首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.

Background  

A key component in protein structure prediction is a scoring or discriminatory function that can distinguish near-native conformations from misfolded ones. Various types of scoring functions have been developed to accomplish this goal, but their performance is not adequate to solve the structure selection problem. In addition, there is poor correlation between the scores and the accuracy of the generated conformations.  相似文献   

2.

Background  

Structure alignment methods offer the possibility of measuring distant evolutionary relationships between proteins that are not visible by sequence-based analysis. However, the question of how structural differences and similarities ought to be quantified in this regard remains open. In this study we construct a training set of sequence-unique CATH and SCOP domains, from which we develop a scoring function that can reliably identify domains with the same CATH topology and SCOP fold classification. The score is implemented in the ASH structure alignment package, for which the source code and a web service are freely available from the PDBj website .  相似文献   

3.

Background  

Proteins, especially larger ones, are often composed of individual evolutionary units, domains, which have their own function and structural fold. Predicting domains is an important intermediate step in protein analyses, including the prediction of protein structures.  相似文献   

4.

Background  

Many algorithms exist for protein structural alignment, based on internal protein coordinates or on explicit superposition of the structures. These methods are usually successful for detecting structural similarities. However, current practical methods are seldom supported by convergence theories. In particular, although the goal of each algorithm is to maximize some scoring function, there is no practical method that theoretically guarantees score maximization. A practical algorithm with solid convergence properties would be useful for the refinement of protein folding maps, and for the development of new scores designed to be correlated with functional similarity.  相似文献   

5.

Background  

Amino acid sequence probability distributions, or profiles, have been used successfully to predict secondary structure and local structure in proteins. Profile models assume the statistical independence of each position in the sequence, but the energetics of protein folding is better captured in a scoring function that is based on pairwise interactions, like a force field.  相似文献   

6.

Background  

Protein domains are the structural and functional units of proteins. The ability to parse proteins into different domains is important for effective classification, understanding of protein structure, function, and evolution and is hence biologically relevant. Several computational methods are available to identify domains in the sequence. Domain finding algorithms often employ stringent thresholds to recognize sequence domains. Identification of additional domains can be tedious involving intense computation and manual intervention but can lead to better understanding of overall biological function. In this context, the problem of identifying new domains in the unassigned regions of a protein sequence assumes a crucial importance.  相似文献   

7.

Background  

Detection of sequence homologues represents a challenging task that is important for the discovery of protein families and the reliable application of automatic annotation methods. The presence of domains in protein families of diverse function, inhomogeneity and different sizes of protein families create considerable difficulties for the application of published clustering methods.  相似文献   

8.

Background  

Empirical scoring functions have proven useful in protein structure modeling. Most such scoring functions depend on protein side chain conformations. However, backbone-only scoring functions do not require computationally intensive structure optimization and so are well suited to protein design, which requires fast score evaluation. Furthermore, scoring functions that account for the distinctive relative position and orientation preferences of residue pairs are expected to be more accurate than those that depend only on the separation distance.  相似文献   

9.

Background  

Large-scale protein interaction maps provide a new, global perspective with which to analyse protein function. PSIMAP, the Protein Structural Interactome Map, is a database of all the structurally observed interactions between superfamilies of protein domains with known three-dimensional structure in the PDB. PSIMAP incorporates both functional and evolutionary information into a single network.  相似文献   

10.
11.

Background  

We apply a new machine learning method, the so-called Support Vector Machine method, to predict the protein structural class. Support Vector Machine method is performed based on the database derived from SCOP, in which protein domains are classified based on known structures and the evolutionary relationships and the principles that govern their 3-D structure.  相似文献   

12.

Background  

Gelsolin, an actin capping protein of osteoclast podosomes, has a unique function in regulating assembly and disassembly of the podosome actin filament. Previously, we have reported that osteopontin (OPN) binding to integrin αvβ3 increased the levels of gelsolin-associated polyphosphoinositides, podosome assembly/disassembly, and actin filament formation. The present study was undertaken to identify the possible role of polyphosphoinositides and phosphoinositides binding domains (PBDs) of gelsolin in the osteoclast cytoskeletal structural organization and osteoclast function.  相似文献   

13.
14.

