首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asymmetric heart tube looping and chamber morphogenesis is a complex process that is just beginning to be understood at the genetic level. Rightward looping is the first embryological manifestation of consistently oriented, left-right asymmetric development of nearly all visceral organs. Intuitively, invariant anatomical asymmetry must derive from a novel mechanism capable of integrating dorsoventral and anteroposterior information. The details of this process are emerging for several vertebrates and reveal that overall left-right asymmetry, once polarized with respect to dorsoventral and anteroposterior axes, unfolds through distinct left- and right-sided programs of gene expression. These, in turn, regulate expression of cardiac and chamber-specific genes which guide heart morphogenesis and differentiation.  相似文献   

2.
Morphogenesis of the adult structures of holometabolous insects is regulated by ecdysteroids and juvenile hormones and involves cell-cell interactions mediated in part by the cell surface integrin receptors and their extracellular matrix (ECM) ligands. These adhesion molecules and their regulation by hormones are not well characterized. We describe the gene structure of a newly described ECM molecule, tenectin, and demonstrate that it is a hormonally regulated ECM protein required for proper morphogenesis of the adult wing and male genitalia. Tenectin's function as a new ligand of the PS2 integrins is demonstrated by both genetic interactions in the fly and by cell spreading and cell adhesion assays in cultured cells. Its interaction with the PS2 integrins is dependent on RGD and RGD-like motifs. Tenectin's function in looping morphogenesis in the development of the male genitalia led to experiments that demonstrate a role for PS integrins in the execution of left-right asymmetry.  相似文献   

3.
In bilateria, positioning and looping of visceral organs requires proper left-right (L/R) asymmetry establishment. Recent work in Drosophila has identified a novel situs inversus gene encoding the unconventional type ID myosin (MyoID). In myoID mutant flies, the L/R axis is inverted, causing reversed looping of organs, such as the gut, spermiduct and genitalia. We have previously shown that MyoID interacts physically with β-Catenin, suggesting a role of the adherens junction in Drosophila L/R asymmetry. Here, we show that DE-Cadherin co-immunoprecipitates with MyoID and is required for MyoID L/R activity. We further demonstrate that MyoIC, a closely related unconventional type I myosin, can antagonize MyoID L/R activity by preventing its binding to adherens junction components, both in vitro and in vivo. Interestingly, DE-Cadherin inhibits MyoIC, providing a protective mechanism to MyoID function. Conditional genetic experiments indicate that DE-Cadherin, MyoIC and MyoID show temporal synchronicity for their function in L/R asymmetry. These data suggest that following MyoID recruitment by β-Catenin at the adherens junction, DE-Cadherin has a twofold effect on Drosophila L/R asymmetry by promoting MyoID activity and repressing that of MyoIC. Interestingly, the product of the vertebrate situs inversus gene inversin also physically interacts with β-Catenin, suggesting that the adherens junction might serve as a conserved platform for determinants to establish L/R asymmetry both in vertebrates and invertebrates.  相似文献   

4.
Bilateran animals have external bilateral symmetry along the dorsoventral (DV) and anteroposterior (AP) axes. Internal left-right asymmetries appear to be consistently aligned along the left-right (LR) axis with respect to the other axes. Left-right development is most apparent in the directional looping of the cardiac tube, the coiling and placement of the intestines, the positioning of internal organs such as liver, gallbladder, pancreas, and stomach. In addition, there are obvious morphological asymmetries in the brains of some vertebrates and functional left-right asymmetries in the activities of the brain, as assessed by psychological testing, MRI, and the analysis of lesions. There are several fundamental questions: What are the origins of the left-right axis, and are they highly conserved across metazoans? Once the left-right axis is established by the initial breaking of bilateral symmetry, what is the genetic pathway that perpetrates left-right development? What are the cellular and tissue mechanics that lead to morphogenesis during, for example, the looping of the cardiac tube, the coiling of the gut, or asymmetric brain development? Finally, do the asymmetric developmental pathways of each organ system take register from the same initial event that establishes the left-right axis, or are there separate mechanisms that orient heart, gut, and brain left-right asymmetry with respect to the DV and AP axes? These questions are beginning to be experimentally addressed, and papers in this issue of Developmental Genetics make contributions to several aspects in the burgeoning field of left-right development. Recent reviews have summarized the emerging genes and pathways in vertebrate left-right development [Wood, 1997; Harvey, 1998; Ramsdell and Yost, 1998]. Here, I give an overview of the contributions in this issue to the fundamental questions in left-right development. Dev. Genet. 23:159–163, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Left-right asymmetry of internal organs is widely distributed in the animal kingdom. The chick and mouse embryos have served as important model organisms to analyze the mechanisms underlying the establishment of the left-right axis. In the chick embryo many genes have been found to be asymmetrically expressed in and around the node, while the same genes in the mouse show symmetric expression patterns. In the mouse there is strong evidence for an establishment of left-right asymmetry through nodal cilia. In contrast, in the chick and in many other organisms left-right asymmetry is probably generated by an early-acting event involving membrane depolarization. In both birds and mammals a conserved Nodal-Lefty-Pitx2 module exists that controls many aspects of asymmetric morphogenesis. This review also gives examples of divergent mechanisms of establishing asymmetric organ formation. Thus there is ample evidence for conserved and non-conserved strategies to generate asymmetry in birds and mammals.  相似文献   

