首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soybean rhizobia were isolated from two soils with different cropping histories from Hubei province in central China. The first, from Honghu county, has been under soybean cultivation for decades. All of the isolates obtained from nodules on soybeans growing in this soil were fast-growing, acid-producing rhizobia. However, slow-growing, alkali-producing isolates were obtained at higher dilutions of the same soil. The second soil, from Wuchang county, has been under rice cultivation with no record of previous soybean cultivation. All of the soybean rhizobia recovered from this soil, and at higher dilutions of the soil, were typical slow-growing, alkali-producing isolates. The isolates from both soils were grouped by using intrinsic antibiotic resistance, gel immunodiffusion, and fluorescent-antibody procedures. Representative isolates were tested for symbiotic effectiveness with four soybean cultivars (Peking, Davis, Williams, and Ai Jiao Zao) in a pot experiment. There were significant cultivar-rhizobial interactions. Moreover, on each cultivar, there was at least one fast-growing isolate among these new rhizobia that was as effective as the highly effective slow-growing reference strain USDA 110.  相似文献   

2.
Quantitative analyses of fast- and slow-growing soybean rhizobia populations in soils of four different provinces of China (Hubei, Shan Dong, Henan, and Xinjiang) have been carried out using the most probable number technique (MPN). All soils contained fast- (FSR) and slow-growing (SSR) soybean rhizobia. Asiatic and American soybean cultivars grown at acid, neutral and alkaline pH were used as trapping hosts for FSR and SSR strains. The estimated total indigenous soybean-rhizobia populations of the Xinjiang and Shan Dong soil samples greatly varied with the different soybean cultivars used. The soybean cultivar and the pH at which plants were grown also showed clear effects on the FSR/SSR rations isolated from nodules. Results of competition experiments between FSR and SSR strains supported the importance of the soybean cultivar and the pH on the outcome of competition for nodulation between FSR and SSR strains. In general, nodule occupancy by FSRs significantly increased at alkaline pH. Bacterial isolates from soybean cultivar Jing Dou 19 inoculated with Xinjiang soil nodulate cultivars Heinong 33 and Williams very poorly. Plasmid and lipopolysaccharide (LPS) profiles and PCR-RAPD analyses showed that cultivar Jing Dou 19 had trapped a diversity of FSR strains. Most of the isolates from soybean cultivar Heinong 33 inoculated with Xinjiang soil were able to nodulate Heinong 33 and Williams showed very similar, or identical, plasmid, LPS and PCR-RAPD profiles. All the strains isolated from Xinjiang province, regardless of the soybean cultivar used for trapping, showed similar nodulation factor (LCO) profiles as judged by thin layer chromatographic analyses. These results indicate that the existence of soybean rhizobia sub-populations showing marked cultivar specificity, can affect the estimation of total soybean rhizobia populations indigenous to the soil, and can also affect the diversity of soybean rhizobial strains isolated from soybean nodules.  相似文献   

3.
Biodiversity studies of native soybean-nodulating rhizobia in soils from the Chinese Hubei province (Honghu county; pH 8, alluvial soil) have been carried out. Inoculation of an American (Williams) and an Asiatic (Peking) soybean cultivar with eleven soil samples led to the isolation of 167 rhizobia strains. The ratio (%) of slow-/fast-growing isolates was different depending on the trap plant used. All isolates were able to nodulate both cultivars, although the N2-fixation efficiency (measured as plant-top dry weight) was different among them. A total of thirty-three isolates were selected for further characterisation on the basis of physiological parameters, PCR-RFLP of symbiotic genes and Low Molecular Weight RNA, lipopolysaccharide, protein and plasmid profiles. Low Molecular Weight RNA profiling indicates that all the isolates belong to species Sinorhizobium fredii. The dendrogram obtained with the physiological parameters has been useful to classify the isolates at strain level, although plasmid profiling was the most discriminating technique to detect differences among the analysed soybean-rhizobia isolates, showing there is not two isolates identical each other. Plasmid profile analyses also revealed that some of the investigated strains contain low molecular weight plasmids (7-8-kb). They are, to our knowledge, the smallest ever found in rhizobia and they could be the starting point for the construction of the first group of vectors based on a native rhizobia replicon.  相似文献   

