首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Molecular studies on halophilic adaptations have focused on prokaryotic microorganisms due to a lack of known appropriate eukaryotic halophilic microorganisms. However, the black yeast Hortaea werneckii has been identified as the dominant fungal species in hypersaline waters on three continents. It represents a new model organism for studying the mechanisms of salt tolerance in eukaryotes. Ultrastructural studies of the H. werneckii cell wall have shown that it synthesizes dihydroxynaphthalene (DHN) melanin under both saline and non-saline growth conditions. However, melanin granules in the cell walls are organized in a salt-dependent way, implying the potential osmoprotectant role of melanin. At the level of membrane structure, H. werneckii maintains a sterol-to-phospholipid ratio significantly lower than the salt-sensitive Saccharomyces cerevisiae. Accordingly, membranes of H. werneckii are more fluid over a wide range of NaCl concentrations, indicating high intrinsic salt stress tolerance. Even H. werneckii grown in high NaCl concentrations maintains very low intracellular amounts of potassium and sodium, demonstrating the sodium-excluder character of this organism. The salt-dependent expressions of two HwENA genes suggest roles for them in the adaptation to changing salt concentrations. The high similarity of these ENA ATPases to other fungal ENA ATPases involved in Na+/K+ transport indicates their potential importance in H. werneckii ion homeostasis. Glycerol is the main compatible solute which accumulates in the cytoplasm of H. werneckii at high salinity, although it seems that mycosporines may also act as supplementary compatible solutes. Salt dependent increase in glycerol synthesis is supported by the identification of two copies of a gene putatively coding for glycerol-3-phosphate-dehydrogenase. Expression of only one of these genes is salt dependent.  相似文献   

5.
6.
7.
Potassium or Na+ efflux ATPases, ENA ATPases, are present in all fungi and play a central role in Na+ efflux and Na+ tolerance. Flowering plants lack ENA ATPases but two ENA ATPases have been identified in the moss Physcomitrella patens, PpENA1 and PpENA2. PpENA1 mediates Na+ efflux in Saccharomyces cerevisiae. To propose a general function of ENA ATPases in bryophytes it was necessary to demonstrate that these ATPases mediate Na+ efflux in planta and that they exist in more bryophytes than P. patens. For these demonstrations (1) we cloned a third ATPase from P. patens, PpENA3, and studied the expression pattern of the three PpENA genes; (2) we constructed and studied the single and double Δppena1 and Δppena2 mutants; and (3) we cloned two ENA ATPases from the liverwort Marchantia polymorpha, MpENA1 and MpENA2, and expressed them in S. cerevisiae. The results from the first two approaches revealed that the expression of ENA ATPases was greatly enhanced at high pH and that Na+ efflux at high pH depended on PpENA1. The ENA1 ATPase of M. polymorpha suppressed the defective growth of a S. cerevisiae mutant at high K+ or Na+ concentrations, especially at high K+.  相似文献   

8.
In this study, we report an inventory of the K(+) uptake systems in 62 fungal species for which the complete genome sequences are available. This inventory reveals that three types of K(+) uptake systems, TRK and HAK transporters and ACU ATPases, are widely present in several combinations across fungal species. PAT ATPases are less frequently present and are exceptional in Ascomycota. The genome of Magnaporthe oryzae contains four TRK, one HAK, and two ACU genes. The study of the expression of these genes at high K(+), K(+) starvation, and in infected rice leaves revealed that the expression of four genes, ACU1, ACU2, HAK1, and TRK1 is much lower than that of TRK2, TRK3, and TRK4, except under K(+) starvation. The two ACU ATPases were cloned and functionally identified as high-affinity K(+) or Na(+) uptake systems. These two ATPases endow Saccharomyces cerevisiae with the capacity to grow for several generations in low Na(+) concentrations when K(+) was absent, which produces a dramatic increase of cellular Na(+)/K(+) ratio.  相似文献   

9.
10.
11.
12.
In Saccharomyces cerevisiae, the Sho1 protein is one of two potential osmosensors that can activate the kinase cascade of the HOG pathway in response to increased extracellular osmolarity. Two novel SHO1-like genes, HwSHO1A and HwSHO1B, have been cloned from the saltern-inhabiting, extremely halotolerant black yeast Hortaea werneckii. The HwSho1 protein isoforms are 93.8% identical in their amino-acid sequences, and have a conserved SH3 domain. When the HwSHO1 genes were transferred into S. cerevisae cells lacking the SHO1 gene, both of the HwSho1 isoforms fully complemented the function of the native S. cerevisiae Sho1 protein. Through microscopic and biochemical validation, we demonstrate that in S. cerevisiae, both of the HwSho1 proteins have characteristic subcellular localizations similar to the S. cerevisiae Sho1 protein, and they can both activate the HOG pathway under conditions of osmotic stress. To a lower extent, crosstalk to the mating pathway expressing HwSho1 proteins is conserved in the PBS2 deleted S. cerevisiae strain. These data show that the HwSho1 proteins from H. werneckii are true functional homologs of the Sho1 protein of S. cerevisiae.  相似文献   

