首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Qi Y  Sun H  Sun Q  Pan L 《Genomics》2011,97(5):326-329
Microarrays allow researchers to examine the expression of thousands of genes simultaneously. However, identification of genes differentially expressed in microarray experiments is challenging. With an optimal test statistic, we rank genes and estimate a threshold above which genes are considered to be differentially expressed genes (DE). This overcomes the embarrassing shortcoming of many statistical methods to determine the cut-off values in ranking analysis. Experiments demonstrate that our method is a good performance and avoids the problems with graphical examination and multiple hypotheses testing that affect alternative approaches. Comparing to those well known methods, our method is more sensitive to data sets with small differentially expressed values and not biased in favor of data sets based on certain distribution models.  相似文献   

2.
3.
4.
MOTIVATION: Gene expression experiments provide a fast and systematic way to identify disease markers relevant to clinical care. In this study, we address the problem of robust identification of differentially expressed genes from microarray data. Differentially expressed genes, or discriminator genes, are genes with significantly different expression in two user-defined groups of microarray experiments. We compare three model-free approaches: (1). nonparametric t-test, (2). Wilcoxon (or Mann-Whitney) rank sum test, and (3). a heuristic method based on high Pearson correlation to a perfectly differentiating gene ('ideal discriminator method'). We systematically assess the performance of each method based on simulated and biological data under varying noise levels and p-value cutoffs. RESULTS: All methods exhibit very low false positive rates and identify a large fraction of the differentially expressed genes in simulated data sets with noise level similar to that of actual data. Overall, the rank sum test appears most conservative, which may be advantageous when the computationally identified genes need to be tested biologically. However, if a more inclusive list of markers is desired, a higher p-value cutoff or the nonparametric t-test may be appropriate. When applied to data from lung tumor and lymphoma data sets, the methods identify biologically relevant differentially expressed genes that allow clear separation of groups in question. Thus the methods described and evaluated here provide a convenient and robust way to identify differentially expressed genes for further biological and clinical analysis.  相似文献   

5.
Tan YD  Fornage M  Fu YX 《Genomics》2006,88(6):846-854
Microarray technology provides a powerful tool for the expression profile of thousands of genes simultaneously, which makes it possible to explore the molecular and metabolic etiology of the development of a complex disease under study. However, classical statistical methods and technologies fail to be applicable to microarray data. Therefore, it is necessary and motivating to develop powerful methods for large-scale statistical analyses. In this paper, we described a novel method, called Ranking Analysis of Microarray Data (RAM). RAM, which is a large-scale two-sample t-test method, is based on comparisons between a set of ranked T statistics and a set of ranked Z values (a set of ranked estimated null scores) yielded by a "randomly splitting" approach instead of a "permutation" approach and a two-simulation strategy for estimating the proportion of genes identified by chance, i.e., the false discovery rate (FDR). The results obtained from the simulated and observed microarray data show that RAM is more efficient in identification of genes differentially expressed and estimation of FDR under undesirable conditions such as a large fudge factor, small sample size, or mixture distribution of noises than Significance Analysis of Microarrays.  相似文献   

6.
MOTIVATION: One of the recently developed statistics for identifying differentially expressed genetic networks is Hotelling T2 statistic, which is a quadratic form of difference in linear functions of means of gene expressions between two types of tissue samples, and so their power is limited. RESULTS: To improve the power of test statistics, a general statistical framework for construction of non-linear tests is presented, and two specific non-linear test statistics that use non-linear transformations of means are developed. Asymptotical distributions of the non-linear test statistics under the null and alternative hypothesis are derived. It has been proved that under some conditions the power of the non-linear test statistics is higher than that of the T2 statistic. Besides theory, to evaluate in practice the performance of the non-linear test statistics, they are applied to two real datasets. The preliminary results demonstrate that the P-values of the non-linear statistics for testing differential expressions of the genetic networks are much smaller than those of the T2 statistic. And furthermore simulations show the Type I errors of the non-linear statistics agree with the threshold used and the statistics fit the chi2 distribution. SUPPLEMENTARY INFORMATION: Supplementary data are available on Bioinformatics online.  相似文献   

