首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Cordycepin, an adenosine analog derived from Cordyceps militaris has been shown to exert anti-tumor activity in many ways. However, the mechanisms by which cordycepin contributes to the anti-tumor still obscure. Here our present work showed that cordycepin inhibits cell growth in NB-4 and U937 cells by inducing apoptosis. Further study showed that cordycepin increases the expression of p53 which promotes the release of cytochrome c from mitochondria to the cytosol. The released cytochrome c can then activate caspase-9 and trigger intrinsic apoptosis. Cordycepin also blocks MAPK pathway by inhibiting the phosphorylation of ERK1/2, and thus sensitizes the apoptosis. In addition, our results showed that cordycepin inhibits the expression of cyclin A2, cyclin E, and CDK2, which leads to the accumulation of cells in S-phase. Moreover, our study showed that cordycepin induces DNA damage and causes degradation of Cdc25A, suggesting that cordycepin-induced S-phase arrest involves activation of Chk2-Cdc25A pathway. In conclusion, cordycepin-induced DNA damage initiates cell cycle arrest and apoptosis which leads to the growth inhibition of NB-4 and U937 cells.  相似文献   

2.
We have previously reported that As(2)O(3) affected cell cycle progression and cyclins D1 and B1 expression in two glioma cell lines differing in p53 status (U87MG-wt; T98G-mutated). In the present study, we further demonstrated that As(2)O(3) affected proliferation, viability and apoptosis of the two cell lines in a dose- and time-dependent manner, and T98G cells were more sensitive than U87MG cells to As(2)O(3) -induced apoptosis and inhibition of proliferation and viability. We further investigated the expression profiles of genes related with apoptosis and cell cycle in the two cell lines with a human cDNA-microarray (SuperArray) spotted with 267 genes of apoptosis and cell cycle. Thirty five genes were upregulated and 15 genes downregulated at least 2-fold by As(2)O(3) in U87-MG cells; whereas, 38 genes were upregulated and 21 genes downregulated at least 2-fold in T98G cells by As(2)O(3). After As(2)O(3) treatment, p53 expression was upregulated 56.5-fold in T98G cells, but only 6.0-fold in U87MG cells. The results indicate that As(2)O(3) suppresses the growth of U87MG cells mainly by regulating expression of genes of cell cycle arrest, stress and toxicity; whereas As(2)O(3) affects T98G cells mainly by regulating expression of genes belonging to Bcl-2, tumor necrotic factor receptor and ligand families. The data may be helpful for optimizing As(2)O(3) as an anti-cancer drug in the treatment of gliomas.  相似文献   

3.
4.
Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.  相似文献   

5.
The amyloid beta peptide abeta (25-35) induces apoptosis independent of p53   总被引:5,自引:0,他引:5  
Apoptosis of neuronal cells apparently plays a role in Alzheimer's disease (AD). The amyloid beta (Abeta) peptide derived from beta-amyloid precursor protein is found in AD brain in vivo and can induce apoptosis in vitro. While p53 accumulates in cells of AD brain, it is not known if p53 plays an active role in Abeta-induced apoptosis. We show here that inactivation of p53 in two experimental cell lines, either by expression of the papillomavirus E6 protein or by a shift to restrictive temperature, does not affect apoptosis induction by Abeta (25-35), indicating that Abeta induces apoptosis in a p53-independent manner.  相似文献   

6.
In response to DNA damage, ataxia-telangiectasia mutant and ataxia-telangiectasia and Rad-3 activate p53, resulting in either cell cycle arrest or apoptosis. We report here that DNA damage stimuli, including etoposide (ETOP), adriamycin (ADR), ionizing irradiation (IR), and ultraviolet irradiation (UV) activate ERK1/2 (ERK) mitogen-activated protein kinase in primary (MEF and IMR90), immortalized (NIH3T3) and transformed (MCF-7) cells. ERK activation in response to ETOP was abolished in ATM-/- fibroblasts (GM05823) and was independent of p53. The MEK1 inhibitor PD98059 prevented ERK activation but not p53 stabilization. Maximal ERK activation in response to DNA damage was not attenuated in MEF(p53-/-). However, ERK activation contributes to either cell cycle arrest or apoptosis in response to low or high intensity DNA insults, respectively. Inhibition of ERK activation by PD98059 or U0126 attenuated p21(CIP1) induction, resulting in partial release of the G(2)/M cell cycle arrest induced by ETOP. Furthermore, PD98059 or U0126 also strongly attenuated apoptosis induced by high dose ETOP, ADR, or UV. Conversely, enforced activation of ERK by overexpression of MEK-1/Q56P sensitized cells to DNA damage-induced apoptosis. Taken together, these results indicate that DNA damage activates parallel ERK and p53 pathways in an ATM-dependent manner. These pathways might function cooperatively in cell cycle arrest and apoptosis.  相似文献   

