首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article aims to study hydrogen production/consumption in Desulfovibrio (D.) desulfuricans strain New Jersey, a sulfate reducer isolated from a medium undergoing active biocorrosion and to compare its hydrogen metabolism with two other Desulfovibrio species, D. gigas and D. vulgaris Hildenborough. Hydrogen production was followed during the growth of these three bacterial species under different growth conditions: no limitation of sulfate and lactate, sulfate limitation, lactate limitation, pyruvate/sulfate medium and in the presence of molybdate. Hydrogen production/consumption by D. desulfuricans shows a behavior similar to that of D. gigas but a different one from that of D. vulgaris, which produces higher quantities of hydrogen on lactate/sulfate medium. The three species are able to increase the hydrogen production when the sulfate became limiting. Moreover, in a pyruvate/sulfate medium hydrogen production was lower than on lactate/sulfate medium. Hydrogen production by D. desulfuricans in presence of molybdate is extremely high. Hydrogenases are key enzymes on production/consumption of hydrogen in sulfate reducing organisms. The specific activity, number and cellular localization of hydrogenases vary within the three Desulfovibrio species used in this work, which could explain the differences observed on hydrogen utilization.  相似文献   

2.
Sarin R  Sharma YD 《Gene》2006,376(1):107-115
Metal corroding sulfate reducing bacteria have been poorly characterized at molecular level due to difficulties pertaining to isolation and handling of anaerobes. We report here for the first time the presence and characterization of thioredoxin 2 in an obligate anaerobic dissimilatory sulfate reducing bacterium Desulfovibrio desulfuricans. In silico analysis of the D. desulfuricans genome revealed the presence of thioredoxin 1 (dstrx1), thioredoxin 2 (dstrx2) and thioredoxin reductase (dstrxR) genes. These genes were found to be actively expressed by the bacteria under the anaerobic growth conditions. We have overexpressed the anaerobic thioredoxin genes in E. coli to produce functionally active recombinant proteins. Recombinant DsTrxR recognized both DsTrx1 and DsTrx2 as its substrate. Mutation studies revealed that the activity of DsTrx2 can be completely abolished with a single amino acid mutation (C69A) in the signature motif 'WCGPC'. Furthermore, the N-terminal domain of DsTrx2 containing two extra CXXC motifs was found to have a negative regulation on its biochemical activity. In conclusion, we have shown the presence of thioredoxin 2 for the first time in an obligate anaerobe which in this anaerobe may be required for its survival under either oxidative stress conditions or metal ion hemostasis.  相似文献   

3.
4.
The effects of sulfate and nitrogen concentrations of the rate and stoichiometry of microbial sulfate reduction were investigated for Desulfovibrio desulfuricans grown on lactate and sulfate in a chemostat at pH 7.0. Maximum specific growth rates (mu(max)), half-saturation coefficients (K(sul)), and cell yield (Y(c/Lac)) of 0.344 +/- 0.007 and 0.352 +/- 0.003 h (-1), 1.8 +/- 0.3 and 1.0 +/- 0.2 mg/L, and 0.020 +/- 0.003 and 0.017 +/- 0.003 g cell/g lactate, respectively, were obtained under sulfate-limiting conditions at 35 degrees C and 43 degrees C. Maintenance energy requirements for D. desulfuricans were significant under sulfate-limiting conditions. The extent of extracellular polymeric substance (EPS) produced was related to the carbon: nitrogen ratio in the medium. EPS production rate increased with decreased nitrogen loading rate. Nitrogen starvation also resulted in decreased cell size of D. desulfuricans. The limiting C : N ratio (w/w) for D. desulfuricans was in the range of 45 : 1 to 120 : 1. Effects of sulfide on microbial sulfate reduction, cell size, and biomass production were also ivestigated at pH 7.0. Fifty percent inhibition of lactate utilization occurred at a total sulfide concentration of approximately 500 mg/L. The cell size of D. desulfuricans decreased with increasing total sulfide concentration. Sulfide inhibition of D. desulfuricans was observed to be a reversible process. (c) 1992 John Wiley & Sons, Inc.  相似文献   

5.
The fate of 35-S during anaerobic metabolism of [35-S]sulfate, [35-S]thiosulfate, and [35-S]sulfate plus unlabeled thiosulfate by washed cell suspensions of Desulfovibrio spp, and of [35-S]thiosulfate by growing D. desulfuricans was examined. The results appear to be inconsistent with the hypothesis that thiosulfate is an intermediate in sulfate reduction. Since thiosulfate was produced from trithionate, the latter is also unlikely to be an intermediate in the reduction pathway. Extracts of D. desulfuricans catalysed exchange between sulfite and the sulfonate group of thiosulfate.  相似文献   