6.
Determination of the left-right position (situs) of visceral organs involves lefty, nodal and Pitx2 genes that are specifically expressed on the left side of the embryo. We demonstrate that the expression of these genes is prevented by the addition of a retinoic acid receptor pan-antagonist to cultured headfold stage mouse embryos, whereas addition of excess retinoic acid leads to their symmetrical expression. Interestingly, both treatments lead to randomization of heart looping and to defects in heart anteroposterior patterning. A time course analysis indicates that only the newly formed mesoderm at the headfold-presomite stage is competent for these retinoid effects. We conclude that retinoic acid, the active derivative of vitamin A, is essential for heart situs determination and morphogenesis.  相似文献   

7.
Axes formation is a fundamental process of early embryonic development. In addition to the anteroposterior and dorsoventral axes, the determination of the left-right axis is crucial for the proper morphogenesis of internal organs and is evolutionarily conserved in vertebrates. Genes known to be required for the normal establishment and/or maintenance of left-right asymmetry in vertebrates include, for example, components of the TGF-beta family of intercellular signalling molecules and genes required for node and midline function. We report that Notch signalling, which previously had not been implicated in this morphogenetic process, is required for normal left-right determination in mice. We show, that the loss-of-function of the delta 1 (Dll1) gene causes a situs ambiguous phenotype, including randomisation of the direction of heart looping and embryonic turning. The most probable cause for this left-right defect in Dll1 mutant embryos is a failure in the development of proper midline structures. These originate from the node, which is disrupted and deformed in Dll1 mutant embryos. Based on expression analysis in wild-type and mutant embryos, we suggest a model, in which Notch signalling is required for the proper differentiation of node cells and node morphology.  相似文献   

8.
The heart develops from a linear tubular precursor, which loops to the right and undergoes terminal differentiation to form the multichambered heart. Heart looping is the earliest manifestation of left-right asymmetry and determines the eventual heart situs. The signalling processes that impart laterality to the unlooped heart tube and thus allow the developing organ to interpret the left-right axis of the embryo are poorly understood. Recent experiments in zebrafish led to the suggestion that bone morphogenetic protein 4 (BMP4) may impart laterality to the developing heart tube. Here we show that in Xenopus, as in zebrafish, BMP4 is expressed predominantly on the left of the linear heart tube. Furthermore we demonstrate that ectopic expression of Xenopus nodal-related protein 1 (Xnr1) RNA affects BMP4 expression in the heart, linking asymmetric BMP4 expression to the left-right axis. We show that transgenic embryos overexpressing BMP4 bilaterally in the heart tube tend towards a randomisation of heart situs in an otherwise intact left-right axis. Additionally, inhibition of BMP signalling by expressing noggin or a truncated, dominant negative BMP receptor prevents heart looping but allows the initial events of chamber specification and anteroposterior morphogenesis to occur. Thus in Xenopus asymmetric BMP4 expression links heart development to the left-right axis, by being both controlled by Xnr1 expression and necessary for heart looping morphogenesis.  相似文献   

9.
Retinoic acid, the active vitamin A derivative, has pleiotropic functions during vertebrate development and postnatal life. Retinaldehyde dehydrogenase 2 (RALDH2) acts as the main retinoic acid-synthesizing enzyme during development. Mouse Raldh2 germline null mutants are early embryonic lethal and exhibit complex abnormalities that include defective heart looping morphogenesis. To investigate later functions of this enzyme, we have engineered a "floxed" (loxP-flanked) allele allowing Cre-mediated somatic gene inactivations. Mice heterozygous or homozygous for the floxed Raldh2 allele are viable and fertile. We tested whether the novel Raldh2 allele behaves as a null mutation after Cre-mediated in vivo excision by crossing the conditional mutants with CMV-Cre transgenic mice. An embryonic lethal phenotype indistinguishable from that of germline mutants was obtained. The conditional allele described herein is a genetic tool for studying tissue-specific, RALDH2-dependent functions of retinoic acid during development and in adult life.  相似文献   

