首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

In individually dye-balanced microarray designs, each biological sample is hybridized on two different slides, once with Cy3 and once with Cy5. While this strategy ensures an automatic correction of the gene-specific labelling bias, it also induces dependencies between log-ratio measurements that must be taken into account in the statistical analysis.  相似文献   

2.
3.
MOTIVATION: Currently most of the methods for identifying differentially expressed genes fall into the category of so called single-gene-analysis, performing hypothesis testing on a gene-by-gene basis. In a single-gene-analysis approach, estimating the variability of each gene is required to determine whether a gene is differentially expressed or not. Poor accuracy of variability estimation makes it difficult to identify genes with small fold-changes unless a very large number of replicate experiments are performed. RESULTS: We propose a method that can avoid the difficult task of estimating variability for each gene, while reliably identifying a group of differentially expressed genes with low false discovery rates, even when the fold-changes are very small. In this article, a new characterization of differentially expressed genes is established based on a theorem about the distribution of ranks of genes sorted by (log) ratios within each array. This characterization of differentially expressed genes based on rank is an example of all-gene-analysis instead of single gene analysis. We apply the method to a cDNA microarray dataset and many low fold-changed genes (as low as 1.3 fold-changes) are reliably identified without carrying out hypothesis testing on a gene-by-gene basis. The false discovery rate is estimated in two different ways reflecting the variability from all the genes without the complications related to multiple hypothesis testing. We also provide some comparisons between our approach and single-gene-analysis based methods. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

4.

Background  

Time-course microarray experiments are widely used to study the temporal profiles of gene expression. Storey et al. (2005) developed a method for analyzing time-course microarray studies that can be applied to discovering genes whose expression trajectories change over time within a single biological group, or those that follow different time trajectories among multiple groups. They estimated the expression trajectories of each gene using natural cubic splines under the null (no time-course) and alternative (time-course) hypotheses, and used a goodness of fit test statistic to quantify the discrepancy. The null distribution of the statistic was approximated through a bootstrap method. Gene expression levels in microarray data are often complicatedly correlated. An accurate type I error control adjusting for multiple testing requires the joint null distribution of test statistics for a large number of genes. For this purpose, permutation methods have been widely used because of computational ease and their intuitive interpretation.  相似文献   

5.
6.

Background  

In this short article, we discuss a simple method for assessing sample size requirements in microarray experiments.  相似文献   

7.
Two-color cDNA or oligonucleotide-based spotted microarrays have been commonly used in measuring the expression levels of thousands of genes simultaneously. To realize the immense potential of this powerful new technology, budgeted within limited resources or other constraints, practical designs with high efficiencies are in demand. In this study, we address the design issue concerning the arrangement of the mRNA samples labeled with fluorescent dyes and hybridized on the slides. A normalization model is proposed to characterize major sources of systematic variation in a two-color microarray experiment. This normalization model establishes a connection between designs for two-color microarray experiments with a particular class of classical row-column designs. A heuristic algorithm for constructing A-optimal or highly efficient designs is provided. Statistical optimality results are found for some of the designs generated from the algorithm. It is believed that the constructed designs are the best or very close to the best possible for estimating the relative gene expression levels among the mRNA samples of interest.  相似文献   

8.
RNA amplification strategies for cDNA microarray experiments   总被引:5,自引:0,他引:5  
  相似文献   

9.

