共查询到20条相似文献,搜索用时 15 毫秒
1.
Cordas E Náray-Fejes-Tóth A Fejes-Tóth G 《American journal of physiology. Cell physiology》2007,292(5):C1971-C1981
Serum- and glucocorticoid-induced kinase-1 (SGK1) is involved in aldosterone-induced Na+ reabsorption by increasing epithelial Na+ channel (ENaC) activity in cortical collecting duct (CCD) cells, but its exact mechanisms of action are unknown. Although several potential targets such as Nedd4-2 have been described in expression systems, endogenous substrates mediating SGK1's physiological effects remain to be identified. In addition, subcellular localization studies of SGK1 have provided controversial results. We determined the subcellular location of SGK1 using SGK1-autofluorescent protein (AFP) fusion proteins. Rabbit CCD (RCCT-28A) cells were transiently transfected with a construct encoding for SGK1-AFP and were stained or cotransfected with markers for various subcellular compartments. In live cells, transiently expressed SGK1-AFP clearly colocalized with the mitochondrial marker rhodamine 123. Similarly, SGK1-AFP colocalized with the mitochondrial marker MitoTracker when stably expressed using a retroviral system in either RCCT-28A cells or the mammary epithelial cell line MCF10A. To determine which region of SGK1 is responsible for this subcellular localization, we generated RCCT-28A cell lines stably expressing SGK1 mutants. The results indicate that the NH2-terminal 60-amino acid region of SGK1 is necessary and sufficient for its subcellular localization. Localization of SGK1 to the mitochondria raises the possibility that SGK1 may play a role in regulating energy metabolism. mitochondria; localization 相似文献
2.
Glucocorticoid hormones stimulate adherens and tight junction formation in Con8 mammary epithelial tumor cells through a multistep process in which the membrane organization of structural apical junction proteins and tight junction sealing is controlled by specific signal transduction components. We have previously shown that dexamethasone stimulation of apical junction formation requires down-regulation of the small GTPase RhoA. Here we identified Rnd3/RhoE, a GTPase-deficient Rho family member and RhoA antagonist, as a key regulator of apical junction dynamics. Exogenously expressed Rnd3/RhoE co-localized with actin at the cell periphery and induced the localization of the adherens junction protein beta-catenin and the tight junction protein ZO-1 to sites of cell-cell contact, and led to the formation of highly sealed tight junctions. Treatment with glucocorticoids was not required to achieve complete apical junction remodeling. Consistent with Rnd3/RhoE acting as an antagonist of RhoA, expression of Rnd3/RhoE rescued the disruptive effects of constitutively active RhoA on apical junction organization. Our results demonstrate a new role for the Rho family member Rnd3/RhoE in regulating the assembly of the apical junction complex and tight junction sealing. 相似文献
3.
Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta 总被引:1,自引:0,他引:1
Beffert U Morfini G Bock HH Reyna H Brady ST Herz J 《The Journal of biological chemistry》2002,277(51):49958-49964
Reelin is a large secreted protein that controls cortical layering by signaling through the very low density lipoprotein receptor and apolipoprotein E receptor 2, thereby inducing tyrosine phosphorylation of the adaptor protein Disabled-1 (Dab1) and suppressing tau phosphorylation in vivo. Here we show that binding of Reelin to these receptors stimulates phosphatidylinositol 3-kinase, resulting in activation of protein kinase B and inhibition of glycogen synthase kinase 3beta. We present genetic evidence that this cascade is dependent on apolipoprotein E receptor 2, very low density lipoprotein receptor, and Dab1. Reelin-signaling components are enriched in axonal growth cones, where tyrosine phosphorylation of Dab1 is increased in response to Reelin. These findings suggest that Reelin-mediated phosphatidylinositol 3-kinase signaling in neuronal growth cones contributes to final neuron positioning in the mammalian brain by local modulation of protein kinase B and glycogen synthase kinase 3beta kinase activities. 相似文献
4.
