and tested for sensitivity to the RI restriction endouclease from Escherichia coli (Eco RI3 restriction nuclease). The parental DAR-viral genomes share many physical properties with “standard” simian virus 40 DNA and are cleaved once by the Eco RI restriction nuclease. After the fourth serial passage, three populations of genomes could be distinguished: Eco RI resistant, Eco RI sensitive (one cleavage site) and Eco RI “supersensitive” (three, symmetrically-located, cleavage sites). The Eco RI cleavage product of the “supersensitive” form is one-third the physical size (10.4 S) of simian virus 40 DNA and reassociates about three times more rapidly than sheared, denatured simian virus 40 DNA. From the fourth to the eighth serial passages, the genomes containing this specific triplication of viral DNA sequences were selected for and became the predominant viral DNA species.  相似文献   

12.
The periodicities of the restriction enzyme cleavage sites in highly repetitive DNAs of six mammalian species (monkey, mouse, sheep, human, calf and rat) appear related to the length of DNA contained in the nucleosome subunit of chromatin. We suggest that the nucleosome structure is an essential element in the generation and evolution of repeated DNA sequences in mammals (Brown et al., 1978; Maio et al., 1977). The possibility of a phase relation between DNA repeat sequences and associated nucleosome proteins is consistent with this hypothesis and has been tested by restriction enzyme and micrococcal nuclease digestions of repetitive DNA sequences in isolated, intact nuclei.Sites for four different restriction enzyme activities, EcoRI, EcoRI1, HindIII and HaeIII have been mapped within the repeat unit of component α DNA, a highly repetitive DNA fraction of the African green monkey. The periodicity of cleavage sites for each of the enzymes (176 ± 4 nucleotide base-pairs) corresponds closely to the periodicity (about 185 nucleotide base-pairs) of the sites attacked in the initial stages of micrococcal nuclease digestion of nuclear chromatin. In intact monkey nuclei, EcoRI-RI1 sites are accessible to restriction enzyme cleavage; the HindIII and HaeIII sites are not. The results suggest (1) that, in component α chromatin, the EcoRI-RI1 sites are found at the interstices of adjacent nucleosomes and (2) the HindIII and HaeIII sites are protected from cleavage by their location on the protein core of the nucleosome. This interpretation was confirmed by experiments in which DNA segments of mononucleosomes and nucleosome cores released from CV-1 nuclei by micrococcal nuclease were subsequently treated with EcoRI, EcoRI1 and HindIII. A major secondary segment of component α, about 140 nucleotide base-pairs in length, was released only by treatment with HindIII, in keeping with the location of the HindIII sites in the restriction map and their resistance to cleavage in intact nuclei.EcoRI reduces calf satellite I DNA to a segment of about 1408 nucleotide basepairs. In contrast, restriction of calf satellite I DNA with EcoRI1 produces six prominent segments ranging in size from 176 to 1408 nucleotide base-pairs. Treatment of isolated calf nuclei with either EcoRI or EcoRI1 did not produce segments shorter than 1408 base-pairs, indicating that while canonical EcoRI sites are accessible to attack, the irregularly spaced EcoRI1 sites are specifically blocked. The results are consistent with a phase relation between the repeat sequence of calf satellite I DNA and an octameric array of nucleosomes.  相似文献   

13.
The DNA of bacteriophage T5 has been treated with restriction endonucleases EcoRi, HindIII, BamI, SmaI, PstI, SalI, KpnI and the electrophoretic pattern obtained in agarose gel has been analyzed in order to localize the specific cleavage sites on the T5 DNA. The localization of cleavage sites has been deduced from the electrophoretic pattern of double and partial digests, the digests of isolated restriction fragments and the digests of deletion mutant T5st(o) DNA.Four BamI cleavage sites have been found and localized on the physical map of T5 DNA at 0.21, 0.225, 0.685 and 0.725 fractional length. Endonuclease SmaI cleaves at 0.39, 0.59 and 0.69 fractional length. Endonuclease PstI cuts T5 DNA at 11 sites: 0.090, 0.210, 0.320, 0.510, 0.635, 0.670, 0.705, 0.770, 0.815, 0.840, 0.875 fractional length. Six KpnI cleavage sites have been mapped at 0.170, 0.215, 0.525, 0.755, 0.830, 0.850 fractional length. A complete cleavage map of the phage genome is presented for seven restriction enzymes.  相似文献   

14.
Seven isolates of Fusarium oxysporum f. sp. ciceris, representing pathogenic races 1 , 2, 3, and 4 from India and 0, 5, and 6 from Spain, were assayed for restriction fragment length polymorphisms (RFLPs) in the mitochondrial DNA,(mt DNA). The mt DNA fraction of total fungal DNA was purified and digested with the restriction endonucleases Bam HI, Bgl II, Eco RI. Kpn I, Sac I, Sal I, Sma I, and Xho I. The mt DNA is a circular molecule of 40.5 kb. No RFLP in the mt DNA was detected among the seven races of F. o. ciceris. The identical restriction patterns of mt DNA indicates an extensive conservation in the gene composition of mt DNA without sequence variation, and suggests that mt DNA of F. o. ciceris may not be responsible for pathogenic diversity. The restriction map of mt DNA from the race 6 isolate Fo 8272 was constructed by digestion of the mt DNA with five restriction enzymes: Eco RI, Kpn I, Sac I, Sal I, and Xho I, either singly or in selected pairs.  相似文献   

