首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An anti-calmodulin monoclonal antibody having an absolute requirement for Ca2+ has been produced from mice immunized with a mixture of calmodulin and calmodulin-binding proteins. Radioimmune assays were developed for the determination of its specificity. the epitope for this antibody resides on the COOH-terminal half of the mammalian protein. Plant calmodulin or troponin C had little reactivity. The apparent affinity of the antibody for calmodulin was increased approximately 60-fold in the presence of heart calmodulin-dependent phosphodiesterase. The presence of heart phosphodiesterase in the radioimmune assay greatly enhanced the sensitivity for calmodulin. The intrinsic calmodulin subunit of phosphorylase kinase and calmodulin which was bound to brain phosphodiesterases was also recognized with high affinity by the antibody. The antibody reacted poorly with calmodulin which was bound to heart or brain calcineurin, skeletal muscle myosin light chain kinase, or other calmodulin-binding proteins. In direct binding experiments, most of the calmodulin-binding proteins studied were unreactive with the antibody. This selectivity allowed purification of heart and two brain calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes on immobilized antibody affinity columns. Phosphodiesterase activity was adsorbed directly from crude samples and specifically eluted with EGTA. Isozyme separation was accomplished using a previously described anti-heart phosphodiesterase monoclonal antibody affinity support. The brain isozymes differed not only in reactivity with the anti-phosphodiesterase antibody, but also in apparent subunit molecular weight, and relative specificity for cAMP and cGMP as substrates. The calmodulin activation constants for the brain enzymes were 10-20-fold greater than for the heart enzyme. The data suggest that the binding of ligands to Ca2+/calmodulin induce conformation changes in calmodulin which alter reactivity with the anti-calmodulin monoclonal antibody. The differential antibody reactivity toward calmodulin-enzyme complexes indicates that target proteins either induce very different conformations in calmodulin and/or interact with different geometries relative to the antibody binding site. The anti-calmodulin monoclonal antibody should be useful for the purification of other calmodulin-dependent phosphodiesterases as well as isozymes of phosphorylase kinase.  相似文献   

2.
Transferred nuclear Overhauser enhancement spectroscopy (TRNOE) was used to observe changes in a ligand's conformation upon binding to its specific antibody. The ligands studied were methyl O-beta-D-galactopyranosyl(1----6)-4-deoxy-4-fluoro-beta-D-galactopyra nos ide (me4FGal2) and its selectively deuteriated analogue, methyl O-beta-D-galactopyranosyl(1----6)-4-deoxy-2-deuterio-4-fluoro-beta -D- galactopyranoside (me4F2dGal2). The monoclonal antibody was mouse IgA X24. The solution conformation of the free ligand me4F2dGal2 was inferred from measurements of vicinal 1H-1H coupling constants, long-range 1H-13C coupling constants, and NOE cross-peak intensities. For free ligand, both galactosyl residues adopt a regular chair conformation, but the NMR spectra are incompatible with a single unique conformation of the glycosidic linkage. Analysis of 1H-1H and 1H-13C constants indicates that the major conformer has an extended conformation: phi = -120 degrees; psi = 180 degrees; and omega = 75 degrees. TRNOE measurements on me4FGal2 and me4F2dGal2 in the presence of the specific antibody indicate that the pyranose ring pucker of each galactose ring remains unchanged, but rotations about the glycosidic linkage occur upon binding to X24. Computer calculations indicate that there are two sets of torsion angles that satisfy the observed NMR constraints, namely, phi = -152 +/- 9 degrees; psi = -128 +/- 7 degrees; and omega = -158 +/- 6 degrees; and a conformer with phi = -53 +/- 6 degrees; psi = 154 +/- 10 degrees; and omega = -173 +/- 6 degrees. Neither conformation is similar to any of the observed conformations of the free disaccharide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We have studied the influence of D-amino acid substitution in the flanking region on the antibody recognition of the 19TGTQ22 epitope core in the tandem repeat of mucin 2 (MUC2) glycoprotein. Analogue peptides corresponding to the optimal epitope sequence (16PTPTGTQ22) have been prepared by the replacement of single or multiple L-amino acid residues at the N-terminal part of the molecule. According to previous studies, this portion of the all-L 16PTPTGTQ22 peptide possesses a beta-turn secondary structure important for efficient monoclonal antibody interaction. The binding properties of sequentially modified peptides (pTPTGTQ, ptPTGTQ, ptpTGTQ, and ptptGTQ) have been analyzed by a MUC2 glycoprotein specific monoclonal antibody (MAb 996) using RIA inhibition assay and characterized by IC50 values. At the same time, we have investigated the secondary structure of the compounds by circular dichroism and Fourier transform infrared spectroscopy in solution. Our data showed that the presence of D-amino acid residue(s) at position(s) 16P, 16PT17, or 16PTP18 resulted in gradually decreasing antibody binding, but the replacement of the L-Thr at position 19 almost abolished activity. Parallel with this reduction, changes in the conformer population have been detected. The propensity of the pTPTGTQ peptide to adopt folded, most probably beta-turn, structure in water can be in correlation with its essentially preserved antibody recognition. After further substitution, the peptide still contained beta- and/or gamma-turn folded secondary structural elements. The conformation of peptide ptptGTQ could be characterized mostly by semiextended (polyproline II) and probably classic gamma-turn conformers built up from D residues.  相似文献   