13.
Fungi have an absolute requirement for K+, but K+ may be partially replaced by Na+. Na+ uptake in Ustilago maydis and Pichia sorbitophila was found to exhibit a fast rate, low Km, and apparent independence of the membrane potential. Searches of sequences with similarity to P-type ATPases in databases allowed us to identify three genes in these species, Umacu1, Umacu2, and PsACU1, that could encode P-type ATPases of a novel type. Deletion of the acu1 and acu2 genes proved that they encoded the transporters that mediated the high-affinity Na+ uptake of U. maydis. Heterologous expressions of the Umacu2 gene in K+ transport mutants of Saccharomyces cerevisiae and transport studies in the single and double Deltaacu1 and Deltaacu2 mutants of U. maydis revealed that the acu1 and acu2 genes encode transporters that mediated high-affinity K+ uptake in addition to Na+ uptake. Other fungi also have genes or pseudogenes whose translated sequences show high similarity to the ACU proteins of U. maydis and P. sorbitophila. In the phylogenetic tree of P-type ATPases all the identified ACU ATPases define a new cluster, which shows the lowest divergence with type IIC, animal Na+,K(+)-ATPases. The fungal high-affinity Na+ uptake mediated by ACU ATPases is functionally identical to the uptake that is mediated by some plant HKT transporters.  相似文献   

14.
林凡云  陆琼娴  徐剑宏  史建荣 《遗传》2008,30(12):1608-1614
摘要: 在植物体内, 糖基转移酶通过参与多种物质的糖基化而在植物抗逆境方面起着重要作用。为了解小麦糖基转移酶基因响应病原菌和盐胁迫的分子机制, 文章分离了两个小麦糖基转移酶基因(TaUGT1, TaUGT2)。这两个基因均编码496个氨基酸, cDNA序列相似性为90%。它们均含有一个内含子, 分别为335 bp(TaUGT1)和324 bp(TaUGT2)。序列比对分析表明, TaUGT1和TaUGT2与尿苷二磷酸葡萄糖醛酸/尿苷二磷酸葡萄糖转移酶(UDP-glucoronosyl and UDP-glucosyl transferase)基因同源性最高, 且都含有PSPG(Putative secondary plant gly-cosyltransferase)保守结构域。Real-time PCR表达分析显示, TaUGT1受赤霉病菌抑制表达, 而TaUGT2受赤霉病菌诱导表达; 在高浓度NaCl胁迫下, TaUGT1和TaUGT2的相对表达量分别为对照的2.87及4.56倍, 差异达到极显著水平。以上结果表明, TaUGT2可能与小麦赤霉病抗性有关, 而TaUGT1和TaUGT2可能共同参与了小麦对盐胁迫的响应。  相似文献   

15.
16.
In yeast, the plasma membrane Na+/H+ antiporter and Na+-ATPase are key enzymes for salt tolerance.Saccharomyces cerevisiae Na+-ATPase (Enalp ATPase) is encoded by theENA1/PMR2A gene; expression ofENA1 is tightly regulated by Na+ and depends on ambient pH. Although Enalp is active mainly at alkaline pH values inS. cerevisiae, no Na+-ATPase has been found in flowering plants. To test whether this yeast enzyme would improve salt tolerance in plants, we introducedENA1 intoArabidopsis (cv. Columbia) under the control of the cauliflower mosaic virus 35S promoter. Transformants were selected for their ability to grow on a medium containing kanamyin. Southern blot analyses confirmed thatENA1 was transferred into theArabidopsis genome and northern blot analyses showed thatENA1 was expressed in the transformants. Several transgenic homozygous lines and wild-type (WT) plants were evaluated for salt tolerance. No obvious morphological or developmental differences existed between the transgenic and WT plants in the absence of stress. However, overexpression ofENA1 inArabidopsis improved seed germination rates and salt tolerance in seedlings. Under saline conditions, transgenic plants accumulated a lower amount of Na+ than did the wild type, and fresh and dry weights of the former were higher. Other experiments revealed that expression ofENA1 promoted salt tolerance in transgenicArabidopsis under both acidic and alkaline conditions. These authors contributed equally to this article.  相似文献   

17.
18.
19.
The K+ and Na+ concentrations in living cells are strictly regulated at almost constant concentrations, high for K+ and low for Na+. Because these concentrations correspond to influx-efflux steady states, K+ and Na+ effluxes and the transporters involved play a central role in the physiology of cells, especially in environments with high Na+ concentrations where a high Na+ influx may be the rule. In eukaryotic cells two P-type ATPases are crucial in these homeostatic processes, the Na,K-ATPase of animal cells and the H+-ATPase of fungi and plants. In fungi, a third P-type ATPase, the ENA ATPase, was discovered nineteen years ago. Although for many years it was considered to be exclusively a fungal enzyme, it is now known to be present in bryophytes and protozoa. Structurally, the ENA (from exitus natru: exit of sodium) ATPase is very similar to the sarco/endoplasmic reticulum Ca2+ (SERCA) ATPase, and it probably exchanges Na+ (or K+) for H+. The same exchange is mediated by Na+ (or K+)/H+ antiporters. However, in eukaryotic cells these antiporters are electroneutral and their function depends on a ΔpH across the plasma membrane. Therefore, the current notion is that the ENA ATPase is necessary at high external pH values, where the antiporters cannot mediate uphill Na+ efflux. This occurs in some fungal environments and at some points of protozoa parasitic cycles, which makes the ENA ATPase a possible target for controlling fungal and protozoan parasites. Another technological application of the ENA ATPase is the improvement of salt tolerance in flowering plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号