4.
新疆土著大豆根瘤菌种群遗传结构的初步分析   总被引:2,自引:0,他引:2  
应用重复序列REP(repetitive extragenic palindromic,重复基因外回)和ERIC(ente-robaterial repetitive intergenic consensus,肠细菌重复基因间共有序列)结合聚合酶链式反应(ERP-PCR和ERIC-PCR)对从新疆有集的27株土大豆根瘤菌染色体进行指纹分析,发现在相似水平0.5时可基本分为两大聚类群,一个类群主要包括慢生型根瘤菌,另一类群为快生型根瘤菌,来自同一地区的根瘤菌具有较高的遗传相似性,以上结果表明该技术中对大豆根瘤菌进行种群结构和遗传多样性分析的有效手段。  相似文献   

5.
Odee  D.W.  Sutherland  J.M.  Makatiani  E.T.  McInroy  S.G.  Sprent  J.I. 《Plant and Soil》1997,188(1):65-75
Over 480 rhizobia were isolated from root nodules of woody legume and herbaceous trap host species grown in soils collected from 12 different Kenyan sites. The isolates were differentiated by growth and morphological characteristics, intrinsic antibiotic resistance (IAR) and salt (NaCl) tolerance levels (STL) when grown on yeast mannitol mineral salts agar and broth media.The bulk of the isolates (91%) were watery, milky-translucent and curdled milk types with moderate to copious extracellular polysaccharide (EPS). The rest were creamy or white opaque with little to moderate EPS production. Overall, they showed a wide range of growth rates: very fast-growing (mean generation time 1.6–2.5 h), fast-growing (2.8–4.8 h), intermediate between fast- and slow-growing (5.6–5.7 h) and slow- and very slow-growing (6.4–8.8 h). The isolates were tentatively grouped into Rhizobium spp., to include very fast, fast and intermediate (acid-producing) types; and Bradyrhizobium spp., to include very slow, slow and intermediate (alkali-producing) types.Bradyrhizobium spp. were more sensitive to antibiotics (40 g mL-1) than Rhizobium spp., contrary to the general opinion which indicates that they are normally resistant. Cluster analysis based on sensitivity responses of IAR and STL could not distinguish Rhizobium spp. from Bradyrhizobium spp., neither was there any association by site nor host of isolation except for those isolates trapped with Phaseolus vulgaris at Kibwezi.Our data demonstrated a high diversity of tropical rhizobia associated with trees.  相似文献   

6.
Colony characteristics, growth in litmus milk, precipitation in calcium glycerophosphate medium and utilization of carbon sources of the root-nodule bacteria isolated from the tropical legumes Leucaena, Mimosa, Acacia, Sesbania and Lablab were similar to fast-growing rhizobia of temperate legumes, particularly Rhizobium meliloti. In agglutination tests, isolates from each host shared antigens with one or more of five Rhizobium strains from Leucaena. Infective characteristics of the fast-growing rhizobia were studied in modified Leonard jars and in agar culture. Cross-infections by rhizobia between these plants were common and the association often effective. Lablab was effectively nodulated by its own fast-growing isolate but only formed root swellings, possibly ineffective pseudonodules, with the other isolates. Slow-growing rhizobia which were able to nodulate Macroptilium atropurpureus were unable to form nodules on these legumes except Lablab which was considered more akin to the cowpea group. All fast-growing isolates nodulated, often effectively, Vigna unguiculata and V. unguiculata ssp. sesquipedalis. The isolate from Lablab also effectively nodulated a number of other tropical legumes which have previously only been reported to nodulate with slow-growing nodule bacteria and it also produced ineffective nodulation on Medicago sativa. This is the first record of an effective fast-growing isolate from Lablab.  相似文献   

7.
Soil samples were collected from the surface (0 to 0.6 m) and phreatic (3.9 to 4.5 m) root systems of a Prosopis glandulosa woodland in the Sonoran Desert of southern California. P. glandulosa seedlings were inoculated with these soils, and rhizobia were isolated from nodules. The phreatic soil, characterized by constant moisture and temperature but low nutrient availability, favored slow-growing (SG) isolates as nodule occupants (85%). SG isolates from the surface and phreatic soil were distinct based on differences in colony morphology. Isolates from the surface soil, characterized by high nutrient availability and widely fluctuating water content and temperature, were equally represented by fast-growing and SG rhizobia. Most SG isolates (83%) had nodule relative efficiencies of <0.80, whereas 54% of the fast-growing isolates had relative efficiency values of >0.80.  相似文献   

