首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Somatostatin receptors in the rat pituitary gland were characterized by binding analysis with a radioiodinated high affinity somatostatin analogue, 125I-Tyr1[D-Trp8]somatostatin. Receptor binding of this derivative reached equilibrium at 30 min and was maintained at a plateau for at least 60 min. Two L-Trp8- labeled somatostatin analogues. 125I-Tyr1- and [125I-Tyr11]somatostatin, displayed less stable and lower specific uptake and higher nonspecific binding. In contrast to the rapid degradation of the L-Trp8 ligands during binding assay, 125I-Tyr1]D-Trp8]somatostatin retained more than 80% of its binding activity after 90 min of incubation with pituitary particles. Pituitary particles bound 125I-Tyr1]D-Tyr8]somatostatin with high affinity (Ka = 8.6 +/- 1.2 X 10(9) M-1) and capacity of 54.4 +/- 2.6 fmol/mg. These binding sites showed specificity for the native peptide and its active analogues, and other peptide hormones, including angiotensin II, thyrotropin-releasing hormone, vasopressin, oxytocin, substance P, and gonadotropin-releasing hormone, did not inhibit tracer binding. A good correlation was observed between the binding affinities of several somatostatin analogues and their potencies as inhibitors of growth hormone release in rat pituitary cells. These findings emphasize the physiological importance of the pituitary somatostatin receptor in mediating the inhibitory action of the peptide on growth hormone release. The use of Tyr1[d-Trp8]somatostatin as a labeled ligand permits accurate determinations of the binding affinity and concentration of receptors for somatostatin in the normal pituitary gland and provides a basis for further studies of somatostatin receptor regulation and receptor-mediated cellular effects of the tetradecapeptide.  相似文献   

2.
Somatostatin binding to its receptors on rat pancreatic acinar membranes was characterized with [125I-Tyr1]somatostatin. Binding at 24 degrees C was rapid reaching a maximum after 60 min and was reversible upon the addition of 1 microM unlabeled ligand. Scatchard analysis revealed a single class of binding sites, with a Kd of 0.32 +/- 0.03 nM and a binding capacity of 600 +/- 54 fmol/mg of protein. Specificity for the somatostatin was demonstrated with the inhibition of labeled hormone binding by somatostatin analogs in proportion to their biological activities. When [125I-Tyr1]somatostatin was cross-linked to its receptors with the photoreactive cross-linker n-hydroxysuccinimidyl-4-azidobenzoate, the hormone was associated with Mr = 90,000 protein. Similar mobilities of the radioactive band were observed in the presence and absence of dithiothreitol. In contrast to other unrelated peptides, cholecystokinin (CCK) and its analogs directly reduced [125I-Tyr1] somatostatin binding to isolated membranes. The effect of CCK was one-half-maximal at 3 nM and maximal at 100 nM. In the presence of 3 nM CCK8, the binding capacity for somatostatin was decreased to 237 +/- 39 fmol/mg of protein without a significant change in affinity. Dibutyryl cyclic GMP, a CCK receptor antagonist, blocked this action of CCK8 indicating that the CCK receptor mediated the decrease in [125-Tyr1]somatostatin binding. In contrast cerebral cortex membranes, which also possess a somatostatin receptor, were not regulated by CCK. These results indicate, therefore, that 1) purified pancreatic acinar plasma membranes contain specific receptors for somatostatin, 2) the receptor has an apparent Mr of about 90,000, and 3) the binding of somatostatin to its receptor on pancreatic plasma membranes is regulated by CCK analogs acting via the CCK receptor.  相似文献   

3.
Pretreatment of pancreatic acini with vasoactive intestinal peptide (VIP) or secretin for 120 min reduced subsequent [125I-Tyr1]somatostatin binding to membranes prepared from these acini, with a maximally reduced binding being 79.2% or 77.4% of control, respectively. In addition, exogenously added cyclic AMP derivatives or a phosphodiesterase inhibitor mimicked the effect of VIP or secretin. Scatchard analysis of [125I-Tyr1]somatostatin binding demonstrated that the decrease in the labeled somatostatin binding induced by VIP or dibutyryl cyclic AMP (dbcAMP) pretreatment was due to the decrease in the maximum binding capacity without a significant change in the binding affinity. The effect of simultaneous pretreatment of acini with VIP and carbamylcholine (carbachol) on subsequent labeled somatostatin binding appeared to be almost equal to the calculated additive value for each peptide. Results obtained, therefore, indicate that the binding of somatostatin to its receptors in the pancreas may be regulated via two functionally distinct pathways.  相似文献   