7.
Microarray technology allows simultaneous comparison of expression levels of thousands of genes under each condition. This paper concerns sample size calculation in the identification of differentially expressed genes between a control and a treated sample. In a typical experiment, only a fraction of genes (altered genes) is expected to be differentially expressed between two samples. Sample size determination depends on a number of factors including the specified significance level (alpha), the desired statistical power (1-beta), the fraction (eta) of truly altered genes out of the total g genes studied, and the effect sizes (Delta) for the altered genes. This paper proposes a method to calculate the number of arrays required to detect at least 100lambda % (where 0 < lambda < or = 1) of the truly altered genes under the model of an equal effect size for all altered genes. The required numbers of arrays are tabulated for various values of alpha, beta, Delta, eta, and lambda for the one-sample and two-sample t-tests for g = 10,000. Based on the proposed approach, to identify up to 90% of truly altered genes among the unknown number of truly altered genes, the estimated numbers of arrays needed appear to be manageable. For instance, when the standardized effect size is at least 2.0, the number of arrays needed is less than or equal to 14 for the two-sample t-test and is less than or equal to 10 for the one-sample t-test. As the cost per array declines, such array numbers become practical. The proposed method offers a simple, intuitive, and practical way to determine the number of arrays needed in microarray experiments in which the true correlation structure among the genes under investigation cannot be reasonably assumed. An example dataset is used to illustrate the use of the proposed approach to plan microarray experiments.  相似文献   

8.
MOTIVATION: Microarray technology allows the monitoring of expression levels for thousands of genes simultaneously. In time-course experiments in which gene expression is monitored over time, we are interested in testing gene expression profiles for different experimental groups. However, no sophisticated analytic methods have yet been proposed to handle time-course experiment data. RESULTS: We propose a statistical test procedure based on the ANOVA model to identify genes that have different gene expression profiles among experimental groups in time-course experiments. Especially, we propose a permutation test which does not require the normality assumption. For this test, we use residuals from the ANOVA model only with time-effects. Using this test, we detect genes that have different gene expression profiles among experimental groups. The proposed model is illustrated using cDNA microarrays of 3840 genes obtained in an experiment to search for changes in gene expression profiles during neuronal differentiation of cortical stem cells.  相似文献   

9.
We introduce a non-parametric approach using bootstrap-assisted correspondence analysis to identify and validate genes that are differentially expressed in factorial microarray experiments. Model comparison showed that although both parametric and non-parametric methods capture the different profiles in the data, our method is less inclined to false positive results due to dimension reduction in data analysis.  相似文献   

10.
MOTIVATION: In microarray studies gene discovery based on fold-change values is often misleading because error variability for each gene is heterogeneous under different biological conditions and intensity ranges. Several statistical testing methods for differential gene expression have been suggested, but some of these approaches are underpowered and result in high false positive rates because within-gene variance estimates are based on a small number of replicated arrays. RESULTS: We propose to use local-pooled-error (LPE) estimates and robust statistical tests for evaluating significance of each gene's differential expression. Our LPE estimation is based on pooling errors within genes and between replicate arrays for genes in which expression values are similar. We have applied our LPE method to compare gene expression in na?ve and activated CD8+ T-cells. Our results show that the LPE method effectively identifies significant differential-expression patterns with a small number of replicated arrays. AVAILABILITY: The methodology is implemented with S-PLUS and R functions available at http://hesweb1.med.virginia.edu/bioinformatics  相似文献   

11.