4.
The mAb AI206 (IgG1) is an anti-Id antibody of mAb YH206 (IgM) to adenocarcinoma-associated carbohydrate Ag and inhibits the reaction of mAb YH206 to YH206 Ag at low concentrations. By Western blot analysis, mAb AI206 only reacted with unreduced mAb YH206, whereas it did not react with reduced mAb YH206. Furthermore, mAb AI206 reacted with IgM subunit (180 kDa), F(ab')2 (110 kDa), and F(ab) (50 kDa) of pepsin-treated unreduced mAb YH206. Thus, mAb AI206 recognized the structure of F(ab) of mAb YH206. The mAb YH206 reacted with unreduced mAb AI206, F(ab')2 (110 kDa), and F(ab) (50 kDa) of pepsin-treated unreduced mAb AI206. It is presumed that mAb YH206 and mAb AI206 recognize each other in an unreduced condition but not a reduced condition. The recognition of such a conformational Id on F(ab) is important. Because mAb YH206 recognized the carbohydrate on YH206 Ag as well as the peptide on mAb AI206, the conformation on F(ab) of mAb AI206 may mimic the carbohydrate structure on YH206 Ag. In fact, YH206 antibody activity was induced in syngeneic mouse serum immunized with mAb AI206. These observations suggest that the internal image of YH206 carbohydrate Ag is preserved within the conformational Id on F(ab) of mAb AI206.  相似文献   

5.
A monoclonal antibody (mAb), designated 15D8, was produced from BALB/c splenocytes of mice injected with Escherichia coli flagella. ELISA of motile cells, non-motile cells and partially purified flagellin proteins showed that the mAb reacted specifically with flagella of E. coli and with other members of the family Enterobacteriaceae. Western immunoblot analyses of enterobacterial flagella or cell extracts demonstrated that the antibody reacted with a single protein species in the extracts which was identical in size to purified flagellin. The antigenic determinant for this antibody appears to be surface exposed and linear in configuration, since the antibody reacted with native flagella and flagella which had been denatured. This antibody was also used to demonstrate that although the flagella proteins are heterogeneous in size, at least one epitope is highly conserved.  相似文献   

6.
D C Feller  M S Collett 《Biopolymers》1992,32(10):1407-1415
The peptide YKGTMDSG (Tyr-Lys-Gly-Thr-Met-Asp-Ser-Gly) represents an important antigenic determinant from the glycoprotein G2 of the pathogenic Rift Valley fever virus. By preparing a series of single-residue substitution peptides, the importance to antigenicity of individual residues within this octapeptide has been determined. Here, we investigated a simple and rapid computational analysis to test for correlations between the observed antigenicity of the substitution analogue peptides and the calculated conformational preferences in local regions of the peptides. Conformational energy analyses were carried out on all dipeptide combinations represented in the wild-type octapeptide and in the single-residue substitution analogue peptides. Conformational similarities and differences between wild-type and substitution dipeptide pairs were determined. The results of these computational analyses were then compared with the data on the relative antigenicity of the wild-type octapeptide and the substitution analogues. This comparison revealed a positive correlation. Substitution peptides showing changes in antigenicity possessed significant changes in the calculated backbone conformation relative to wild type in the dipeptides encompassing the residue substitution. Substitution peptides showing no change in antigenicity similarly showed no significant changes in dipeptide conformation. The potential utility of dipeptide conformational energy analyses and this preliminary structure-activity correlation are discussed.  相似文献   