4.
Specific receptors for bombesin/gastrin-releasing peptide, somatostatin, and EGF were investigated in 15 human colon cancer specimens. Eight of 15 clinical specimens (15%) of colon cancer showed the presence of somatostatin receptors. Octapeptide somatostatin analogs, RC-160 and RC-121, showed 10 times higher binding affinity for somatostatin receptors on colon cancer membranes than somatostatin. Analysis of 125I-Tyr4-bombesin binding data revealed the presence of specific binding sites in six (40%) specimens of human colon cancer. Scatchard analysis of 125I-labeled bombesin indicated a single class of receptors in three specimens with an apparent Kd value of 2.5 nM and two classes of receptors with high (Kd = 0.4 +/- 0.2 nM) and low affinity (Kd = 1.6 +/- 0.4 microM) in three other specimens. The 125I-Tyr4-bombesin binding capacities in the colon cancers for high affinity binding sites were from 6 to 228 fmol/mg protein and for low affinity binding sites 76 +/- 15 pmol/mg protein. None of the membrane preparations made from normal colonic mucosa specimens showed specific binding for 125I-Tyr4-bombesin. Five pseudononapeptide (psi 13-14) bombesin (6-14) antagonists, with different modifications at Positions 6 and 14, synthesized in our laboratory, inhibited the binding of 125I-Tyr4-bombesin in nanomolar concentrations. No correlation was found between the degree of differentiation and the presence of binding sites for somatostatin or bombesin. Specific binding of EGF was detected in 80% of colon cancer specimens. EGF binding capacity in colon cancer membranes was on average twice as high as in normal colon mucosa (50 +/- 21 vs 28 +/- 14 fmol/mg protein, respectively). Specific binding sites for somatostatin and EGF, but not bombesin, were also demonstrated in human colon cancer cell line HT-29. In HCT-116 colon cancer line only EGF receptors were found. These receptor findings and our in vivo studies on inhibition of colon cancer growth support the merit of continued evaluation of somatostatin analogs and bombesin/gastrin-releasing peptide antagonists in the management of colonic carcinoma.  相似文献   

5.
The peptide somatostatin (SRIF) is secreted by delta cells of the endocrine pancreas and inhibits the secretion of insulin from pancreatic beta cells. We have previously shown that [125I-Tyr11]SRIF binds to specific, high affinity receptors on RINm5F insulinoma cells and that these receptors mediate the action of SRIF to inhibit insulin release. In the present study we investigated the processing of receptor-bound [125I-Tyr11]SRIF in this clonal cell line. Surface-bound and internalized peptides were distinguished by the ability of an acid/salt solution (0.2 M acetic acid, 0.5 M NaCl, pH 2.5) to dissociate only exposed ligand-receptor complexes. Surprisingly, greater than 80% of saturably bound [125I-Tyr11]SRIF was removed by this acid wash independent of the time or temperature of the binding incubation. In contrast, the processing of receptor-bound [125I]EGF (epidermal growth factor) in RINm5F cells was markedly temperature-dependent. Although over 90% of saturably bound [125I]EGF was dissociated by acid after a 4 degrees C binding incubation, less than 10% was removed by acid treatment after 37 degrees C binding. The radioactivity released upon dissociation of receptor-bound [125I-Tyr11]SRIF was analyzed by high performance liquid chromatography and shown to consist of a mixture of intact peptide (40%) and [125I]tyrosine (60%). However, neither the rate of [125I-Tyr11]SRIF dissociation nor its degradation were affected by NH4Cl, methylamine, or leupeptin at concentrations which inhibited the lysosomal degradation of [125I] EGF. Of 11 other protease inhibitors tested, only the metalloendoprotease inhibitor, phosphoramidon, substantially reduced the degradation of receptor-bound [125I-Tyr11]SRIF. These data indicate that, unlike [125I] EGF, receptor-bound [125I-Tyr11]SRIF is not rapidly internalized by RINm5F cells and is degraded by a nonlysosomal process which may involve a metalloendoprotease.  相似文献   