Background  

Many different statistical methods have been developed to deal with two group comparison microarray experiments. Most often, a substantial number of genes may be selected or not, depending on which method was actually used. Practical guidance on the application of these methods is therefore required. We developed a procedure based on bootstrap and a criterion to allow viewing and quantifying differences between method-dependent selections. We applied this procedure on three datasets that cover a range of possible sample sizes to compare three well known methods, namely: t-test, LPE and SAM.  相似文献   

12.
Tan Y  Liu Y 《Bioinformation》2011,7(8):400-404
Identification of genes differentially expressed across multiple conditions has become an important statistical problem in analyzing large-scale microarray data. Many statistical methods have been developed to address the challenging problem. Therefore, an extensive comparison among these statistical methods is extremely important for experimental scientists to choose a valid method for their data analysis. In this study, we conducted simulation studies to compare six statistical methods: the Bonferroni (B-) procedure, the Benjamini and Hochberg (BH-) procedure, the Local false discovery rate (Localfdr) method, the Optimal Discovery Procedure (ODP), the Ranking Analysis of F-statistics (RAF), and the Significant Analysis of Microarray data (SAM) in identifying differentially expressed genes. We demonstrated that the strength of treatment effect, the sample size, proportion of differentially expressed genes and variance of gene expression will significantly affect the performance of different methods. The simulated results show that ODP exhibits an extremely high power in indentifying differentially expressed genes, but significantly underestimates the False Discovery Rate (FDR) in all different data scenarios. The SAM has poor performance when the sample size is small, but is among the best-performing methods when the sample size is large. The B-procedure is stringent and thus has a low power in all data scenarios. Localfdr and RAF show comparable statistical behaviors with the BH-procedure with favorable power and conservativeness of FDR estimation. RAF performs the best when proportion of differentially expressed genes is small and treatment effect is weak, but Localfdr is better than RAF when proportion of differentially expressed genes is large.  相似文献   

13.

Background  

Various normalisation techniques have been developed in the context of microarray analysis to try to correct expression measurements for experimental bias and random fluctuations. Major techniques include: total intensity normalisation; intensity dependent normalisation; and variance stabilising normalisation. The aim of this paper is to discuss the impact of normalisation techniques for two-channel array technology on the process of identification of differentially expressed genes.  相似文献   

14.
Motivation: The proliferation of public data repositories createsa need for meta-analysis methods to efficiently evaluate, integrateand validate related datasets produced by independent groups.A t-based approach has been proposed to integrate effect sizefrom multiple studies by modeling both intra- and between-studyvariation. Recently, a non-parametric ‘rank product’method, which is derived based on biological reasoning of fold-changecriteria, has been applied to directly combine multiple datasetsinto one meta study. Fisher's Inverse 2 method, which only dependson P-values from individual analyses of each dataset, has beenused in a couple of medical studies. While these methods addressthe question from different angles, it is not clear how theycompare with each other. Results: We comparatively evaluate the three methods; t-basedhierarchical modeling, rank products and Fisher's Inverse 2test with P-values from either the t-based or the rank productmethod. A simulation study shows that the rank product method,in general, has higher sensitivity and selectivity than thet-based method in both individual and meta-analysis, especiallyin the setting of small sample size and/or large between-studyvariation. Not surprisingly, Fisher's 2 method highly dependson the method used in the individual analysis. Application toreal datasets demonstrates that meta-analysis achieves morereliable identification than an individual analysis, and rankproducts are more robust in gene ranking, which leads to a muchhigher reproducibility among independent studies. Though t-basedmeta-analysis greatly improves over the individual analysis,it suffers from a potentially large amount of false positiveswhen P-values serve as threshold. We conclude that careful meta-analysisis a powerful tool for integrating multiple array studies. Contact: fxhong{at}jimmy.harvard.edu Supplementary information: Supplementary data are availableat Bioinformatics online. Associate Editor: David Rocke Present address: Department of Biostatistics and ComputationalBiology, Dana-Farber Cancer Institute, Harvard School of PublicHealth, 44 Binney Street, Boston, MA 02115, USA.  相似文献   