10.
In vertebrates visceral asymmetry is conserved along the left-right axis within the body. Only a small percentage of randomization (situs ambiguus), or complete reversal (situs inversus) of normal internal organ position and structural asymmetry is found in humans. A breakdown in left-right asymmetry is occasionally associated with severe malformations of the organs, clearly indicating that the regulated asymmetric patterning could have an evolutionary advantage over allowing random placement of visceral organs. Genetic, molecular and cell transplantation experiments in humans, mice, zebrafish, chick and Xenopus have advanced our understanding of how initiation and establishment of left-right asymmetry occurs in the vertebrate embryo. In particular, the chick embryo has served as an extraordinary animal model to manipulate genes, cells and tissues. This chick model system has enabled us to reveal the genetic pathways that occur during left-right development. Indeed, genes with asymmetric expression domains have been identified and well characterized using the chick as a model system. The present review summarizes the molecular and experimental studies employed to gain a better understanding of left-right asymmetry pattern formation from the first split of symmetry in embryos, to the exhibition of asymmetric morphologies in organs.  相似文献   

11.
Current models of left-right asymmetry hold that an early asymmetric signal is generated at the node and transduced to lateral plate mesoderm in a linear signal transduction cascade through the function of the Nodal signaling molecule. The Pitx2 homeobox gene functions at the final stages of this cascade to direct asymmetric morphogenesis of selected organs including the heart. We previously showed that Pitx2 regulated an asymmetric pathway that was independent of cardiac looping suggesting a second asymmetric cardiac pathway. It has been proposed that in the cardiac outflow tract Pitx2 functions in both cardiac neural crest, as a target of canonical Wnt-signaling, and in the mesoderm-derived cardiac second lineage. We used fate mapping, conditional loss of function, and chimera analysis in mice to investigate the role of Pitx2 in outflow tract morphogenesis. Our findings reveal that Pitx2 is dispensable in the cardiac neural crest but functions in second lineage myocardium revealing that this cardiac progenitor field is patterned asymmetrically.  相似文献   

12.
《Biophysical journal》2020,118(3):742-752
In mammals and birds, embryonic development of the heart involves conversion of a straight tubular structure into a three-dimensional helical loop, which is a chiral structure. We investigated theoretically the mechanism of helical loop formation of the mouse embryonic heart, especially focusing on determination of left-/right-handedness of the helical loop. In geometrical terms, chirality is the result of the combination of three axial asymmetries in three-dimensional space. We hypothesized the following correspondences between axial asymmetries and morphogenesis (bending and displacement): the dorsal-ventral asymmetry by ventral bending of a straight tube of the initial heart and the left-right and anterior-posterior asymmetries, the left-right asymmetry by rightward displacement of the heart tube, which is confined to the anterior region of the tube. Morphogenesis of chiral looping of the embryonic heart is a large-scaled event of the multicellular system in which substantial physical force operates dynamically. Using computer simulations with a cell-based physico-mechanical model and experiments with mouse embryos, we confirmed the hypothesis. We conclude that rightward displacement of the tube determines the left-handed screw of the loop. The process of helix loop formation consists of three steps: 1) the left-right biasing system involving Nodal-related signals that leads to left-right asymmetry in the embryonic body; 2) the rightward displacement of the tube; and finally 3) the left-handed helical looping. Step 1 is already established. Step 3 is elucidated by our study, which highlights the need for step 2 to be clarified; namely, we explore how the left-right asymmetry in the embryonic body leads to the rightward displacement of the heart tube.  相似文献   

13.
Complex congenital heart disease (CHD) is often seen in conjunction with heterotaxy, the randomization of left-right visceral organ situs. However, the link between cardiovascular morphogenesis and left-right patterning is not well understood. To elucidate the role of left-right patterning in cardiovascular development, we examined situs anomalies and CHD in mice with a loss of function allele of Dnaic1, a dynein protein required for motile cilia function and left-right patterning. Dnaic1 mutants were found to have nodal cilia required for left-right patterning, but they were immotile. Half the mutants had concordant organ situs comprising situs solitus or mirror symmetric situs inversus. The remaining half had randomized organ situs or heterotaxy. Looping of the heart tube, the first anatomical lateralization, showed abnormal L-loop bias rather than the expected D-loop orientation in heterotaxy and nonheterotaxy mutants. Situs solitus/inversus mutants were viable with mild or no defects consisting of azygos continuation and/or ventricular septal defects, whereas all heterotaxy mutants had complex CHD. In heterotaxy mutants, but not situs solitus/inversus mutants, the morphological left ventricle was thin and often associated with a hypoplastic transverse aortic arch. Thus, in conclusion, Dnaic1 mutants can achieve situs solitus or inversus even with immotile nodal cilia. However, the finding of abnormal L-loop bias in heterotaxy and nonheterotaxy mutants would suggest motile cilia are required for normal heart looping. Based on these findings, we propose motile nodal cilia patterns heart looping but heart and visceral organ lateralization is driven by signaling not requiring nodal cilia motility.  相似文献   