6.
Distinct subsets of somatostatin receptors on cultured human lymphocytes   总被引:9,自引:0,他引:9  
Somatostatin (SOM) is a neuroendocrine tetradecapeptide that suppresses specific functions of differentiated T-cells and antibody-producing cells. The Jurkat line of human leukemic T-cells and U266 IgE-producing human myeloma cells bound [I-Tyr11]SOM specifically. The maximal level of specific binding was attained by 1-2 h at 22 degrees C for both types of cells and reversed by 70-85% within 2-3 h after the addition of excess nonradioactive SOM. Computer-assisted Scatchard analysis of the competition curves revealed two classes of binding sites for both cells. An average of 144 and 1295 high affinity receptors per Jurkat and U266 cells had a Kd value of 3 pM and 5 pM, respectively, whereas a large number of low affinity sites had Kd values of 66 nM and 100 nM. The affinity of the analogs somatostatin 28, [I-Tyr11]SOM, and [D-Trp8, D-Cys14]SOM for Jurkat and U266 cell lines, relative to SOM, suggested a degree of specificity similar to receptors on neuroendocrine cells.  相似文献   

7.
J C Reubi 《Life sciences》1985,36(19):1829-1836
Cyclic octapeptide analogues of somatostatin (SS) like SMS 201-995 [H-(D) Phe-Cys-Phe-(D) Trp-Lys-Thr-Cys-Thr(ol)] or its Tyr3-derivative 204-090, displaced [125I-Tyr11]-SS 100% from pancreatic membranes but only 62-75% from brain membranes; the remaining sites were displaced by SS. These data indicate that some mini-somatostatins bind to a subpopulation of SS receptors in rat brain. The iodinated Tyr3-derivative (125I-204-090) can be considered a selective radioligand for one rat brain SS receptor subpopulation: It shows saturable and high affinity binding (KD = 0.29 nM; Bmax = 350 fmoles/mg protein) to rat cortex. The pharmacological properties of 125I-204-090 binding sites are similar to those of [125I-Tyr11]-SS sites. Distribution of these sites correspond to SS receptor-rich areas such as cortex, hippocampus, striatum, pituitary, pancreatic beta-cell. SS as well as SMS 201-995 bind to these sites with high affinity. The stability and high specific vs non-specific binding ratio makes 204-090 a radioligand of choice to measure this SS receptor subpopulation in CNS but also the SS receptors in pituitary and pancreas.  相似文献   

8.
9.
The present study was designed to determine whether the diminution of growth hormone (GH) secretion that occurs in obese Zucker rats is related to alterations of GH-releasing factor (GRF) or somatostatin (SRIF) pituitary binding sites. Cold saturation studies were performed in pituitary homogenates of 4-month-old lean and obese rats, using [125I-Tyr10]hGRF(1-44)NH2 as radioligand and [127I-Tyr10]hGRF-(1-44)NH2 as competitor, and in pituitary membrane preparations, using [125I-Tyr0, D-Trp8]SRIF14 as radioligand and [127I-Tyr0, D-Trp8]SRIF14 as competitor. In lean rats, analysis of the curves by the Ligand program revealed the presence of two distinct classes of GRF binding sites, the first being of high affinity (0.74 +/- 0.11 nM) and low capacity (118 +/- 31 fmol/mg protein), the second being of lower affinity (880 +/- 240 nM) and higher capacity (140 +/- 35 pmol/mg protein), and of a single class of SRIF binding sites (affinity: 0.40 +/- 0.12 nM; capacity: 24 +/- 6 fmol/mg protein). In obese rats, no difference was observed in GRF binding parameters for both classes of sites, but the concentration of somatostatin binding sites was reduced by 67% when compared to their lean littermates. These findings suggest that the SRIF pituitary receptors are down-regulated in obese Zucker rats and indicate that no alteration of GRF pituitary binding sites contribute to the blunted GH secretion observed in this model of obesity.  相似文献   