15.
The restriction sites of Autographa californica nuclear polyhedrosis virus (AcMNPV) E2 DNA were mapped for the endonucleases SmaI, KpnI, BamHI, SacI, XhoI, and EcoRI. The restriction maps of four other AcMNPV variants, Trichoplusia ni (TnMNPV), and Galleria mellonella (GmMNPV) genomes were determined and compared to the endonuclease cleavage maps of AcMNPV E2 DNA. The viral structural polypeptides of AcMNPV variants S3, E2, S1, M3, and R9 were the same when analyzed by polyacrylamide gel electrophoresis. The major structural polypeptides of GmMNPV and TnMNPV had the same pattern in polyacrylamide gels as did AcMNPV structural polypeptides. GmMNPV and TnMNPV had several minor structural protein differences as compared with AcMNPV. AcMNPV variants, TnMNPV, and GmMNPV were distinct but with very similar genomes and protein structures.  相似文献   

16.
A restriction endonuclease analysis of the hemolytic plasmid pSU316 has allowed location of the cleavage sites for the endonucleases BamHI, XbaI, KpnI, BglII, SalGI, EcoRI, and HindIII. Hybridization experiments between pSU316 and pED100 have shown that the tra region of pSU316 lies in a segment comprising part of SalGI fragments S-1 and S-3 and the entire fragment S-4. The positions of other plasmid coded functions, namely the replication functions and α-hemolysin production, have been determined in the physical map.  相似文献   

17.
A procedure for investigating the possibility of small amounts of partial DNA sequence homology between two defined DNA molecules has been developed and used to test for sequence homology between simian virus 40 and polyoma DNAs. This procedure, which does not necessitate the use of separated viral DNA strands, involves the construction of hybrid DNA molecules containing a simian virus 40 DNA molecule covalently joined to a polyoma DNA molecule, using the sequential action of EcoRI restriction endonuclease and Escherichia coli DNA ligase. Denaturation of such hybrid DNA molecules then makes it possible to examine intramolecularly rather than intermolecularly renatured molecules. Visualization of these intramolecularly renatured “snapback” molecules with duplex regions of homology by electron microscopy reveals a 15% region of weak sequence homology. This region is denatured at about 35 °C below the melting temperature of simian virus 40 DNA and therefore corresponds to about 75% homology. This region was mapped on both the simian virus 40 and polyoma genomes by the use of Hemophilus parainfluenzae II restriction endonuclease cleavage of the simian virus 40 DNA prior to EcoRI cleavage and construction of the hybrid molecule. The 15% region of weak homology maps immediately to the left of the EcoRI restriction endonuclease cleavage site in the simian virus 40 genome and halfway around from the EcoRI restriction endonuclease cleavage site in the polyoma genome.  相似文献   

18.
Summary A restriction endonuclease cleavage map of phage P2 was constructed. The enzymes used and, within parenthesis, the number of their cleavage sites on the P2 lg cc DNA molecule were: AvaI(3), BalI(1), BamI(3), BglII(3), HaeIII (more than 40; only three were mapped), HindIII(0), HpaI(10), KpnI(3), PstI(3), SalI(2) and SmaI(1). The EcoRI cleavage sites (3), as determined earlier, were used as reference points for this study. The DNAs of a variety of P2 mutants carrying chromosomal aberrations (del1, del2, del3, del6, vir22, vir37(2), vir79 and vir94) were also similarly examined.  相似文献   

19.
Summary We present a linearized physical map of the genome of bacteriophage T4. This map contains the cleavage sites for restriction enzymes SmaI, KpnI, SalI, BglII, XhoI, XbaI, ClaI, HaeII, EcoRI, and EcoRV. It also contains about 200 TaqI sites. The promoter sites recognized in vitro and a number of rho independent terminators have also been mapped.  相似文献   

20.
EcoRI analysis of bacteriophage P22 DNA packaging.   总被引:20,自引:0,他引:20  
Bacteriophage P22 linear DNA molecules are a set of circularly permuted sequences with ends located in a limited region of the physical map. This mature form of the viral chromosome is cut in headful lengths from a concatemeric precursor during DNA encapsulation. Packaging of P22 DNA begins at a specific site, which we have termed pac, and then proceeds sequentially to cut lengths of DNA slightly longer than one complete set of P22 genes (Tye et al., 1974b). The sites of DNA maturation events have been located on the physical map of EcoRI cleavage sites in P22 DNA. EcoRI digestion products of mature P22 wild-type DNA were compared with EcoRI fragments of two deletion and two insertion mutant DNAs. These mutations decrease or increase the length of the genome, but do not alter the DNA encapsulation mechanism. Thus the position of mature molecular ends relative to EcoRI restriction sites is different in each mutant, and comparison of the digests shows which fragments come from the ends of linear molecules. From the positions of the ends of molecules processed in sequential headfuls, the location of pac and the direction of encapsulation relative to the P22 map were deduced. The pac site lies in EcoRI fragment A, 4.1 × 103 base-pairs from EcoRI cleavage site 1. Sequential packaging of the concatemer is initiated at pac and proceeds in the counterclockwise direction relative to the circular map of P22. One-third of the linears in a population are cut from the concatemer at pac, and most packaging sequences do not extend beyond four headfuls.Fragment D is produced by EcoRI cleavage at a site near the end of a linear chromosome which has been encapsulated starting at pac. The position of the pac site is therefore defined by one end of fragment D. The pac site is not located near genes 12 and 18, the only known site for initiation of P22 DNA replication, but lies among late genes at a position on the physical gene map approximately analogous to the cohesive end site (cos) of bacteriophage λ at which λ DNA is cleaved during encapsulation. Our results suggest that P22 and λ DNA maturation mechanisms have many common properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号