7.
15-Deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is a potent anti-angiogenic factor and induces endothelial cell apoptosis, although the mechanism remains unclear. In this study, 15d-PGJ(2) was found to increase p53 levels of the human umbilical vein endothelial cells by stabilizing p53. Both 15d-PGJ(2)-induced apoptosis and the induction of p21(Waf1) and Bax can be abolished by p53 small interfering RNA but not by peroxisome proliferator-activated receptor gamma inhibitors. Moreover, 15d-PGJ(2) activated JNK and p38 MAPK while inducing p53 phosphorylation at sites responsible for p53 activity. JNK inhibitor (SP600125) or p38 MAPK inhibitor (SB203580) pretreatment attenuated 15d-PGJ(2)-mediated apoptosis and suppressed the p21(Waf1) and Bax expressions without affecting p53 protein accumulation. Pretreatment with SP600125 partially prevented the phosphorylation of p53 at serines 33 and 392 induced by 15d-PGJ(2). 15d-PGJ(2) was also found to induce reactive oxygen species generation and partially blocked nuclear factor-kappaB activity. Pretreatment with antioxidant N-acetylcysteine prevented the p53 accumulation, the phosphorylations of JNK and p38 MAPK, the inhibition of NF-kappaB activity, as well as the apoptosis induced by 15d-PGJ(2). Using a mouse model of corneal neovascularization, it was demonstrated in vivo that 15d-PGJ(2) induced reactive oxygen species generation, activated JNK and p38 MAPK, induced p53 accumulation/phosphorylation, and induced vascular endothelial cell apoptosis, which could be abolished by N-acetylcysteine, SP600125, SB203580, or a virus-derived amphipathic peptides-based p53 small interfering RNA. This is the first study that 15d-PGJ(2) induces vascular endothelial cell apoptosis through the signaling of JNK and p38 MAPK-mediated p53 activation both in vitro and in vivo, further establishing the potential of 15d-PGJ(2) as an anti-angiogenesis agent.  相似文献   

8.
Exposure of human HeLaS(3) cervix carcinoma cells to high doses of conventional cytostatic drugs, e.g. cisplatin (CP) strongly inhibits their proliferation. However, most cytostatic agents are genotoxic and may generate a secondary malignancy. Therefore, therapeutic strategy using alternative, not cytotoxic drugs would be beneficial. Inhibition of cyclin-dependent kinases (CDKs) by pharmacological inhibitors became recently a promising therapeutic option. Roscovitine (ROSC), a selective CDK inhibitor, efficiently targets human malignant cells. ROSC induces cell cycle arrest and apoptosis in human MCF-7 breast cancer cells. ROSC also activates p53 protein. Activation of p53 tumor suppressor protein is essential for induction of apoptosis in MCF-7 cells. Considering the fact that in HeLaS(3) cells wt p53 is inactivated by the action of HPV-encoded E6 oncoprotein, we addressed the question whether ROSC would be able to reactivate p53 protein in them. Their exposure to ROSC for 24 h induced cell cycle arrest at G(2)/M and reduced the number of viable cells. Unlike CP, ROSC in the used doses did not induce DNA damage and was not directly cytotoxic. Despite lack of detectable DNA lesions, ROSC activated wt p53 protein. The increase of p53 levels was attributable to the ROSC-mediated protein stabilization. Further analyses revealed that ROSC induced site-specific phosphorylation of p53 protein at Ser46. After longer exposure, ROSC induced apoptosis in HeLaS(3) cells. These results indicate that therapy of HeLaS(3) cells by ROSC could offer an advantage over that by CP due to its increased selectivity and markedly reduced risk of generation of a secondary cancer.  相似文献   