10.
We and others have suggested previously that the binding of somatostatin to its receptors in the pancreas is regulated by not only somatostatin analogs but also cholecystokinin analogs in proportion to their known biological potencies. To clarify the precise mechanism by which unrelated peptides modulate somatostatin binding, the effect of a phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), or a synthetic diacylglycerol analog, 1-oleyl-2-acetylglycerol (OAG), on [125I-Tyr1]somatostatin binding to pancreatic acinar cell membranes was examined. Pretreatment of pancreatic acini for 120 min at 37 degrees C with 100 ng/ml TPA maximally reduced subsequent labeled somatostatin binding to acinar membranes. The inhibitory effect of TPA on the somatostatin binding was dependent on the dose used or the time and temperature of pretreatment. These effects of TPA were almost mimicked by the treatment of acini with OAG. Scatchard analysis of [125I-Tyr1]somatostatin binding demonstrated that the decrease in the labeled somatostatin binding induced by TPA or OAG pretreatment was due to the decrease in the maximum binding capacity without a significant change in the binding affinity. A specifically labeled single band of Mr = 90,000 obtained with a photoaffinity cross-linking study indicates that the somatostatin-binding sites are the same somatostatin receptor as previously described. Moreover, the intensity of the Mr = 90,000 band was dramatically decreased when acini were treated with increasing concentrations of TPA, a finding consistent with TPA-induced decrease in binding capacity. Such an inhibitory effect of TPA was abolished when pretreatment of acini with TPA was performed in the presence of Ca2+-chelating compounds such as EDTA and EGTA or phospholipid-interacting drugs such as chlorpromazine and tetracaine. Interestingly, the combined treatment of TPA and Ca2+ ionophore A23187 caused synergistic inhibition of the subsequent labeled somatostatin binding to acinar membranes, although Ca2+ ionophore itself almost failed to affect the somatostatin binding. These results suggest, therefore, that TPA or OAG can modulate somatostatin binding to its receptors on rat pancreatic acinar cell membranes, presumably through activation of Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C); and the activated protein kinase C and intracellular Ca2+ mobilization presumably act to modulate the pancreatic acinar somatostatin receptors synergistically.  相似文献   

11.
Somatostatin receptors were characterized on guinea-pig pancreatic acini membranes using 125I-[Tyr11] somatostatin 14 as a radioligand. In 0.1 mM Ca2+ buffer the binding was saturable and slowly reversible, exhibiting a single class of high affinity binding sites (KD = 0.15 +/- 0.03 nM) with a maximal binding capacity (B max) of 178 +/- 18 fmol/mg protein. In 30 nM) free Ca2+ buffer, the binding was highly reversible. Affinity and B max were decreased by about 2-fold. Ca2+ exhibited an EC50 of 2.4 +/- 0.9 microM to potentiate the binding of somatostatin. Na+, but not K+, inhibited the binding: Bmax was decreased with no change in affinity. Somatostatin analogs inhibited the binding of 125I-[Tyr11] somatostatin 14. The relative potencies were: somatostatin 14 greater than somatostatin 28 = [Nle8]somatostatin 28 greater than [D Tryp8, D Cys14]somatostatin 14.  相似文献   

12.
Characterization of bombesin receptors in a rat pituitary cell line   总被引:6,自引:0,他引:6  
Bombesin is a tetradecapeptide which stimulates prolactin secretion in rats and man and in cultures of GH4C1 cells, a clonal strain of rat pituitary tumor cells. We have utilized [125I-Tyr4]bombesin to identify and characterize specific high affinity receptors in GH4C1 cells. Scatchard analysis of equilibrium binding data at 4 degrees C indicated the presence of a single class of non-interacting binding sites for bombesin (RT = 3600 +/- 500 sites/cell). The value for the equilibrium dissociation constant (Kd = 1.2 +/- 0.4 nM) agreed closely with the ED50 (0.5 nM) for bombesin stimulation of prolactin release. [125I-Tyr4]Bombesin binding at steady state at 37 degrees C was inhibited by increasing concentrations of unlabeled bombesin in a dose-dependent manner, with an ID50 = 1.4 +/- 0.2 nM. However, binding of [125I-Tyr4] bombesin was not inhibited by 100 nM thyrotropin-releasing hormone, vasoactive intestinal peptide, epidermal growth factor, or somatostatin. Therefore, [125I-Tyr4]bombesin binds to a receptor distinct from the receptors for other peptides which regulate hormone secretion by GH4C1 cells. The analog specificity for high affinity binding showed that the receptors for bombesin recognize the COOH-terminal octapeptide sequence in the molecule. Among five pituitary cell strains tested, two which contained saturable binding sites for [125I-Tyr4]bombesin (GH4C1 and GH3) had previously been shown to respond to bombesin with increased hormone secretion, whereas three which lacked receptors (GC, F4C1, and AtT20/D16v) were unresponsive. Therefore, the [125I-Tyr4]bombesin binding sites appear to be necessary for the biological actions of bombesin. Examination of the processing and metabolism of receptor-bound peptide demonstrated that at 4 degrees C [125I-Tyr4]bombesin binds to receptors on the surface of GH4C1 cells. At 37 degrees C, receptor-bound peptide is rapidly internalized and subsequently degraded in lysosomes. In summary, we have characterized for the first time specific, high affinity pituitary bombesin receptors which are necessary for the biological action of bombesin.  相似文献   