Guan Y Rubenstein NM Failor KL Woo PL Firestone GL 《Molecular endocrinology (Baltimore, Md.)》2004,18(1):214-227
5.
6.
The B cell antigen receptor activates the Akt (protein kinase B)/glycogen synthase kinase-3 signaling pathway via phosphatidylinositol 3-kinase. 总被引:11,自引:0,他引:11
M R Gold M P Scheid L Santos M Dang-Lawson R A Roth L Matsuuchi V Duronio D L Krebs 《Journal of immunology (Baltimore, Md. : 1950)》1999,163(4):1894-1905
7.
Zhang HC White KB Ye H McComsey DF Derian CK Addo MF Andrade-Gordon P Eckardt AJ Conway BR Westover L Xu JZ Look R Demarest KT Emanuel S Maryanoff BE 《Bioorganic & medicinal chemistry letters》2003,13(18):3049-3053
Efficient methods were developed to synthesize a novel series of macrocyclic bisindolylmaleimides containing linkers with multiple heteroatoms. Potent inhibitors (single digit nanomolar IC(50)) for PKC-beta and GSK-3beta were identified, and compounds showed good selectivity over PKC-alpha, -gamma, -delta, -epsilon, and -zeta. Representative compound 5a also had high selectivity in a screening panel of 10 other protein kinases. In cell-based functional assays, several compounds effectively blocked interleukin-8 release induced by PKC-betaII and increased glycogen synthase activity by inhibiting GSK-3beta. 相似文献
8.
9.
10.
Hinoi T Yamamoto H Kishida M Takada S Kishida S Kikuchi A 《The Journal of biological chemistry》2000,275(44):34399-34406
Adenomatous polyposis coli gene product (APC) functions as a tumor suppressor and its mutations in familial adenomatous polyposis and colorectal cancers lead to the accumulation of cytoplasmic beta-catenin. The molecular mechanism by which APC regulates the stability of beta-catenin was investigated. The central region of APC, APC-(1211-2075), has the beta-catenin- and Axin-binding sites and down-regulates beta-catenin. Glycogen synthase kinase-3 beta (GSK-3 beta) phosphorylated beta-catenin slightly in the presence of either APC-(1211-2075) or Axin(delta)(beta)(-catenin), in which the beta-catenin-binding site is deleted, and greatly in the presence of both proteins. The enhancement of the GSK-3 beta-dependent phosphorylation of beta-catenin was eliminated by the APC-binding site of Axin. Axin down-regulated beta-catenin in SW480 cells, but not Axin(delta)(beta)(-catenin). In L cells where APC is intact, Axin(delta)(beta)(-catenin) inhibited Wnt-dependent accumulation of beta-catenin but not Axin-(298-832)(delta)(beta)(-catenin) in which the APC- and beta-catenin-binding sites are deleted. These results indicate that the complex formation of APC and Axin enhances the phosphorylation of beta-catenin by GSK-3 beta, leading to the down-regulation of beta-catenin. 相似文献
11.
12.
Rubenstein NM Guan Y Woo PL Firestone GL 《The Journal of biological chemistry》2003,278(12):10353-10360
In Con8 mammary epithelial tumor cells, we have documented previously that the synthetic glucocorticoid dexamethasone induces the reorganization of the tight junction and adherens junction (apical junction) and stimulates the monolayer transepithelial electrical resistance (TER), which is a reliable in vitro measurement of tight junction sealing. Western blots demonstrated that dexamethasone treatment down-regulated the level of the RhoA small GTPase prior to the stimulation of the monolayer TER. To test the role of RhoA in the steroid regulation of apical junction dynamics functionally, RhoA levels were altered in Con8 cells by transfection of either constitutively active (RhoA.V14) or dominant negative (RhoA.DN19) forms of RhoA. Ectopic expression of constitutively active RhoA disrupted the dexamethasone-stimulated localization of zonula occludens-1 and beta-catenin to sites of cell-cell contact, inhibited tight junction sealing, and prevented the complete formation of the F-actin ring structure at the apical side of the cell monolayer. In a complementary manner, dominant negative RhoA caused a precocious organization of the tight junction, adherens junction, and the F-actin rings in the absence of steroid, whereas the monolayer TER remained glucocorticoid-responsive. Taken together, our results demonstrate that the glucocorticoid down-regulation of RhoA is a required step in the steroid signaling pathway which controls the organization of the apical junctional complex and the actin cytoskeleton in mammary epithelial cells. 相似文献
13.