6.
The prominence of sulfate reducers in mercury biomethylation prompted the examination of the methyl carrier and mercury methylation activity of Desulfovibrio desulfuricans LS. There was a low degree of mercury tolerance and a high degree of methylation during fermentative growth; the opposite was true during sulfate reduction. During 2 days of fermentative growth, up to 37% of HgCl2 was methylated at 0.1 micrograms/ml, but only 1.5% was methylated at 10.0 micrograms/ml. Less than 1% of the added HgCl2 was methylated under sulfate-reducing conditions. D. desulfuricans LS radioimmunoassay results were positive for cobalamin. The addition of CoCl2 and benzimidazole to fermentative cultures increased methylation activity. From D. desulfuricans LS grown in the presence of (57)CoCl2, a corrinoid was extracted and purified. High-performance liquid chromatography analysis of the purified extract yielded a single peak with the retention time of cobalamin, and 97% of the (57)Co radioactivity was associated with this peak. Fast atom bombardment and UV and visible spectra of the isolated corrinoid matched those of cobalamin. When methylated with (14)CH3I, the isolated corrinoid methylated Hg(2+) with a 93.9% preservation of (14)C specific activity. We conclude that D. desulfuricans LS methylates mercury via cobalamin (vitamin B12). Under physiological conditions, the enzymatic catalysis of this reaction is likely.  相似文献   

7.
A Gram-negative, anaerobic sulfate-reducing bacterium was isolated from hindgut contents of the lower termite Mastotermes darwiniensis Froggatt (strain KMS2). Strain KMS2 is motile by a single polar flagellum. The isolate possesses desulfoviridin and catalase activity. The G+C content of its DNA is in the range of 54.5-55.5 mol% (strain KMS2). It respires hydrogen and different low molecular weight organic compounds in the presence of sulfate, thiosulfate, and sulfite, and also oxygen. The isolated strain ferments pyruvate. Fastest growth with a doubling time of 12.5 h was obtained at 37 degrees C and not at 28 degrees C, the temperature at which the termites were grown. The isolate showed a 16S rDNA sequence homology of 95.9% to Desulfovibrio desulfuricans ATCC 27774 and a DNA-DNA homology of 44.6% to D. desulfuricans Essex 6 (type strain). Based on its biochemical properties and 16S rDNA sequence, the isolate was assigned to a new species named Desulfovibrio intestinalis.  相似文献   

8.
Growth of Desulfovibrio on the Surface of Agar Media   总被引:1,自引:0,他引:1       下载免费PDF全文
Growth of Desulfovibrio desulfuricans (API strain) was found to take place in an atmosphere of hydrogen on the agar surface of complex media, including yeast extract (Difco), and Trypticase Soy Agar (BBL) without any added reducing agents. For growth on a 2% yeast extract-agar surface in the absence of hydrogen (nitrogen atmosphere), sodium lactate was required in the medium. Growth on the surface of Trypticase Soy Agar (TSA) under nitrogen took place readily in the absence of an added hydrogen donor. A medium (TSA plus salts) is described based upon the addition of sodium lactate (4 ml per liter), magnesium sulfate (2 g per liter), and ferrous ammonium sulfate (0.05%) to TSA, which appears suitable for the isolation and growth of Desulfovibrio on the surface of agar plates in an atmosphere of hydrogen. Sodium lactate does not appear to be essential in this medium for good growth and sulfate reduction in a hydrogen atmosphere, but is essential in a nitrogen atmosphere. Growth of Desulfovibrio (hydrogen atmosphere) on the agar surface of media commonly used for its cultivation as well as on an inorganic medium containing bicarbonate as a source of carbon is poor and erratic unless inoculated (Desulfovibrio) plates of TSA plus salts are incubated in the same container with plates of these media. This stimulatory effect of incubation with inoculated plates of TSA plus salts medium appears to be due to as yet unidentified volatile material produced by D. desulfuricans when growing on this medium. Another volatile material, or possibly the identical material, appears to act similarly to a hydrogen donor.  相似文献   

9.
The extracts of Desulfovibrio desulfuricans B-1388 cells, grown in anaerobic condition, display the superoxide dismutase activity. The maximum value of level activity (1.02 E/min/mg) is observed in the stationary phase of growth. Essentially the whole enzyme is localized in periplasmic fraction. Cells Desulfovibrio desulfuricans B-1388 do not show the catalase activity but contain active NADH- and NADPH-peroxidases. The activity of involved peroxidases depends on the physiological condition of culture.  相似文献   