9.
Allelic imbalance and microsatellite instability in operating materials from 78 patients with gastric cancer was studied. Microsatellite polymorphism for 17p13.1 (TP53), 1p36.1 (RUNX3), 16p22 (CDH1), and MH (BAT26) was determined in tumor and adjacent (morphologically normal) tissues of gastric mucosa. The allelic imbalance of 17p13.3 (p = 0.0176) and 16p22 (p = 0.023) loci by two and more loci in a single sample (p = 0.0176), as well as microsatellite instability (p = 0.047), is observed significantly more frequently in intestinal types of tumors than in tumors of a diffuse type. During the comparison of clinical groups with different degrees of tumor-cell differentiation, it was demonstrated that allelic imbalance by 16p22 locus (p = 0.041) and by two and more loci in a single sample (p = 0.0057) is observed more frequently in highly differentiated or moderately differentiated tumors. We did not detect significant differences in the groups of patients with metastases (or without them) in regional lymphatic nodes with different localizations and at different stages of the tumor process.  相似文献   

10.
Hydrogen peroxide (H(2)O(2)) has been implicated as a key molecule in arresting embryonic development; however, its mechanism of action is not fully established. The aim of the present study was to determine the chronological generation of H(2)O(2) from oocyte to morula, and to examine the relationship of H(2)O(2) with loss of mitochondrial membrane potential, nuclear factor kappa-B (NF-kappaB), p53, caspase-3 activation, and cell death in bovine embryos in vitro. Accordingly, superoxide anion radicals were detected between 32 and 120 h after in vitro fertilization, but higher percentages of oxygen radicals were found in non-competent embryos (n=73, 22 to 34%) than in competent embryos (n=73, 0 to 1%; P<0.005). Similarly, H(2)O(2) levels were higher in non-competent embryos (n=249, 39 to 71%) than in competent embryos (n=278, 0 to 3.4%) at all developmental stages tested (P<0.005). The percentage of cells with apoptotic morphology were higher in non-competent embryos (n=411, 3 to 54%) than in competent embryos (n=306, 0 to 0.6%; P<0.005). Based on assessment of mitochondrial membrane potential, competent embryos (n=305) had the highest percentages of JC-1 staining (31 to 50%) when compared with non-competent embryos (n=411; 1 to 15%, P<0.005). The percentage of activation of general caspases was different in non-competent embryos (n=291, 15 to 57%) when compared to competent embryos (n=304, 0 to 0.5%; P<0.005). Pharmacological inhibition of caspase-3, NF-kappaB and p53 triggered aberrant embryo cytoplasmic fragmentation with and without nuclei. We concluded that the sequential mechanism of O(2)(-) and H(2)O(2) generation, mitochondrial damage, caspase activation, and apoptotic morphology might be responsible for the developmental arrest of preimplantation embryos.  相似文献   

11.
12.
13.
K L Murphy  A P Dennis  J M Rosen 《FASEB journal》2000,14(14):2291-2302
Approximately 40% of human breast cancers contain alterations in the tumor suppressor p53. The p53 172R-H gain-of-function mutant (equivalent to the common 175R-H human breast cancer mutant) has been shown to promote aneuploidy and tumorigenesis in the mammary gland in transgenic mice and may affect genomic stability in part by causing centrosome abnormalities. The precise mechanism of action of these gain-of-function mutants is not well understood, and has been studied primarily in fibroblast cell lines. A novel p53-null mouse mammary epithelial cell line developed from p53-null mice has been used in adenovirus-mediated transient transfection experiments to study the properties of this p53 mutant. Marked centrosome amplification and an increased frequency of aberrant mitoses were observed within 72 h of introduction of p53 172R-H. However, few cells with aberrant centrosome numbers were observed in cells stably expressing the p53 172R-H mutant. Furthermore, stable expression of this p53 mutant reduced both basal and DNA damage-induced apoptosis. This result may be mediated in part through abrogation of p73 function. The p53 172R-H mutant, therefore, appears to influence tumorigenesis at the molecular level in two distinct ways: promoting the development of aneuploidy in cells while also altering their apoptotic response after DNA damage.  相似文献   

14.
The p53 protein has recently been reported to be capable of mediating apoptosis through a pathway that is not dependent on its transactivation function. We report here that the PIASy member of the protein inhibitor of activated STAT family inhibited p53's transactivation function without compromising its ability to induce apoptosis of the H1299 nonsmall cell lung carcinoma cell line. The p53 protein bound to PIASy in yeast two-hybrid assays and coprecipitated in complexes with p53 in immunoprecipitates from mammalian cells. PIASy inhibited the DNA-binding activity of p53 in nuclear extracts and blocked the ability of p53 to induce expression of two of its target genes, Bax and p21Waf1/Cip1, in H1299 cells. The block in p53-mediated induction of Bax and p21 was determined to be at the level of transactivation, since PIASy inhibited p53's ability to transactivate a p21/luciferase reporter construct. PIASy did not effect the incidence of apoptosis in H1299 cells upregulated for p53. PIASy appears to regulate p53-mediated functions and may direct p53 into a transactivation-independent mode of apoptosis.  相似文献   