14.
Many animals exhibit stereotypical left-right (LR) asymmetry in their internal organs. The mechanisms of LR axis formation required for the subsequent LR asymmetric development are well understood, especially in some vertebrates. However, the molecular mechanisms underlying LR asymmetric morphogenesis, particularly how mechanical force is integrated into the LR asymmetric morphogenesis of organs, are poorly understood. Here, we identified zipper (zip), encoding a Drosophila non-muscle myosin II (myosin II) heavy chain, as a gene required for LR asymmetric development of the embryonic anterior midgut (AMG). Myosin II is known to directly generate mechanical force in various types of cells during morphogenesis and cell migration. We found that myosin II was involved in two events in the LR asymmetric development of the AMG. First, it introduced an LR bias to the directional position of circular visceral muscle (CVMU) cells, which externally cover the midgut epithelium. Second, it was required for the LR-biased rotation of the AMG. Our results suggest that myosin II in CVMU cells plays a crucial role in generating the force leading to LR asymmetric morphogenesis. Taken together with previous studies in vertebrates, the involvement of myosin II in LR asymmetric morphogenesis might be conserved evolutionarily.  相似文献   

15.
Cellular and molecular left-right differences that are present in the mesodermal heart fields suggest that the heart is lateralized from its inception. Left-right asymmetry persists as the heart fields coalesce to form the primary heart tube, and overt, morphological asymmetry first becomes evident when the heart tube undergoes looping morphogenesis. Thereafter, chamber formation, differentiation of the inflow and outflow tracts, and position of the heart relative to the midline are additional features of heart development that exhibit left-right differences. Observations made in human clinical studies and in animal models of laterality disease suggest that all of these features of cardiac development are influenced by the embryonic left-right body axis. When errors in left-right axis determination happen, they almost always are associated with complex congenital heart malformations. The purpose of this review is to highlight what is presently known about cardiac development and upstream processes of left-right axis determination, and to consider how perturbation of the left-right body plan might ultimately result in particular types of congenital heart defects.  相似文献   

16.
Retinoic acid is clearly important for the development of the heart. In this paper, we provide evidence that retinoic acid is essential for multiple aspects of cardiogenesis in Xenopus by examining embryos that have been exposed to retinoic acid receptor antagonists. Early in cardiogenesis, retinoic acid alters the expression of key genes in the lateral plate mesoderm including Nkx2.5 and HAND1, indicating that early patterning of the lateral plate mesoderm is, in part, controlled by retinoic acid. We found that, in Xenopus, the transition of the heart from a sheet of cells to a tube required retinoic acid signaling. The requirement for retinoic acid signaling was determined to take place during a narrow window of time between embryonic stages 14 and 18, well before heart tube closure. At the highest doses used, the lateral fields of myocardium fail to fuse, intermediate doses lead to a fusion of the two sides but failure to form a tube, and embryos exposed to lower concentrations of antagonist form a heart tube that failed to complete all the landmark changes that characterize looping. The myocardial phenotypes observed when exposed to the retinoic acid antagonist resemble the myocardium from earlier stages of cardiogenesis, although precocious expression of cardiac differentiation markers was not seen. The morphology of individual cells within the myocardium appeared immature, closely resembling the shape and size of cells at earlier stages of development. However, the failures in morphogenesis are not merely a slowing of development because, even when allowed to develop through stage 40, the heart tubes did not close when embryos were exposed to high levels of antagonist. Indeed, some aspects of left-right asymmetry also remained even in hearts that never formed a tube. These results demonstrate that components of the retinoic acid signaling pathway are necessary for the progression of cardiac morphogenesis in Xenopus.  相似文献   