8.
采用PCR-RFLP技术在不同水平上鉴定大豆根瘤菌   总被引:2,自引:0,他引:2  
采用16S rRNA基因PCR扩增与限制性酶切片段多态性分析(RFLP)技术对选自弗氏中华根瘤菌(S.fredii)、大豆慢生根瘤菌(B.japonicum)和埃氏慢生根瘤菌(B.elkanii)的19株代表菌进行了比较分析,根据用3种限制性内切酶的RFLP分析结果,可将供试菌株分为S.fredii,B.japonicum, B.elkanii Ⅱ和B.elkanii Ⅱa等4种基因型。各类菌株之间没有交叉,因此本研究采用的PCR-RFLP技术不失为一种快速鉴别大豆根瘤菌的新方法。采用本技术已将分离自中国的22株快生菌和19株慢生菌分别鉴定为S.frediiB.japonicum。对供试参比菌株和野生型菌株进行的16S~23S基因间隔DNA(IGS)的PCR-RFLP分析结果表明:S.frediiB.japonicum菌株的IGS长度不同,所有供试S.fredii菌株的IGS为2.1 kb,而供试B.japonicum菌株则为2.0 kb。依据RFLP的差异,可将来自中国两个不同地区的S.fredii株区分为2个基因型,而来自中国东北黑龙江地区的19株B.japonicum菌株则可分为11个基因型。对上述野生型菌株还进行了REP-PCR和ERIC-PCR分析并确定其具有菌株水平的特异性。  相似文献   

9.
Soil cores were drilled under the leguminous tree Acacia albida growing in two different ecoclimatic zones of West Africa: the Sahelian area (100 to 500 mm of annual rainfall) and the Sudano-Guinean area (1,000 to 1,500 mm of annual rainfall). Soil samples were collected at different depths from the surface down to the water table level and analyzed for the presence of rhizobia able to nodulate A. albida. In both areas, population densities of rhizobia were substantially greater near the water table than near the surface. In the Sahelian area, rhizobia were present as deep as 34 m at a concentration of 1.3 × 103/g of soil. In the Sudano-Guinean area, population densities at 0.5 to 4.5 m depth were higher than in the Sahelian area and, at several depths, comparable to that of temperate soils supporting legume crops (104 rhizobia per g of soil). Surface and deep soil isolates from all four sites were found to be slow-growing rhizobia (Bradyrhizobium sp.). The proportion of effective isolates was almost the same within surface and deep soils.  相似文献   

10.
Sixty root nodule isolates of soybean rhizobia indigenous to eight field sites in India were characterized using PCR-RFLP for repeated sequence RSα a 1195-bp DNA fragment, indole acetic acid production, and nitrogenase activity. Site-dependent variations were observed in terms of IAA production and nitrogenase activities. RSα was conserved in slow-growing soybean rhizobia across locations and sites and was absent in other Rhizobiaceae members and other bacterial genera. The results suggest that RSα can be a useful molecular marker for slow-growing soybean rhizobia. The study also showed the low presence of soybean nodulating fast growers in Indian soils.  相似文献   

11.
Several isolates from a newly described group of fast-growing acid-producing soybean rhizobia, Rhizobium japonicum, were analyzed for plasmid content. All contained from one to four plasmids with molecular weights of 100 × 106 or larger. Although most of the isolates shared plasmids of similar size, the restriction endonuclease (BamHI, EcoRI, and HindIII) patterns of the plasmids from three of the isolates were vastly different. Growth in the presence of acridine orange was effective in producing mutants cured of the largest plasmid in one of the strains. These mutants also lost the ability to form nodules on soybeans. High-temperature curing of a smaller plasmid in another strain did not lead to loss of nodulating ability or alteration of symbiotic effectiveness on soybean cultivars. The identities of all of the isolates and mutants were ascertained by immunofluoresence and immunodiffusion. The new fast-growing strains of R. japonicum may provide a better genetic system for the study of the soybean symbiosis than the slow-growing R. japonicum, not all of which can be shown to contain plasmids.  相似文献   