7.
The effect of the chain length of the fatty acid residue of the ceramide moiety of ganglioside GM3 on the binding ability of monoclonal antibody M2590, which is specific for the carbohydrate structure of GM3-ganglioside, was examined by means of a direct binding assay on thin layer chromatography plates (TLC immunostaining) and a quantitative enzyme-linked immunosorbent assay (ELISA). Derivatives of GM3 with a long fatty acid chain reacted with the M2590 antibody, but those with a short fatty acid chain showed no reaction in either assay system. These results suggested that the acyl fatty acid moiety of the ganglioside played an important role in the formation or maintenance of the antigenic structure of the carbohydrate moiety of the ganglioside.  相似文献   

8.
Argüeso P  Sumiyoshi M 《Glycobiology》2006,16(12):1219-1228
Sialic acids comprise a large family of derivatives of neuraminic acid containing methyl, acetyl, sulfate, and phosphate among other groups, which confer specific physicochemical properties (e.g., hydrophobicity and resistance to hydrolases) to the molecules carrying them. Several years ago, a monoclonal antibody, designated H185, was developed, which binds to cell membranes of human corneal, conjunctival, laryngeal, and vaginal epithelia and whose distribution is altered on the ocular surface of patients with keratinizing disease. Recent findings using immunoprecipitation and immunodepletion techniques have demonstrated that, in human corneal epithelial cells, the H185 antigen is carried by the membrane-associated mucin MUC16. In this study, we show that the H185 epitope on human corneal cells and in tear fluid is an O-acetylated sialic acid epitope that can be selectively hydrolyzed in an enzyme-concentration-dependent manner by sialidase from Arthrobacter ureafaciens and to a lesser extent by sialidases from Newcastle disease virus, Clostridium perfringens, and Streptococcus pneumoniae. Binding of the H185 antibody was impaired by treatment of tear fluid with a recombinant 9-O-acetylesterase from influenza C virus. Two O-acetyl derivatives, Neu5,7Ac(2) and Neu5,9Ac(2), were identified in human tear fluid by fluorometric high-performance liquid chromatography (HPLC) and electrospray mass spectrometry (MS). Immunoprecipitation of the H185 epitope from human corneal epithelial cells revealed that Neu5,9Ac(2) was the major derivative on the mucin isolate. These results indicate that exposed wet-surfaced epithelia are decorated with O-acetyl sialic acid derivatives on membrane-associated mucins and suggest that O-acetylation on cell surfaces may protect against pathogen infection by preventing degradation of membrane-associated mucins.  相似文献   

9.
Overproduction of NO by inducible NO synthase (iNOS) has been implicated in the pathogenesis of many diseases. iNOS is active only as a homodimer in which the subunits align in a head-to-head manner, with the N-terminal oxygenase domains forming the dimer interface and a zinc metal center stabilizing the dimer. Thus, dimerization represents a critical locus for therapeutic interventions for regulation of NO synthesis. We have recently shown that intracellular iNOS forms dimers that are "undisruptable (UD)" by heat, SDS, strong denaturants, and/or reducing agents. Our data further suggest that the zinc metal center plays a role in forming and/or stabilizing iNOS undisruptable dimers (UD-dimers). In this study, we show that a mAb directed against a unique epitope at the oxygenase domain of human iNOS preferentially recognizes UD-dimers. This observation has implications for the mechanism of formation and regulation of dimer formation of iNOS. Our data suggest that UD-dimers of iNOS, in spite of SDS-PAGE denaturation, still maintain features of the quaternary structure of iNOS particularly at its N-terminal end and including head-to-head contact of the oxygenase domains.  相似文献   

10.
The expression and properties of mouse embryonic antigens, recognized by monoclonal antibody TEC-02, were analyzed in teratocarcinoma-derived cell lines. TEC-2 antigens were found in the majority of the parietal endoderm cells PYS-2 and in a fraction of cultured embryonal carcinoma cells but not in other cell lines tested. During the course of retinoic acid-induced differentiation of embryonal carcinoma cells F9, the expression of TEC-2 was transiently increased. Immunolabeling of extracts from F9 and PYS-2 cells separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that TEC-2 antigens are polydisperse glycoconjugates of high molecular weight (mostly greater than 100,000). The TEC-2 epitope was shown to be carbohydrate which in F9 cells might be attached to the same carrier as another developmentally regulated carbohydrate epitope TEC-1. The TEC-2 antigens, isolated by indirect immunoprecipitation, were degraded by extensive pronase digestion or mild alkaline treatment to mostly large products. Immunostaining of glycolipid standards suggested that TEC-2 epitope involves the GalNAc beta 1----4Gal beta 1----4R sequence. Combined data indicate that TEC-2 is a new developmentally regulated carbohydrate epitope carried in embryonal carcinoma cells predominantly on glycoprotein-bound large carbohydrates.  相似文献   