13.
GH4C1 cells are a clonal strain of rat pituitary tumor cells which synthesize and secrete prolactin and growth hormone. Somatostatin, a hypothalamic tetradecapeptide, inhibits the release of growth hormone and, under certain circumstances, also prolactin from normal pituitary cells. We have prepared [125I-Tyr1]somatostatin (approximately 2200 C1/mmol) and have shown that this ligand binds to a limited number of high affinity sites on GH4C1 cells. Half-maximal binding of somatostatin occurred at a concentration of 6 x 10(-10) M. A maximum of 0.11 pmol of [125I-Tyr1]somatostatin was bound per mg of cell protein, equivalent to 13,000 receptor sites per cell. The rate constant for binding (kon) was 8 x 10(7) M(-1) min(-1). The rate constant for dissociation (koff) was determined by direct measurement to be 0.02 min(-1) both in the presence and absence of excess nonradioactive somatostatin. Binding of [125I-Tyr1]somatostatin was not inhibited by 10(-7) M thyrotropin-releasing hormones. Substance P, neurotensin, luteinizing hormone-releasing hormone, calcitonin, adrenocorticotropin, or insulin. Of seven nonpituitary cell lines tested, none had specific receptors for somatostatin. Somatostatin was shown to inhibit prolactin and growth hormone production by CH4C1 cells. The dose-response characteristics for binding and the biological actions of somatostatin were essentially coincident. Furthermore, among several clonal pituitary cell strains tested, only those which had receptors for somatostatin showed a biological response to the hormone. We conclude that the characterized somatostatin receptor is necessary for the biological actions of somatostatin on GH4C1 cells.  相似文献   

14.
High affinity and saturable binding of [125I-Tyr11]somatostatin (SS) is described in membrane homogenates from a pituitary transplantable tumor (GH4C1) rich in somatotrophs (KD for SS = 0.67 nM; Bmax = 30 fmol/mg protein). Binding characteristics and pharmacology are similar to those measured on normal pituitary membranes. The potency of various SS analogs highly correlates with that measured in in vitro bioassay for growth hormone. This suggests that those GH4C1 membranes are a good model for SS receptors on somatotrophs. Interestingly however, analogs in which the Asn5 is deleted (Des-Asn5) or D-Ser replaces Ser13 show dissociated potencies between the various assays: [D-Ser13] analogs are more potent in pituitary than in GH4C1 membranes binding assay. Des-Asn5-modified analogs are much more potent in both pituitary binding assays than in the bioassay. This could reflect a multiplicity of SS receptor subtypes in pituitary.  相似文献   

15.
E Lach  A Trifilieff  Y Landry  J P Gies 《Life sciences》1991,48(26):2571-2578
The binding of the radiolabelled bombesin analogue [125I-Tyr4]bombesin to guinea-pig lung membranes was investigated. Binding of [125I-Tyr4]bombesin was specific, saturable, reversible and linearly related to the protein concentration. Scatchard analysis of equilibrium binding data at 25 degrees C indicated the presence of a single class of non-interacting binding sites for bombesin (Bmax = 7.7 fmol/mg protein). The value of the equilibrium dissociation constant (KD = 90 pM) agrees with a high-affinity binding site. Bombesin and structurally related peptides such as [Tyr4]bombesin, neuromedin B and neuromedin C inhibited the binding of [125I-Tyr4]bombesin in an order of potencies as follows: [Tyr4]bombesin greater than bombesin greater than or equal to neuromedin C much greater than neuromedin B. These results indicate that guinea-pig lung membranes possess a single class of bombesin receptors with a high affinity for bombesin and a lower one for neuromedin B.  相似文献   