12.
A collection of 74 rhizobial isolates recovered from nodules of the desert woody legumes Prosopis glandulosa, Psorothamnus spinosus, and Acacia constricta were characterized by using 61 nutritional and biochemical tests. We compared isolates from A. constricta and Prosopis glandulosa and tested the hypothesis that the rhizobia from a deep-phreatic rooting zone of a Prosopis woodland in the Sonoran Desert of southern California were phenetically distinct from rhizobia from surface soils. Cluster analysis identified four major homogeneous groups. The first phenon contained slow-growing (SG) Prosopis rhizobia from surface and deep-phreatic-soil environments. These isolates grew poorly on most of the media used in the study, probably because of their requirement for a high medium pH. The second group of isolates primarily contained SG Prosopis rhizobia from the deep-phreatic rooting environment and included two fast-growing (FG) Psorothamnus rhizobia. These isolates were nutritionally versatile and grew over a broad pH range. The third major phenon was composed mainly of FG Prosopis rhizobia from surface and dry subsurface soils. While these isolates used a restricted range of carbohydrates (including sucrose) as sole carbon sources, they showed better growth on a range of organic acids as sole carbon sources and amino acids as sole carbon and nitrogen sources than did other isolates in the study. They grew better at 36°C than at 26°C. The FG Acacia rhizobia from surface-soil environments formed a final major phenon that was distinct from the Prosopis isolates. They produced very high absorbance readings on all of the carbohydrates tested except sucrose, grew poorly on many of the other substrates tested, and preferred a 36 to a 26°C incubation temperature. The surface populations of Prosopis rhizobia required a higher pH for growth and, under the conditions used in this study, were less tolerant of low solute potential and high growth temperature than were phreatic-soil isolates. SG Prosopis rhizobia from phreatic and surface soils were physiologically distinct, suggesting adaptation to their respective soil environments.  相似文献   

13.
Relationships Among Rhizobia from Native Australian Legumes   总被引:2,自引:2,他引:0       下载免费PDF全文
Isolates from 12 legumes at three sites in Victoria showed a wide range of morphological, cultural, symbiotic, and serological properties. Isolates from Acacia longifolia var. sophorae and Kennedia prostrata were fast growing but nodulated ineffectively Macroptilium atropurpureum and all native legumes except Swainsonia lessertiifolia. Isolates from S. lessertiifolia showed anomalous properties intermediate between fast- and slow-growing rhizobia. All isolates from the other two sites were slow-growing “cowpea” rhizobia. Symbiotic effectiveness was usually poor, and there was no relationship between effectiveness and host taxonomy or serological affinities of the isolates. This is the first report of fast-growing rhizobia from temperate Australian woody legumes and the first report of the symbiotic effectiveness of native Australian legumes with indigenous rhizobia.  相似文献   

14.
Tropical cowpea rhizobia are often presumed to be generally promiscuous but poor N fixers. This study was conducted to evaluate symbiotic interactions of 59 indigenous rhizobia isolates (49 of them from cowpea (Vigna unguiculata)), with up to 13 other (mostly tropical) legume species. Host ranges averaged 2.4 and 2.3 legume species each for fast- and slow-growing isolates respectively compared to 4.3 for slow-growing reference cowpea strains. An average of 22% and 19% of fast- and slow-growing cowpea isolates respectively were effective on each of 12 legume species tested. We conclude that the indigenous cowpea rhizobia studied have relatively narrow host ranges. The ready nodulation of different legumes in tropical soils appears due to the diversity of indigenous symbiotic genotypes, each consisting of subgroups compatible with a limited number of legume species.  相似文献   

15.
光敏生物素标记总DNA探针对大豆根瘤菌的检测   总被引:1,自引:0,他引:1  
以光敏生物素标记慢生型大豆根瘤菌(Bradyrhizobium japonicum)USDA110总DNA作为探针,与快生型大豆根瘤菌杂交时,没有杂交斑点形成,而与慢生型大豆根瘤菌中的部分菌株能形成杂交斑点,表明该探针具有种和部分菌株特异性,用该探针与压碎的根瘤汁液进行DNA杂交,检测USDA110在不灭菌的盆栽土壤中的竞争结瘤能力,发现USDA110在大豆不同生育期的占瘤率为70%~90%。  相似文献   

16.
Seventy-six rhizobia were isolated from the nodules ofLeucaena plants of various genotypes growing in a wide range of soil types and climatic regions. The isolates were fast-growing and acid-producing. In establishing a serological grouping for the isolates, the intrinsic antibiotic resistance (IAR) patterns to low concentrations of eight antibiotics was helpful for selecting the strains for immunization purposes. Eight distinct somatic serogroups ofLeucaena rhizobia were identified by using strain-specific fluorescent antibodies. The results indicated that use of serological markers is a more specific technique than IAR pattern for strain identification. Strains from some different serogroups had the same IAR patterns. The immunofluorescence cross-reactions ofLeucaena rhizobia serogroups among themselves and with other species of fast- and slow-growing rhizobia were very low. Sero-grouping is ideal for use in further ecological studies in field inoculation trials.  相似文献   