15.
16.
Bi Zhao  Aqeela Erwin  Bin Xue 《Genomics》2018,110(1):67-73
Identifying differentially expressed genes is critical in microarray data analysis. Many methods have been developed by combining p-value, fold-change, and various statistical models to determine these genes. When using these methods, it is necessary to set up various pre-determined cutoff values. However, many of these cutoff values are somewhat arbitrary and may not have clear connections to biology. In this study, a genetic distance method based on gene expression level was developed to analyze eight sets of microarray data extracted from the GEO database. Since the genes used in distance calculation have been ranked by fold-change, the genetic distance becomes more stable when adding more genes in the calculation, indicating there is an optimal set of genes which are sufficient to characterize the stable difference between samples. This set of genes is differentially expressed genes representing both the genotypic and phenotypic differences between samples.  相似文献   

17.
While meta-analysis provides a powerful tool for analyzing microarray experiments by combining data from multiple studies, it presents unique computational challenges. The Bioconductor package RankProd provides a new and intuitive tool for this purpose in detecting differentially expressed genes under two experimental conditions. The package modifies and extends the rank product method proposed by Breitling et al., [(2004) FEBS Lett., 573, 83-92] to integrate multiple microarray studies from different laboratories and/or platforms. It offers several advantages over t-test based methods and accepts pre-processed expression datasets produced from a wide variety of platforms. The significance of the detection is assessed by a non-parametric permutation test, and the associated P-value and false discovery rate (FDR) are included in the output alongside the genes that are detected by user-defined criteria. A visualization plot is provided to view actual expression levels for each gene with estimated significance measurements. AVAILABILITY: RankProd is available at Bioconductor http://www.bioconductor.org. A web-based interface will soon be available at http://cactus.salk.edu/RankProd  相似文献   

18.
RNA-Seq technologies are quickly revolutionizing genomic studies, and statistical methods for RNA-seq data are under continuous development. Timely review and comparison of the most recently proposed statistical methods will provide a useful guide for choosing among them for data analysis. Particular interest surrounds the ability to detect differential expression (DE) in genes. Here we compare four recently proposed statistical methods, edgeR, DESeq, baySeq, and a method with a two-stage Poisson model (TSPM), through a variety of simulations that were based on different distribution models or real data. We compared the ability of these methods to detect DE genes in terms of the significance ranking of genes and false discovery rate control. All methods compared are implemented in freely available software. We also discuss the availability and functions of the currently available versions of these software.  相似文献   

19.
A great challenge for modern cell biology is the successful examination of the co-expression of thousands of genes under physiological or pathological conditions and how the expression patterns define the different states of a single cell, tissue or a microorganism. Gene expression can be analyzed today on a large scale by advanced technical approaches for differential screening of proteins and mRNAs. The identification of differentially expressed mRNAs has been successfully applied to understand gene function and the underlying molecular mechanism(-s) of differentiation, development and disease state. Analysis of gene expression by the systematic mapping of thousands of proteins present in a cell or tissue can be achieved by the use of two-dimensional (2D) gel electrophoresis, quantitative computer image analysis, and protein identification techniques. In this article, we comment on some of these techniques and try to stress their advantages and drawbacks. We show how data from RNA/DNA mapping, sequence information from genome projects and protein pattern profiling can be linked with each other and annotated. These comprehensive approaches permit the study of differential gene and protein expressions in cells or tissues.  相似文献   

20.
Tan YD 《Genomics》2011,98(5):390-399
Receiver operating characteristic (ROC) has been widely used to evaluate statistical methods, but a fatal problem is that ROC cannot evaluate estimation of the false discovery rate (FDR) of a statistical method and hence the area under of curve as a criterion cannot tell us if a statistical method is conservative. To address this issue, we propose an alternative criterion, work efficiency. Work efficiency is defined as the product of the power and degree of conservativeness of a statistical method. We conducted large-scale simulation comparisons among the optimizing discovery procedure (ODP), the Bonferroni (B-) procedure, Local FDR (Localfdr), ranking analysis of the F-statistics (RAF), the Benjamini-Hochberg (BH-) procedure, and significance analysis of microarray data (SAM). The results show that ODP, SAM, and the B-procedure perform with low efficiencies while the BH-procedure, RAF, and Localfdr work with higher efficiency. ODP and SAM have the same ROC curves but their efficiencies are significantly different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号