16.
Somatostatin binding and cross-linking to its receptors on rat cerebrocortical membranes were characterized with [125I-Tyr1]somatostatin-14 and [125I-Leu8, D-Trp22, Tyr25]somatostatin-28. When [125I-Tyr1]somatostatin-14 was cross-linked to its receptors with the photoreactive cross-linker, N-(5-azido-2-nitrobenzoyloxy)succinimide, the hormone was specifically associated with a Mr = 72,000 protein band in the presence or absence of reducing agents. Affinity labeling of the Mr = 72,000 protein band was decreased with increasing concentrations of unlabeled somatostatin-14 and nonhydrolyzable guanine nucleotide analog, guanyl-5'-yl imidodiphosphate (Gpp(NH)p). Pretreatment of cerebrocortical membranes with islet-activating protein resulted in a decrease in subsequent labeled somatostatin-14 binding and affinity-labeling of the protein and abolished an inhibitory effect of somatostatin-14 on vasoactive intestinal peptide-stimulated increase in adenylate cyclase activity. When the affinity-labeled protein was solubilized with Zwittergent 3-12 and adsorbed to wheat germ agglutinin-agarose, it was eluted by N-acetylglucosamine. [125I-Leu8, D-Trp22, Tyr25]somatostatin-28 cross-linking to cerebrocortical and pancreatic membranes with the same photoreactive agent revealed specifically labeled protein bands of a Mr = 74,000 in cerebrocortical membranes and a Mr = 94,000 in pancreatic membranes, respectively. These results suggest that: 1) somatostatin receptor on cerebrocortical membranes is a monomeric glycoprotein with a Mr = 70,000 binding subunit, coupled to guanine nucleotide regulatory protein, and 2) the Mr = 70,000 protein may be a common receptor for somatostatin-28 and somatostatin-14 and is distinct from a common pancreatic type receptor.  相似文献   

17.
The binding of somatostatin-14 (S-14) to rat pancreatic acinar cell membranes was characterized using [125I-Tyr11]S-14 as the radioligand. Maximum binding was observed at pH 7.4 and was Ca2+-dependent. Such Ca2+ dependence of S-14 receptor binding was not observed in other tissues. Scatchard analysis of the competitive inhibition by S-14 of [125I-Tyr11]S-14 binding revealed a single class of high affinity sites (Kd = 0.5 +/- 0.07 nM) with a binding capacity (Bmax) of 266 +/- 22 fmol/mg of protein. [D-Trp8]S-14 and structural analogs with halogenated Trp moiety exhibited 2-32-fold greater binding affinity than S-14, [D-F5-Trp8]S-14 being the most potent. [Tyr11]S-14 was equipotent with S-14. The affinity of somatostatin-28 for binding to these receptors was 50% of that of S-14. Cholecystokinin octapeptide (CCK-8) inhibited the binding of [125I-Tyr11]S-14, but its inhibition curve was not parallel to that of S-14. In the presence of 1 nM CCK-8, the Bmax of S-14 receptors was reduced to 150 +/- 17 fmol/mg of protein. Dibutyryl cyclic GMP, a CCK receptor antagonist, partially reversed the inhibitory action of CCK-8, suggesting that CCK receptors mediate the inhibition of S-14 receptor binding. GDP, GTP, and guanyl-5'-yl imidodiphosphate inhibit S-14 receptor binding in this tissue. The inhibition was shown to be due to decrease in binding capacity and not due to change in affinity. Specifically bound [125I-Tyr11]S-14 cross-linked to the S-14 receptors was found associated with three proteins of approximate Mr = 200,000, 80,000, and 70,000 which could be detected under both reducing and nonreducing conditions. Finally, pancreatic acinar cell S-14 receptors were shown to be down-regulated by persistent hypersomatostatinemia 1 week after streptozotocin-induced diabetes characterized by decreased Bmax (105 +/- 13 fmol/mg of protein) without any change in affinity. We conclude that pancreatic acinar cell membrane S-14 receptors require Ca2+ for maximal binding and thus differ from S-14 receptors in other tissues, S-14 receptors in this tissue also exhibit selective ligand specificities, these receptors are regulated by CCK-8 and guanine nucleotides, three receptor proteins of apparent Mr = 200,000, 80,000, and 70,000 specifically bind S-14, and (v) these receptors are regulated by S-14 in vivo as evidenced by decreased binding in streptozotocin diabetic rats characterized by hypersomatostatinemia.  相似文献   