Accumulation of cytoplasmic beta-catenin and nuclear glycogen synthase kinase 3beta in Epstein-Barr virus-infected cells 总被引:1,自引:0,他引:1
Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with cancers in immunocompromised populations. EBV establishes a latent infection and immortalizes and transforms B lymphocytes. Several latent proteins have profound effects on cellular growth, including activation of NF-kappaB, phosphatidylinositol 3'-OH kinase (PI3K) signaling, and notch signaling. Activation of PI3K can affect the activity of beta-catenin, the target of the wnt signaling pathway. Deregulation of beta-catenin is associated with a number of malignancies. To determine if beta-catenin is regulated by EBV infection, EBV-infected cells were examined for beta-catenin levels and localization. beta-Catenin was increased in EBV-positive tumor cell lines compared to EBV-negative lines, in EBV-infected Burkitt's lymphoma cell lines, and in EBV-transformed lymphoblastoid cell lines (LCL). In contrast to wnt signaling, EBV consistently induced the accumulation of beta-catenin in the cytoplasm but not the nucleus. The beta-catenin regulating kinase, glycogen synthase kinase 3beta (GSK3beta), was shown to be phosphorylated and inactivated in EBV-infected lymphocytes. Inactivated GSK3beta was localized to the nucleus of EBV-infected LCL. Neither the cytoplasmic accumulation of beta-catenin nor the nuclear inactivation of GSK3beta was affected by the inhibition of PI3K signaling. These data indicate that latent infection with EBV has unique effects on beta-catenin signaling that are distinct from activation of wnt and independent of its effects on PI3K. 相似文献
14.
Serine-threonine kinase 38 (STK38) is a member of the protein kinase A (PKA)/PKG/PKC-like family. In the present study, we investigated the regulatory mechanism of STK38 and assessed its role in the cellular stress response. Among various environmental stresses, STK38 was specifically activated by H(2)O(2), and the phosphatidylinositol 3-kinase inhibitor wortmannin or AKT inhibitor IV suppressed this activation. STK38 was also activated by a constitutively active AKT1 or by GSK-3β inhibitor VII. The phosphorylation level of GSK-3β was correlated with the STK38 activity, in response to various stimuli and in different cell lines. Co-immunoprecipitation analysis revealed that GSK-3β physically interacted with STK38 in cells. GSK-3β overexpression inhibited the H(2)O(2)-stimulated STK38 activity. GSK-3β phosphorylated STK38 on residues S6 and T7 in vitro, depending largely on a PKA-mediated priming phosphorylation of STK38 on residues S10 and S11, respectively. STK38's H(2)O(2)-stimulated activity was enhanced by alanine substitution at its priming sites and/or at S6 and T7, and it was partially reduced by a phosphomimetic mutation at S6 or T7. STK38 knockdown enhanced the H(2)O(2)-induced JNK phosphorylation and cell death. Our results indicate that that GSK-3β inhibits STK38's full activation, and suggest that STK38 activation is required to prevent cell death in response to oxidative stress. 相似文献
15.