17.
As the putative center of origin for soybean and the second largest region of soybean production in China, the North China Plain covers temperate and subtropical regions with diverse soil characteristics. However, the soybean rhizobia in this plain have not been sufficiently studied. To investigate the biodiversity and biogeography of soybean rhizobia in this plain, a total of 309 isolates of symbiotic bacteria from the soybean nodules collected from 16 sampling sites were studied by molecular characterization. These isolates were classified into 10 genospecies belonging to the genera Sinorhizobium and Bradyrhizobium, including four novel groups, with S. fredii (68.28%) as the dominant group. The phylogeny of symbiotic genes nodC and nifH defined four lineages among the isolates associated with Sinorhizobium fredii, Bradyrhizobium elkanii, B. japonicum, and B. yuanmingense, demonstrating the different origins of symbiotic genes and their coevolution with the chromosome. The possible lateral transfer of symbiotic genes was detected in several cases. The association between soil factors (available N, P, and K and pH) and the distribution of genospecies suggest clear biogeographic patterns: Sinorhizobium spp. were superdominant in sampling sites with alkaline-saline soils, while Bradyrhizobium spp. were more abundant in neutral soils. This study clarified the biodiversity and biogeography of soybean rhizobia in the North China Plain.  相似文献   

18.
Measurements of multiplication in liquid culture indicated that fast-growing Lotus rhizobia (Rhizobium loti) were tolerant of acidity and aluminium (at least 50 μM A1 at pH 4.5). Slow-growing Lotus rhizobia (Bradyrhizobium sp. (Lotus)) were less tolerant of acidity but equally tolerant of A1. Both genera were able to nodulateLotus pedunculatus in an acid soil (pH 4.1 in 0.01M CaCl2) and the slow-growing strains were more effective than the fast-growing strains in this soil over 30 days.  相似文献   

19.
Biological nitrogen fixation (BNF) technology with special reference to Rhizobium-legume symbiosis is growing very rapidly with the hope of combatting world hunger by producing cheaper protein for animal and human consumption in the Third World. One can see rapid progress made in the biochemistry and molecular biology of symbiotic nitrogen fixation in general; however, less progress has been made on the ecological aspects despite the fact that an enormous amount of literature is available on inoculation problems and on agronomic aspects of symbiotic nitrogen fixation. So far most information on Rhizobium concerns fast-growing rhizobia and their host legume. Although it is essential that food production using BNF technology should be maximized in the Third World, the least work has been done on slow-growing rhizobia, which are generally found in tropical and sub-tropical soils. The majority of the developing countries are in tropical and sub-tropical regions. Except for R. japonicum, a microsymbiont partner of soybean (Glycine max), the majority of the slow-growing rhizobia belong to the cowpea group, and we refer to cowpea rhizobia as tropical rhizobia species. In this review we have tried to consolidate the recent progress made on ecology and genetics of tropical rhizobia. By using recombinant DNA technology techniques it is expected that super strains of rhizobia with desirable characteristics can be produced. One must evaluate the efficiency and effectiveness of these genetically manipulated laboratory strains under field conditions. In conclusion, if one aims at combatting hunger in the Third World using BNF technology, an intensive research programme on fundamental and applied aspects of tropical rhizobia species is suggested. This involves close cooperation between molecular biologists and microbial ecologists.  相似文献   

20.
Intrinsic resistance to low concentrations of antibiotics was used to characterise 83 isolates from nodules of cowpea (Vigna unguiculata) and field bean (Phaseolus vulgaris). Characterisation and differentiation of isolates from cowpea was made difficult by associated fast-growing bacteria inside the nodule tissue. Thus, reliable pure culture was difficult to secure without repeated isolation and even via nodulation of the appropriate homologous host. Although the technique may be satisfactory for differentiation and identification of fast-growing rhizobia, it is rated inferior to serology on aspects of facility, time and accuracy where rhizobia from cowpea nodules are concerned. Fingerprint patterns of isolates revealed considerable heterogeneity amongst the populations even where there was commonality of location and/or host plant. Pure cultures of slow-growing rhizobia from V. unguiculata nodules were generally more resistant to the concentrations of antibiotics used than fast-growing nodule bacteria from P. vulgaris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号