Background  

The functional sites of a protein present important information for determining its cellular function and are fundamental in drug design. Accordingly, accurate methods for the prediction of functional sites are of immense value. Most available methods are based on a set of homologous sequences and structural or evolutionary information, and assume that functional sites are more conserved than the average. In the analysis presented here, we have investigated the conservation of location and type of amino acids at functional sites, and compared the behaviour of functional sites between different protein domains.  相似文献   

15.

Background

Certain amino acids in proteins play a critical role in determining their structural stability and function. Examples include flexible regions such as hinges which allow domain motion, and highly conserved residues on functional interfaces which allow interactions with other proteins. Detecting these regions can aid in the analysis and simulation of protein rigidity and conformational changes, and helps characterizing protein binding and docking. We present an analysis of critical residues in proteins using a combination of two complementary techniques. One method performs in-silico mutations and analyzes the protein's rigidity to infer the role of a point substitution to Glycine or Alanine. The other method uses evolutionary conservation to find functional interfaces in proteins.

Results

We applied the two methods to a dataset of proteins, including biomolecules with experimentally known critical residues as determined by the free energy of unfolding. Our results show that the combination of the two methods can detect the vast majority of critical residues in tested proteins.

Conclusions

Our results show that the combination of the two methods has the potential to detect more information than each method separately. Future work will provide a confidence level for the criticalness of a residue to improve the accuracy of our method and eliminate false positives. Once the combined methods are integrated into one scoring function, it can be applied to other domains such as estimating functional interfaces.
  相似文献   

16.

Background  

Unigenic evolution is a powerful genetic strategy involving random mutagenesis of a single gene product to delineate functionally important domains of a protein. This method involves selection of variants of the protein which retain function, followed by statistical analysis comparing expected and observed mutation frequencies of each residue. Resultant mutability indices for each residue are averaged across a specified window of codons to identify hypomutable regions of the protein. As originally described, the effect of changes to the length of this averaging window was not fully eludicated. In addition, it was unclear when sufficient functional variants had been examined to conclude that residues conserved in all variants have important functional roles.  相似文献   

17.

Background  

Tc38 of Trypanosoma cruzi has been isolated as a single stranded DNA binding protein with high specifiCity for the poly [dT-dG] sequence. It is present only in Kinetoplastidae protozoa and its sequence lacks homology to known functional domains. Tc38 orthologues present in Trypanosoma brucei and Leishmania were proposed to participate in quite different cellular processes. To further understand the function of this protein in Trypanosoma cruzi, we examined its in vitro binding to biologically relevant [dT-dG] enriched sequences, its expression and subcellular localization during the cell cycle and through the parasite life stages.  相似文献   

18.

Background  

The mechanisms underlying protein function and associated conformational change are dominated by a series of local entropy fluctuations affecting the global structure yet are mediated by only a few key residues. Transitional Dynamic Analysis (TDA) is a new method to detect these changes in local protein flexibility between different conformations arising from, for example, ligand binding. Additionally, Positional Impact Vertex for Entropy Transfer (PIVET) uses TDA to identify important residue contact changes that have a large impact on global fluctuation. We demonstrate the utility of these methods for Cyclin-dependent kinase 2 (CDK2), a system with crystal structures of this protein in multiple functionally relevant conformations and experimental data revealing the importance of local fluctuation changes for protein function.  相似文献   

19.

Background  

It is well known that different species have different protein domain repertoires, and indeed that some protein domains are kingdom specific. This information has not yet been incorporated into statistical methods for finding domains in sequences of amino acids.  相似文献   

20.

Background  

Considering energy function to detect a correct protein fold from incorrect ones is very important for protein structure prediction and protein folding. Knowledge-based mean force potentials are certainly the most popular type of interaction function for protein threading. They are derived from statistical analyses of interacting groups in experimentally determined protein structures. These potentials are developed at the atom or the amino acid level. Based on orientation dependent contact area, a new type of knowledge-based mean force potential has been developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号