Purified glycogen synthase is contaminated with traces of two protein kinases that can phosphorylate the enzyme. One is protein kinase dependent on adenosine 3':5'-monophosphate (cyclic AMP) and the second is an activity termed glycogen synthase kinase-2 [Nimmo, H.G. and Cohen P, (1974)]. Glycogen synthase kinase-2 has been found to be localized relatively specifically in the protein-glycogen complex. It has been purified 4000-fold by two procedures, both of which involve disruption of the complex, followed by the DEAE-cellulose and phosphocellulose chromatographies. However the salt concentration at which glycogen synthase kinase-2 is eluted from DEAE-cellulose depends on the method that is used to disrupt the complex. The results indicate that glycogen synthase kinase-2 is firmly attached to a protein component of the complex. The isolation procedures separate glycogen synthase kinase-2 from phosphorylase kinase, cyclic AMP-dependent protein kinase and other glycogen-metabolising enzymes. Glycogen synthase kinase-2 is the major phosvitin kinase in skeletal muscle, although glycogen synthase is a six to eight-fold better substrate than phosvitin under the standard assay conditions. Phosphorylase kinase and phosphorylase b are not substrates for glycogen synthase kinase 2. Following incubation with cyclic-AMP-dependent protein kinase, cyclic AMP and Mg-ATP, the phosphorylation of glycogen synthase reaches a plateau at 1.0 molecules of phosphate incorporated per subunit and the activity ratio measured in the absence and presence of glucose 6-phosphate falls from 0.8 to a plateau of 0.18. The Ka for glucose 6-phosphate of this phosphorylated species, termed glycogen synthase b1, is the 0.6 mM. Following incubation with glycogen synthase kinase-2 and Mg-ATP, the phosphorylation reaches a plateau of 0.92 molecules of phosphate incorporated per subunit and the activity ratio decreases to a plateau of 0.08. The Ka for glucose 6-phosphate of this phosphorylated species, termed glycogen synthetase b2, is 4 mM. In the presence of both cyclic-AMP-dependent protein kinase and glycogen synthase kinase-2, the phosphorylation of glycogen synthase reaches a plateau when 1.95 molecules of phoshophate have been incorporated per subunit. The activity ratio is 0.01 and the Ka for glucose 6-phosphate is 10 mM. The results indicate that glycogen synthase can be regulated by two distinct phosphorylation-dephosphorylation cycles. The implication of these findings for the regulation of glycogen synthase in vivo are discussed. 相似文献
16.
After epithelial disruption by tissue injury, keratinocytes migrate from the wound edge into a provisional matrix. This process is stimulated by growth factors that signal through epidermal growth factor (EGF) receptor, including EGF, heparin-binding EGF-like growth factor (HB-EGF) and transforming growth factor-alpha (TGF-alpha), and by for example keratinocyte growth factor (KGF) and TGF-beta1 that function through different receptors. We have previously shown that keratinocyte migration induced by EGF or staurosporine is dependent on the activity of glycogen synthase kinase-3 (GSK-3). In the present study, we show that keratinocyte migration induced by TGF-beta1, KGF, EGF, TGF-alpha and staurosporine depends on EGFR signaling, involves autocrine HB-EGF expression and is potently blocked by GSK-3 inhibitors SB-415286 and LiCl. Inhibition of GSK-3 also retards wound reepithelialization in vivo in mice. Moreover, inhibition of GSK-3 activity prevented cell rounding that is an early event in EGFR-mediated keratinocyte migration. Isoform-specific GSK-3alpha and GSK-3beta knockdown and overexpression experiments with siRNAs and adenoviral constructs, respectively, revealed that GSK-3alpha is required for keratinocyte migration, whereas excessive activity of GSK-3beta is inhibitory. Thus, induction of keratinocyte migration is conveyed through EGFR, promoted by endogenous HB-EGF and requires GSK-3alpha activity. 相似文献
17.