10.
The anaerobic sulfate-reducing bacterium Desulfovibrio desulfuricans was grown on medium supplemented with either Kraft lignin or lignosulfonate. Only lignosulfonate contributed to the growth of D. desulfuricans cells, by replacing sulfate, a natural electron acceptor for this microorganism. Kraft lignin added to the culture medium could not substitute for lactate or sulfate, both necessary culture medium components. However, it was found to enhance the viability of D. desulfuricans cells. When changes occurring in lignin during growth of Desulfovibrio cultures were monitored, it was found that both lignin preparations could be partially depolymerized. Spectrophotometric and elemental analysis of biologically treated lignins suggested that both the polyphenolic backbone and lignin functional groups were affected by D. desulfuricans. After treatment, a twofold increase in the sulfur content of Kraft lignin and a minor decrease (14%) in the sulfur content of lignosulfonate were observed. After biological treatment, Kraft lignin and lignosulfonate both bound larger quantities of heavy metals.  相似文献   

11.
Sulfur isotope effects observed in lactate-limited continuous cultures of Desulfovibrio desulfuricans were, in general, similar to those reported for sulfate reduction by washed cells and batch cultures. There was a trend towards higher fractionation at low growth rates.  相似文献   

12.
13.
Extracts of Desulfotomaculum nigrificans, Desulfotomaculum orientis, and Desulfotomaculum ruminis exhibit low levels of inorganic pyrophosphatase but were found to have high levels of pyrophosphate:acetate phosphotransferase. Conversely, extracts of Desulfovibrio gigas, Desulfovibrio vulgaris, and Desulfovibrio desulfuricans Norway 4 were shown to have high levels of inorganic pyrophosphatase but negligible amounts of pyrophosphate:acetate phosphotransferase. Both enzymes are reductant activated and appear to have an analogous function in removing pyrophosphate formed during the activation of sulfate. Conservation of the bond energy of pyrophosphate in Desulfotomaculum eliminates the necessity for invoking electron-transfer-coupled phosphorylation to account for the growth of these bacteria on lactate plus sulfate. Relative growth yields of Desulfovibrio vulgaris and Desulfotomaculum orientis on lactate plus sulfate indicate that the latter does not carry out significant electron-transfer-coupled phosphorylation in this mode of growth.  相似文献   

14.
Sulfate reducing bacteria of the Desulfovibrio genus are considered anaerobes, in spite of the fact that they are frequently isolated close to oxic habitats. However, until now, growth in the presence of high concentrations of oxygen was not reported for members of this genus. This work shows for the first time that the sulfate reducing bacterium Desulfovibrio desulfuricans ATCC 27774 is able to grow in the presence of nearly atmospheric oxygen levels. In addition, the activity and expression profile of several key enzymes was analyzed under different oxygen concentrations.  相似文献   

15.
Conjugational transfer of several IncQ plasmids from Escherichia coli to the strictly anaerobic, sulfate-reducing bacterium Desulfovibrio desulfuricans strain G100A was demonstrated. Plasmid DNA from exconjugants was visualized on agarose gels and was used to transform E. coli to the appropriate antibiotic resistances. Neither transfer of IncW and IncP plasmids to strain G100A, nor transfer of any plasmid to D. desulfuricans strain ATCC 27774 was observed. Conjugation of suicide plasmids containing either Tn5 or Tn9 into D. desulfuricans did not result in detectable transposition. Optimal conditions for conjugational transfer and antibiotic resistance levels of strain G100A were examined.  相似文献   

16.
A chemostat coculture of the sulfate-reducing bacterium Desulfovibrio oxyclinae and the facultatively aerobic heterotroph Marinobacter sp. strain MB was grown for 1 week under anaerobic conditions at a dilution rate of 0.05 h(-1). It was then exposed to an oxygen flux of 223 micromol min(-1) by gassing the growth vessel with 5% O(2). Sulfate reduction persisted under these conditions, though the amount of sulfate reduced decreased by 45% compared to the amount reduced during the initial anaerobic mode. After 1 week of growth under these conditions, sulfate was excluded from the incoming medium. The sulfate concentration in the growth vessel decreased exponentially from 4.1 mM to 2.5 microM. The coculture consumed oxygen effectively, and no residual oxygen was detected during either growth mode in which oxygen was supplied. The proportion of D. oxyclinae cells in the coculture as determined by in situ hybridization decreased from 86% under anaerobic conditions to 70% in the microaerobic sulfate-reducing mode and 34% in the microaerobic sulfate-depleted mode. As determined by the most-probable-number (MPN) method, the numbers of viable D. oxyclinae cells during the two microaerobic growth modes decreased compared to the numbers during the anaerobic growth mode. However, there was no significant difference between the MPN values for the two modes when oxygen was supplied. The patterns of consumption of electron donors and acceptors suggested that when oxygen was supplied in the absence of sulfate and thiosulfate, D. oxyclinae performed incomplete aerobic oxidation of lactate to acetate. This is the first observation of oxygen-dependent growth of a sulfate-reducing bacterium in the absence of either sulfate or thiosulfate. Cells harvested during the microaerobic sulfate-depleted stage and exposed to sulfate and thiosulfate in a respiration chamber were capable of anaerobic sulfate and thiosulfate reduction.  相似文献   