11.
The thermodynamics of a monoclonal antibody (mAb)-peptide interaction have been characterized by isothermal titration microcalorimetry. GCC:B10 mAb, generated against human guanylyl cyclase C, a membrane-associated receptor and a potential marker for metastatic colon cancer, recognizes the cognate peptide epitope HIPPENIFPLE and its two contiguous mimotopes, HIPPEN and ENIFPLE, specifically and reversibly. The exothermic binding reactions between 6.4 and 42 degrees C are driven by dominant favorable enthalpic contributions between 20 and 42 degrees C, with a large negative heat capacity (DeltaC(p)) of -421 +/- 27 cal mol(-1) K(-1). The unfavorable negative value of entropy (DeltaS(b)(0)) at 25 degrees C, an unusual feature among protein-protein interactions, becomes a positive one below an inversion temperature of 20.5 degrees C. Enthalpy-entropy compensation due to solvent reorganization accounts for an essentially unchanged free energy of interaction (DeltaDeltaG(b)(0) congruent with 0). The role of water molecules in the recognition process was tested by coupling an osmotic stress technique with isothermal titration microcalorimetry. The results provide direct and compelling evidence that GCC:B10 mAb recognizes the peptides HIPPENIFPLE, HIPPEN, and ENIFPLE differentially, with a concomitant release of variable and nonadditive numbers of water molecules (15, 7, and 3, respectively) from the vicinity of the binding site.  相似文献   

12.
Alpha 2-Macroglobulin (alpha 2M) is a plasma proteinase inhibitor that binds up to 2 mole of proteinase per mole of inhibitor. Proteinase binding or reaction with small primary amines causes a major conformational change in alpha 2M. As a result of this conformational change, a new epitope recognized by monoclonal antibody 7H11D6 is exposed. The association of alpha 2M-proteinase or alpha 2M-methylamine with alpha 2M cellular receptors is prevented by 7H11D6. In this investigation, the binding of 7H11D6 to alpha 2M was studied by electron microscopy. 7H11D6 bound to alpha 2M-methylamine and alpha 2M-trypsin but not to native alpha 2M. The structure of alpha 2M after conformational change resembled the letter "H." 7H11D6 epitopes were identified near the apices of the four arms in the alpha 2M "H" structure. 7H11D6 that was adducted to colloidal gold (7HAu) retained the specificity of the free antibody (binding to alpha 2M-trypsin but not to native alpha 2M). alpha 2M conformational change intermediates prepared by sequential reaction with a protein crosslinker and trypsin also bound 7HAu. These results suggest that a complete alpha 2M conformational change is not necessary for 7H11D6 epitope exposure and may not be required for receptor recognition. 7HAu was used to isolate a preparation consisting primarily of binary alpha 2M-trypsin (1 mole trypsin per mole alpha 2M instead of 2). Structures resembling the letter "H" were most common; however, each field showed some atypical molecules with arms that were compacted instead of thin and elongated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
HLA-DR epitope region definition by use of monoclonal antibody probes   总被引:4,自引:0,他引:4  
Definition of HLA-DR epitopes has been attempted by utilizing monoclonal antibody probes. Hybridoma antibodies L203 and L227, known to bind different epitopes on human Ia-like molecules, were tested for their ability to block cytotoxicity of monoclonal and allogeneic anti-DR antibodies. Monoclonal cytotoxic antibodies segregated into two groups: those more effectively blocked by L203, and those more effectively blocked by L227. Alloantisera also segregated into two groups, but according to their DR specificity. Anti-DR1, -2, and -3 alloantisera were effectively blocked by both L203 and L227, whereas anti-DR7, -w9, -w10, and MT1 alloantisera were not blocked by either. Blocking was not correlated with immunoglobulin class of the alloantibody and further definition of the mechanism of cytotoxicity blocking remains to be elucidated. Based on these data and prior binding and immunochemical studies with L203 and L227, a model is proposed in which the tertiary structure of each DR molecule, or complex of associated molecules on the cell surface, has two reference epitopes, one defined by L203, and another defined by L227. HLA-DR epitopes defined by the cytotoxic monoclonal or alloantibodies to the L203 or L227 epitope in order to begin epitope mapping or grouping.  相似文献   