17.
The left-right asymmetry of the vertebrate heart is evident in the topology of the heart loop, and in the dissimilar morphology of the left and right chambers. How left-right asymmetric gene expression patterns influence the development of these features is not understood, since the individual roles of the left and right sides of the embryo in heart looping or chamber morphogenesis have not been specifically defined. To this end, we have constructed a bilateral heart-specific fate map of the left and right contributions to the developing heart in the Xenopus embryo. Both the left and right sides contribute to the conoventricular segment of the heart loop; however, the left side contributes to the inner curvature and ventral face of the loop while the right side contributes to the outer curvature and dorsal aspect. In contrast, the left atrium is derived mainly from the original left side of the embryo, while the right atrium is derived primarily from the right side. A comparison of our fate map with the domain of expression of the left-right gene, Pitx2, in the left lateral plate mesoderm, reveals that this Pitx2-expressing region is fated to form the inner curvature of the heart loop, the left atrioventricular canal, and the dorsal aspect of the left atrium. We discuss the implications of these results for the role of left-right asymmetric gene expression in heart looping and chamber morphogenesis.  相似文献   

18.
In metazoan development, the precise mechanisms that regulate the completion of morphogenesis according to a developmental timetable remain elusive. The Drosophila male terminalia is an asymmetric looping organ; the internal genitalia (spermiduct) loops dextrally around the hindgut. Mutants for apoptotic signaling have an orientation defect of their male terminalia, indicating that apoptosis contributes to the looping morphogenesis. However, the physiological roles of apoptosis in the looping morphogenesis of male terminalia have been unclear. Here, we show the role of apoptosis in the organogenesis of male terminalia using time-lapse imaging. In normal flies, genitalia rotation accelerated as development proceeded, and completed a full 360° rotation. This acceleration was impaired when the activity of caspases or JNK or PVF/PVR signaling was reduced. Acceleration was induced by two distinct subcompartments of the A8 segment that formed a ring shape and surrounded the male genitalia: the inner ring rotated with the genitalia and the outer ring rotated later, functioning as a 'moving walkway' to accelerate the inner ring rotation. A quantitative analysis combining the use of a FRET-based indicator for caspase activation with single-cell tracking showed that the timing and degree of apoptosis correlated with the movement of the outer ring, and upregulation of the apoptotic signal increased the speed of genital rotation. Therefore, apoptosis coordinates the outer ring movement that drives the acceleration of genitalia rotation, thereby enabling the complete morphogenesis of male genitalia within a limited developmental time frame.  相似文献   

19.
Regulation of left-right asymmetry by thresholds of Pitx2c activity   总被引:3,自引:0,他引:3  
Although much progress has been made in understanding the molecular mechanisms regulating left-right asymmetry, the final events of asymmetric organ morphogenesis remain poorly understood. The phenotypes of human heterotaxia syndromes, in which organ morphogenesis is uncoupled, have suggested that the early and late events of left-right asymmetry are separable. The Pitx2 homeobox gene plays an important role in the final stages of asymmetry. We have used two new Pitx2 alleles that encode progressively higher levels of Pitx2c in the absence of Pitx2a and Pitx2b, to show that different organs have distinct requirements for Pitx2c dosage. The cardiac atria required low Pitx2c levels, while the duodenum and lungs used higher Pitx2c doses for normal development. As Pitx2c levels were elevated, the duodenum progressed from arrested rotation to randomization, reversal and finally normal morphogenesis. In addition, abnormal duodenal morphogenesis was correlated with bilateral expression of Pitx2c. These data reveal an organ-intrinsic mechanism, dependent upon dosage of Pitx2c, that governs asymmetric organ morphogenesis. They also provide insight into the molecular events that lead to the discordant organ morphogenesis of heterotaxia.  相似文献   

20.
Although bilateral animals appear to have left-right (LR) symmetry from the outside, their internal organs often show directional and stereotypical LR asymmetry. The mechanisms by which the LR axis is established in vertebrates have been extensively studied. However, how each organ develops its LR asymmetric morphology with respect to the LR axis is still unclear. Here, we showed that Drosophila Jun N-terminal kinase (D-JNK) signaling is involved in the LR asymmetric looping of the anterior-midgut (AMG) in Drosophila. Mutant embryos of puckered (puc), which encodes a D-JNK phosphatase, showed random laterality of the AMG. Directional LR looping of the AMG required D-JNK signaling to be down-regulated by puc in the trunk visceral mesoderm. Not only the down-regulation, but also the activation of D-JNK signaling was required for the LR asymmetric looping. We also found that the LR asymmetric cell rearrangement in the circular visceral muscle (CVM) was regulated by D-JNK signaling and required for the LR asymmetric looping of the AMG. Rac1, a Rho family small GTPase, augmented D-JNK signaling in this process. Our results also suggest that a basic mechanism for eliciting LR asymmetric gut looping may be conserved between vertebrates and invertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号