17.
A mutant of Desulfovibrio desulfuricans ATCC 27774 has been obtained which is incapable of sulfate respiration with molecular hydrogen but which grows normally on lactate plus sulfate under argon. Growth characteristics of the mutant suggest that the defect is involved in electron transfer to sulfate or nitrate but not thiosulfate.  相似文献   

18.
The effects of temperature and phosphorous concentration on the rate and the extent of microbial sulfate reduction with lactate as carbon and energy source were investigated for Desulfovibrio desulfuricans. The continuous culture experiments (chemostat) were conducted at pH 7.0 from 12 to 48 degrees C. The maximum specific growth rate (mu(max)) was relatively constant in the range 25 degrees C-43 degrees C and dramatically decreased outside this temperature range. The half-saturation coefficient was minimum at 25 degrees C. Cell yield was highest in the optimum temperature range (35 degrees C-43 degrees C) for growth. Maintenance energy requirements for D. desulfuricans were not significant. Two moles of lactate is consumed for every mole of sulfate reduced, and this stoichiometric ratio is not temperature dependent. Steady state rate and stoichiometric coefficients accurately predicted transient behavior during temperature shifts. The extent of extracellular polymeric substance (EPS) is related to the concentration of phosphorous in the medium. EPS production rate increased with decreased phosphorous loading rate. Failure to discriminate between cell and EPS formation by D. desulfuricans leads to significant overestimates of the cell yield. The limiting C:P ratio for D. desulfuricans was in the range of 400:1 to 800:1.  相似文献   

19.
We examined the potential use of natural-abundance stable carbon isotope ratios of lipids for determining substrate usage by sulfate-reducing bacteria (SRB). Four SRB were grown under autotrophic, mixotrophic, or heterotrophic growth conditions, and the delta13C values of their individual fatty acids (FA) were determined. The FA were usually 13C depleted in relation to biomass, with Deltadelta13C(FA - biomass) of -4 to -17 per thousand; the greatest depletion occurred during heterotrophic growth. The exception was Desulfotomaculum acetoxidans, for which substrate limitation resulted in biomass and FA becoming isotopically heavier than the acetate substrate. The delta13C values of FA in Desulfotomaculum acetoxidans varied with the position of the double bond in the monounsaturated C16 and C18 FA, with FA becoming progressively more 13C depleted as the double bond approached the methyl end. Mixotrophic growth of Desulfovibrio desulfuricans resulted in little depletion of the i17:1 biomarker relative to biomass or acetate, whereas growth with lactate resulted in a higher proportion of i17:1 with a greater depletion in 13C. The relative abundances of 10Me16:0 in Desulfobacter hydrogenophilus and Desulfobacterium autotrophicum were not affected by growth conditions, yet the Deltadelta13C(FA - substrate) values of 10Me16:0 were considerably greater during autotrophic growth. These experiments indicate that FA delta13C values can be useful for interpreting carbon utilization by SRB in natural environments.  相似文献   

20.
Microbiological studies were performed in three small gypsum karst lakes in northern Lithuania, most typical of the region. Samples were taken in different seasons of 2001. The conditions for microbial growth in the lakes are determined by elevated content of salts (from 0.5 to 2.0 g/l), dominated by SO(2-)4 and Ca2+ ions (up to 1.4 and 0.6 g/l, respectively). The elevated sulfate concentration is favorable for sulfate-reducing bacteria (SRBs). Summer and winter stratification gives rise to anaerobic water layers enriched in products of anaerobic degradation: H2S and CH4. The lakes under study contain abundant SRBs not only in bottom sediments (from 10(3) to 10(7) cells/dm3) but also in the water column (from 10(2) to 10(6) cells/ml). The characteristic spatial and temporal variations in the rate of sulfate reduction were noted. The highest rates of this process were recorded in summer: 0.95-2.60 mg S(2-)/dm3 per day in bottom sediments and up to 0.49 mg S(2-)/l per day in the water column. The maximum values (up to 11.36 mg S(2-)/dm3) were noted in areas where bottom sediments were enriched in plankton debris. Molecular analysis of conservative sequences of the gene for 16S RNA in sulfate-reducing microorganisms grown on lactate allowed them to be identified as Desulfovibrio desulfuricans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号