14.
The objective of this investigation is examination of the dominant forces that govern complex formation between a series of monoclonal antibodies directed against O6-ethyl-2'-deoxyguanosine. These monoclonal antibodies (coded as ER-6, ER-3, and EM-1) provide the basis for a thermodynamic comparative evaluation of the potentially different forces that stabilize the various monoclonal antibody (mAb) alkylated nucleoside complexes. The binding affinities of ER-6, ER-3, and EM-1 are measured in terms of specific (O6-ethyl-2'-deoxyguanosine, or O6-EtdGuo) and nonspecific (O6-methyl-2'-deoxyguanosine, or O6-MedGuo) antigens, under a variety of experimental conditions, including pH, sodium chloride addition, 1-propanol addition, and temperature, via a nitrocellulose affinity filter assay. The binding isotherms were analyzed via a least-squares routine fit to a two independent binding sites model. The temperature dependence of the van't Hoff enthalpies for the specific O6-EtdGuo interaction ranges from -15.18 to -18.60 kcal mol-1, while for O6-MedGuo the range was extended from -2.72 to -20.66 kcal mol-1. The standard and unitary entropies were negative for those mAb interactions with O6-EtdGuo as well as for ER-6/O6-MedGuo complex formation. However, it was found that the interactions between ER-3 and EM-1 with O6-MedGuo led to decidedly positive entropic values. These results indicate two different dominant forces at work in complex stabilization. The interaction of the three mAb's with their specific antigen, as well as ER-6/O6-MedGuo interaction (nonspecific), may well be controlled by van der Waals type forces, while ER-3 and EM-1 interactions with nonspecific antigen imply formal charge neutralization electrostatics as the dominant force.  相似文献   

15.
16.
Lee JR  Chang YY  Hahn MJ 《BioTechniques》2001,31(3):541-545
The epitope recognized by a mouse monoclonal antibody (MAb) to the crystalline surface layer protein of Rickettsia typhi, SRT10, was mapped to 10 amino acid residues (SRTag TFIGAIATDT). The oligonucleotide sequence covering the epitope recognized by SRT10 was inserted into a mammalian expression vector together with multiple cloning sites. When the SRTag was fused in frame to the coding region of the NCC27/CLIC1 gene and expressed in mammalian cells, the MAb SRT10 could detect the tagged protein by immunoblotting, immunocytochemistry, and immunoprecipitation. In addition to the SRT-NCC27/CLIC1, SRT10 could detect N-terminal-tagged MEF2D and C-terminal-tagged CD4 by immunocytochemistry. We suggest that this specific recognition of the SRTag by SRT10 is generally applicable to cellular and molecular biology research that requires the expression and detection of fusion proteins.  相似文献   

17.
Lipo-oligosaccharides (LOS) produced by Neisseria gonorrhoeae are important antigenic and immunogenic components of the outer membrane complex. Previously, we showed that murine monoclonal antibody (mAb) 2C7 did not cross-react with human glycosphingolipids but identified the LOS epitope that is widely expressed in vivo and in vitro (Gulati, S., McQuillen, D. P., Mandrell, R. E., Jani, D. B., and Rice, P. A. (1996) J. Infect. Dis. 174, 1223-1237). In the present study, we analyzed the structure of gonococcal strain WG LOS containing the 2C7 epitope and investigated the structural requirements for expression of the epitope. We determined that the WG LOS components are Hep[1]-elongated forms of 15253 LOS that have a lactose on both Hep[1] and Hep[2] (Yamasaki, R., Kerwood, D. E., Schneider, H., Quinn, K. P., Griffiss, J. M., and Mandrell, R. E. (1994) J. Biol. Chem. 269, 30345-30351). In addition, we found that expression of the 2C7 epitope within the LOS is blocked when the Hep[2]-lactose is elongated. Based on the structural data of these LOS and the results obtained from immunochemical analyses, we conclude the following: 1) mAb 2C7 requires both the 15253 OS minimum structure and the N-linked fatty acids in the lipoidal moiety for expression of the epitope; 2) mAb 2C7 binds to the LOS that elongates the lactose on Hep[1] of the 15253 OS, but not the one on Hep[2]; and 3) the 2C7 epitope is expressed on gonococcal LOS despite the presence of human carbohydrate epitopes such as a lactosamine or its N-acetylgalactosaminylated (globo) form. Our study shows that the conserved epitope defined by mAb 2C7 could potentially be used as a safe site for the development of a vaccine candidate.  相似文献   