Background  

In a time-course microarray experiment, the expression level for each gene is observed across a number of time-points in order to characterize the temporal trajectories of the gene-expression profiles. For many of these experiments, the scientific aim is the identification of genes for which the trajectories depend on an experimental or phenotypic factor. There is an extensive recent body of literature on statistical methodology for addressing this analytical problem. Most of the existing methods are based on estimating the time-course trajectories using parametric or non-parametric mean regression methods. The sensitivity of these regression methods to outliers, an issue that is well documented in the statistical literature, should be of concern when analyzing microarray data.  相似文献   

10.
MOTIVATION: Microarray experiments often involve hundreds or thousands of genes. In a typical experiment, only a fraction of genes are expected to be differentially expressed; in addition, the measured intensities among different genes may be correlated. Depending on the experimental objectives, sample size calculations can be based on one of the three specified measures: sensitivity, true discovery and accuracy rates. The sample size problem is formulated as: the number of arrays needed in order to achieve the desired fraction of the specified measure at the desired family-wise power at the given type I error and (standardized) effect size. RESULTS: We present a general approach for estimating sample size under independent and equally correlated models using binomial and beta-binomial models, respectively. The sample sizes needed for a two-sample z-test are computed; the computed theoretical numbers agree well with the Monte Carlo simulation results. But, under more general correlation structures, the beta-binomial model can underestimate the needed samples by about 1-5 arrays. CONTACT: jchen@nctr.fda.gov.  相似文献   

11.

Background  

This paper presents a unified framework for finding differentially expressed genes (DEGs) from the microarray data. The proposed framework has three interrelated modules: (i) gene ranking, ii) significance analysis of genes and (iii) validation. The first module uses two gene selection algorithms, namely, a) two-way clustering and b) combined adaptive ranking to rank the genes. The second module converts the gene ranks into p-values using an R-test and fuses the two sets of p-values using the Fisher's omnibus criterion. The DEGs are selected using the FDR analysis. The third module performs three fold validations of the obtained DEGs. The robustness of the proposed unified framework in gene selection is first illustrated using false discovery rate analysis. In addition, the clustering-based validation of the DEGs is performed by employing an adaptive subspace-based clustering algorithm on the training and the test datasets. Finally, a projection-based visualization is performed to validate the DEGs obtained using the unified framework.  相似文献   

12.
Over the past few years, due to the popularisation of high-throughput methodologies such as DNA microarrays, the possibility of obtaining experimental data has increased significantly. Nevertheless, the interpretation of the results, which involves translating these data into useful biological knowledge, still remains a challenge. The methods and strategies used for this interpretation are in continuous evolution and new proposals are constantly arising. Initially, a two-step approach was used in which genes of interest were initially selected, based on thresholds that consider only experimental values, and then in a second, independent step the enrichment of these genes in biologically relevant terms, was analysed. For different reasons, these methods are relatively poor in terms of performance and a new generation of procedures, which draw inspiration from systems biology criteria, are currently under development. Such procedures, aim to directly test the behaviour of blocks of functionally related genes, instead of focusing on single genes.  相似文献   

13.
Design of microarray experiments for genetical genomics studies   总被引:2,自引:0,他引:2       下载免费PDF全文
Bueno Filho JS  Gilmour SG  Rosa GJ 《Genetics》2006,174(2):945-957
  相似文献   

14.
Microarrays have become an important tool for studying the molecular basis of complex disease traits and fundamental biological processes. A common purpose of microarray experiments is the detection of genes that are differentially expressed under two conditions, such as treatment versus control or wild type versus knockout. We introduce a Laplace mixture model as a long-tailed alternative to the normal distribution when identifying differentially expressed genes in microarray experiments, and provide an extension to asymmetric over- or underexpression. This model permits greater flexibility than models in current use as it has the potential, at least with sufficient data, to accommodate both whole genome and restricted coverage arrays. We also propose likelihood approaches to hyperparameter estimation which are equally applicable in the Normal mixture case. The Laplace model appears to give some improvement in fit to data, though simulation studies show that our method performs similarly to several other statistical approaches to the problem of identification of differential expression.  相似文献   

15.
The loop design of Kerr and Churchill is a clever application of incomplete blocks of size 2 to two-channel microarray experiments. In this paper, we extend the loop design to include more replicates, biological and technical replication, multi-factor experiments, and blocking. Loop and extended loop designs are shown to be more efficient than the reference design for any given number of arrays. We also show that adding new treatments to a loop design requires the same number of additional arrays as adding treatments to a reference design, with a greater gain in power. Given the flexibility of extended loop designs and their power, we propose that these should be the designs of choice for most experiments using two-channel microarrays.  相似文献   

16.