18.
The in vitro binding of [125I-Tyr11]somatostatin-14 (SRIF-14) to membranes prepared from cultured human small cell lung carcinoma (SCLC) cells (NCI-H69) has been characterized. Binding to SCLC was monophasic and of high affinity (Kd = 0.59 +/- 0.02 nM, n = 3). The estimated Bmax was 173 +/- 2.4 fmol/mg protein. Receptors were also present on solid NCI-H69 tumors grown in vivo in the athymic nude mouse. However, the concentration was only about 10% of that observed in cell culture. Biologically-active SRIF analogues were potent inhibitors of [125I-Tyr11]SRIF-14 binding, and an analysis of the pharmacological specificity indicated that the SCLC receptor was of the peripheral (e.g., non-neural) subtype. The presence of SRIF receptors on SCLC membranes may indicate that SRIF has a role in regulation of SCLC function.  相似文献   

19.
The neuropeptide somatostatin potentiates beta-adrenergic receptor-mediated cAMP formation in astrocytes derived from neonatal rat cortex but does not affect cAMP levels by itself. beta-Adrenergic receptors in these cells can be specifically labeled with the high affinity antagonist [125I] cyanopindolol ([125I]CYP). In addition, astrocytes display both high and low affinity binding sites for the agonist isoproterenol, which are thought to represent receptors which are coupled or uncoupled, respectively, to the guanine nucleotide regulatory protein. We find that somatostatin does not modify beta-receptor density, nor receptor affinity for either the antagonist ([125I]CYP) or for the agonist isoproterenol. In the presence of the guanine nucleotide analogue, Gpp(NH)p, only low affinity (uncoupled) displacement of [125I]CYP binding by isoproterenol is observed. However, somatostatin (1 microM), when added to the cells together with Gpp(NH)p, prevents the nucleotide-induced loss of the high affinity (coupled) component of agonist displacement. This result suggests that somatostatin increases noradrenaline-induced cAMP production by enhancing coupling between the beta-receptor and the stimulatory guanine nucleotide regulatory protein.  相似文献   

20.
GH4C1 cells, a clonal strain of rat pituitary tumor cells, have high-affinity, functional receptors for the inhibitory hypothalamic peptide somatostatin (SRIF) and for epidermal growth factor (EGF). In this study we have examined the events that follow the initial binding of SRIF to its specific plasma membrane receptors in GH4C1 cells and have compared the processing of receptor-bound SRIF with that of EGF. When cells were incubated with [125I-Tyr1]SRIF at temperatures ranging from 4 to 37 degrees C, greater than 80% of the specifically bound peptide was removed by extraction with 0.2 M acetic acid, 0.5 M NaCl, pH 2.5. In contrast, the subcellular distribution of receptor-bound 125I-EGF was temperature dependent. Whereas greater than 95% of specifically bound 125I-EGF was removed by acid treatment after a 4 degrees C binding incubation, less than 10% was removed when the binding reaction was performed at 22 or 37 degrees C. In pulse-chase experiments, receptor-bound 125I-EGF was transferred from an acid-sensitive to an acid-resistant compartment with a half-time of 2 min at 37 degrees C. In contrast, the small amount of [125I-Tyr1]SRIF that was resistant to acid treatment did not increase during a 2-h chase incubation at 37 degrees C. Chromatographic analysis of the radioactivity released from cells during dissociation incubations at 37 degrees C showed that greater than 90% of prebound 125I-EGF was released as 125I-tyrosine, whereas prebound [125I-Tyr1]SRIF was released as a mixture of intact peptide (55%) and 125I-tyrosine (45%). Neither chloroquine (0.1 mM), ammonium chloride (20 mM), nor leupeptin (0.1 mg/ml) increased the amount of [125I-Tyr1]SRIF bound to cells at 37 degrees C. Furthermore, chloroquine and leupeptin did not alter the rate of dissociation or degradation of prebound [125I-Tyr1]SRIF. In contrast, these inhibitors increased the amount of cell-associated 125I-EGF during 37 degrees C binding incubations and decreased the subsequent rate of release of 125I-tyrosine. The results presented indicate that, as in other cell types, EGF underwent rapid receptor-mediated endocytosis in GH4C1 cells and was subsequently degraded in lysosomes. In contrast, SRIF remained at the cell surface for several hours although it elicits its biological effects within minutes. Furthermore, a constant fraction of the receptor-bound [125I-Tyr1]SRIF was degraded at the cell surface before dissociation. Therefore, after initial binding of [125I-Tyr1]SRIF and 125I-EGF to their specific membrane receptors, these peptides are processed very differently in GH4C1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号