18.
Norovirus, which belongs to the family Caliciviridae, is one of the major causes of nonbacterial acute gastroenteritis in the world. The main human noroviruses are of genogroup I (GI) and genogroup II (GII), which were subdivided further into at least 15 and 18 genotypes (GI/1 to GI/15 and GII/1 to GII/18), respectively. The development of immunological diagnosis for norovirus had been hindered by the antigen specificity of the polyclonal antibody. Therefore, several laboratories have produced broadly reactive monoclonal antibodies, which recognize the linear GI and GII cross-reactive epitopes or the conformational GI-specific epitope. In this study, we characterized the novel monoclonal antibody 14-1 (MAb14-1) for further development of the rapid immunochromatography test. Our results demonstrated that MAb14-1 could recognize 15 recombinant virus-like particles (GI/1, 4, 8, and 11 and GII/1 to 7 and 12 to 15) and showed weak affinity to the virus-like particle of GI/3. This recognition range is the broadest of the existing monoclonal antibodies. The epitope for MAb14-1 was identified by fragment, sequence, structural, and mutational analyses. Both terminal antigenic regions (amino acid positions 418 to 426 and 526 to 534) on the C-terminal P1 domain formed the conformational epitope and were in the proximity of the insertion region (positions 427 to 525). These regions contained six amino acids responsible for antigenicity that were conserved among genogroup(s), genus, and Caliciviridae. This epitope mapping explained the broad reactivity and different titers among GI and GII. To our knowledge, we are the first group to identify the GI and GII cross-reactive monoclonal antibody, which recognizes the novel conformational epitope. From these data, MAb14-1 could be used further to develop immunochromatography.  相似文献   

19.
A monoclonal antibody (TDM-2) specific to a UV-induced cyclobutane pyrimidine dimer (T[cis-syn]T) has previously been established; however,the immunization had used UV-irradiated calf-thymus DNA containing a heterogeneous mixture of photoproduct sites. We investigated here the structural requirements of antigen recognition by the antibody using chemically synthesized antigen analogs. TDM-2 bound with cis-syn,but not trans-syn thymine dimer,and could bind strongly with four nucleotide analogs in which the cis-syn pyrimidine dimer was located in the center. Antigen analogs containing abasic linkers at the 5'- or 3'-side of the cis-syn cyclobutane pyrimidine dimer were synthesized and tested for binding to TDM-2. The results indicated that TDM-2 recognizes not only the cyclobutane ring but also both the 5'- and 3'-side nucleosides of the cyclobutane dimer. Furthermore,it was proved that either the 5'- or 3'-side phosphate group at a cyclobutane dimer site was absolutely required for the affinity to TDM-2. The antibody showed a strong binding to single stranded DNA but indicated little binding to double stranded DNA.  相似文献   

20.
Oligodendrocytes are the myelinating cells of the central nervous system. They differentiate from oligodendrocyte precursor cells through several intermediate states that can be followed by characteristic morphological changes and the expression of marker molecules. However, most oligodendrocyte lineage markers demarcate either the precursor or the differentiated oligodendrocyte in restricted subcellular compartments. Here, we describe a novel marker of the oligodendrocyte lineage recognised by the monoclonal antibody clone 4860. It selectively labels the surfaces of differentiated oligodendrocytes in culture and clearly differs from other oligodendrocyte markers. Importantly, the 4860 epitope highlights developing white matter tracts in rodent and avian brains and thus represents a useful and conserved feature. The 4860 epitope is not associated with protein backbones as revealed by the related 487/L5 antibody. Furthermore, the epitope disappears upon lipid extraction from cryosections or inhibition of sphingolipid synthesis in cultured oligodendrocytes. Thus, we conclude that mAb 4860 represents a novel lipid-based oligodendrocyte marker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号