Background  

Microarray data must be normalized because they suffer from multiple biases. We have identified a source of spatial experimental variability that significantly affects data obtained with Cy3/Cy5 spotted glass arrays. It yields a periodic pattern altering both signal (Cy3/Cy5 ratio) and intensity across the array.  相似文献   

17.
DNA microarray technology provides useful tools for profiling global gene expression patterns in different cell/tissue samples. One major challenge is the large number of genes relative to the number of samples. The use of all genes can suppress or reduce the performance of a classification rule due to the noise of nondiscriminatory genes. Selection of an optimal subset from the original gene set becomes an important prestep in sample classification. In this study, we propose a family-wise error (FWE) rate approach to selection of discriminatory genes for two-sample or multiple-sample classification. The FWE approach controls the probability of the number of one or more false positives at a prespecified level. A public colon cancer data set is used to evaluate the performance of the proposed approach for the two classification methods: k nearest neighbors (k-NN) and support vector machine (SVM). The selected gene sets from the proposed procedure appears to perform better than or comparable to several results reported in the literature using the univariate analysis without performing multivariate search. In addition, we apply the FWE approach to a toxicogenomic data set with nine treatments (a control and eight metals, As, Cd, Ni, Cr, Sb, Pb, Cu, and AsV) for a total of 55 samples for a multisample classification. Two gene sets are considered: the gene set omegaF formed by the ANOVA F-test, and a gene set omegaT formed by the union of one-versus-all t-tests. The predicted accuracies are evaluated using the internal and external crossvalidation. Using the SVM classification, the overall accuracies to predict 55 samples into one of the nine treatments are above 80% for internal crossvalidation. OmegaF has slightly higher accuracy rates than omegaT. The overall predicted accuracies are above 70% for the external crossvalidation; the two gene sets omegaT and omegaF performed equally well.  相似文献   

18.
MOTIVATION: Maintaining and controlling data quality is a key problem in large scale microarray studies. In particular systematic changes in experimental conditions across multiple chips can seriously affect quality and even lead to false biological conclusions. Traditionally the influence of these effects can be minimized only by expensive repeated measurements, because a detailed understanding of all process relevant parameters seems impossible. RESULTS: We introduce a novel method for microarray process control that estimates quality based solely on the distribution of the actual measurements without requiring repeated experiments. A robust version of principle component analysis detects single outlier microarrays and thereby enables the use of techniques from multivariate statistical process control. In particular, the T(2) control chart reliably tracks undesired changes in process relevant parameters. This can be used to improve the microarray process itself, limits necessary repetitions to only affected samples and therefore maintains quality in a cost effective way. We prove the power of the approach on 3 large sets of DNA methylation microarray data.  相似文献   

19.
We introduce a non-parametric approach using bootstrap-assisted correspondence analysis to identify and validate genes that are differentially expressed in factorial microarray experiments. Model comparison showed that although both parametric and non-parametric methods capture the different profiles in the data, our method is less inclined to false positive results due to dimension reduction in data analysis.  相似文献   

20.
We propose a general theoretical framework for analyzing differentially expressed genes and behavior patterns from two homogenous short time-course data. The framework generalizes the recently proposed Hilbert-Schmidt Independence Criterion (HSIC)-based framework adapting it to the time-series scenario by utilizing tensor analysis for data transformation. The proposed framework is effective in yielding criteria that can identify both the differentially expressed genes and time-course patterns of interest between two time-series experiments without requiring to explicitly cluster the data. The results, obtained by applying the proposed framework with a linear kernel formulation, on various data sets are found to be both biologically meaningful and consistent with published studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号