Fatty acid infusion selectively impairs insulin action on Akt1 and protein kinase C lambda /zeta but not on glycogen synthase kinase-3 总被引:6,自引:0,他引:6
To determine the mechanism(s) for insulin resistance induced by fatty acids, we measured the ability of insulin to activate phosphoinositide 3-kinase (PI3K) and multiple distal pathways in rats. Following a 5-h infusion of lipid or glycerol (control), rats underwent a euglycemic hyperinsulinemic clamp. Insulin stimulated IRS-1-associated PI3K activity in muscle of glycerol-infused rats 2.4-fold but had no effect in lipid-infused rats. IRS-2- and phosphotyrosine-associated PI3K activity were increased 3.5- and 4.8-fold, respectively, by insulin in glycerol-infused rats but only 1.6- and 2.3-fold in lipid-infused rats. Insulin increased Akt1 activity 3.9-fold in glycerol-infused rats, and this was impaired 41% in lipid-infused rats. Insulin action on Akt2 and p70S6K were not impaired, whereas activation of protein kinase C lambda/zeta activity was reduced 47%. Insulin inhibited glycogen synthase kinase 3alpha (GSK-3alpha) activity by 30% and GSK-3beta activity by approximately 65% and increased protein phosphatase-1 activity by 40-47% in both glycerol- and lipid-infused rats. Insulin stimulated glycogen synthase activity 2.0-fold in glycerol-infused rats but only 1.4-fold in lipid-infused rats. Thus, 1) elevation of fatty acids differentially affects insulin action on pathways distal to PI3K, impairing activation of Akt1 and protein kinase C lambda/zeta and 2) insulin action on glycogen synthase can be regulated independent of effects on GSK-3 and protein phosphatase-1 activity in vivo. 相似文献
18.
Protein kinase B (also known as Akt) signaling regulates dopamine-mediated locomotor behaviors. Here the ability of cocaine to regulate Akt and glycogen synthase kinase 3 (GSK3) was studied. Rats were injected with cocaine or saline in a binge-pattern, which consisted of three daily injections of 15 mg/kg cocaine or 1 mL/kg saline spaced 1 h apart for 1, 3, or 14 days. Amygdala, nucleus accumbens, caudate putamen, and hippocampus tissues were dissected 30 min following the last injection and analyzed for phosphorylated and total Akt and GSK3(alpha and beta) protein levels using western blot analysis. Phosphorylation of Akt on the threonine-308 (Thr308) residue was significantly reduced in the nucleus accumbens and increased in the amygdala after 1 day of cocaine treatment; however, these effects were not accompanied by a significant decrease in GSK3 phosphorylation. Phosphorylation of Akt and GSK3 was significantly reduced after 14 days of cocaine administration, an effect that was only observed in the amygdala. Cocaine did not alter Akt or GSK3 phosphorylation in the caudate putamen or hippocampus. The findings in nucleus accumbens may reflect dopaminergic motor-stimulant activity caused by acute cocaine, whereas the effects in amygdala may be associated with changes in emotional state that occur after acute and chronic cocaine exposure. 相似文献
19.
20.
Glucocorticoid hormones, which are physiological regulators of mammary epithelium development, induce the formation of tight junctions in rat Con8 mammary epithelial tumor cells. We have discovered that, as part of this process, the synthetic glucocorticoid dexamethasone strongly and reversibly down-regulated the expression of fascin, an actin-bundling protein that also interacts with the adherens junction component beta-catenin. Ectopic constitutive expression of full-length mouse fascin containing a Myc epitope tag (Myc-fascin) in Con8 cells inhibited the dexamethasone stimulation of transepithelial electrical resistance, disrupted the induced localization of the tight junction protein occludin and the adherens junction protein beta-catenin to the cell periphery, and prevented the rearrangement of the actin cytoskeleton. Ectopic expression of either the carboxyl-terminal 213 amino acids of fascin, which includes the actin and beta-catenin-binding sites, or the amino-terminal 313 amino acids of fascin failed to disrupt the glucocorticoid induction of tight junction formation. Mammary tumor cells expressing the full-length Myc-fascin remained generally glucocorticoid responsive and displayed no changes in the levels or protein-protein interactions of junctional proteins or the amount of cytoskeletal associated actin filaments. However, a cell aggregation assay demonstrated that the expression of Myc-fascin abrogated the dexamethasone induction of cell-cell adhesion. Our results implicate the down-regulation of fascin as a key intermediate step that directly links glucocorticoid receptor signaling to the coordinate control of junctional complex formation and cell-cell interactions in mammary tumor epithelial cells. 相似文献