15.
DNA damaging agents typically induce an apoptotic cascade in which p53 plays a central role. However, absence of a p53-mediated response does not necessarily abrogate programmed cell death, due to the existence of p53-independent apoptotic pathways, such as those mediated by the pro-apoptotic molecule ceramide. We compared ceramide levels before and after DNA damage in human osteosarcoma (U2OS) and colon cancer (HCT116) cells that were either expressing or deficient in p53. When treated with mitomycin C, p53-deficient cells, but not p53-expressing cells, showed a marked increase in ceramide levels. Microarray analysis of genes involved in ceramide metabolism identified acid ceramidase (ASAH1, up-regulated), ceramide glucosyltransferase (UGCG, down-regulated), and galactosylceramidase (GALC, up-regulated) as the three genes most affected. Experiments employing pharmacological and siRNA agents revealed that inhibition of UGCG is sufficient to increase ceramide levels and induce cell death. When inhibition of UGCG and treatment with mitomycin C were combined, p53-deficient, but not p53-expressing cells, showed a significant increase in cell death, suggesting that the regulation of sphingolipid metabolism could be used to sensitize cells to chemotherapeutic drugs.  相似文献   

16.
Gonolobus condurango plant extract is used as an anticancer drug in some traditional systems of medicine including homeopathy, but it apparently lacks any scientific validation. Further, no detailed study is available to suggest whether condurango-glycoside-A (CGA), a major ingredient of condurango serves as a potent anticancer compound. Therefore, we investigated apoptosis-inducing ability of CGA against cervix carcinoma cells (HeLa). β-galactosidase-activity and DNA damage were critically studied at different time points; while induced DNA-damage was observed at 9–12th hours, senescence of cells appeared at a later stage (18th hour after CGA treatment), implicating thereby a possible role of DNA damage in inducing pre-mature cell senescence. Concurrently, the number of cells undergoing apoptosis increased along with increase in reactive oxygen species (ROS) generation. Expression of p53 was also up-regulated, indicating that apoptosis could have been mediated through p53 pathway. DCHFDA (4′,6-Diamidino-2-phenylindole dihydrochloride) assay, acridine orange/ethidium bromide staining and annexin V/PI assay results collectively confirmed that apoptosis was induced by increased ROS generation. Reduction in proliferation of cells was further evidenced by the cell cycle arrest at G0/G1 stage. Expression profiles of certain relevant genes and proteins like p53, Akt, Bcl-2, Bax, cytochrome c and caspase 3 also provided evidence of ROS mediated p53 up-regulation and further boost in Bax expression and followed by cytochrome c release and activation of caspase 3. Overall results suggest that CGA initiates ROS generation, promoting up-regulation of p53 expression, thus resulting in apoptosis and pre-mature senescence associated with DNA damage.  相似文献   

17.
18.
19.
Background

The tumor suppressor protein p53 is a most promising target for the development of anticancer drugs. Allicin (diallylthiosulfinate) is one of the most active components of garlic (Alliium sativum L.) and possesses a variety of health-promoting properties with pharmacological applications. However, whether allicin plays an anti-cancer role against breast cancer cells through the induction of p53-mediated apoptosis remains unknown.

Methods and results

In this study, we investigate the anti-breast cancer effect of allicin in vitro by using MCF-7 and MD-MBA-231 cells. We found that allicin reduces cell viability, induces apoptosis and cell cycle arrest in both cells. Allicin activated p53 and caspase 3 expressions in both cells but produced different effects on the expression of p53-related biomarkers. In MDA-MB-231 cells, allicin up-regulated the mRNA and protein expression of A1BG and THBS1 while down-regulated the expression of TPM4. Conversely, the mRNA and protein expression of A1BG, THBS1 and TPM4 were all reduced in MCF-7 cells. Hence, allicin induces cell cycle arrest and apoptosis in breast cancer cells through p53 activation but it effects on the expression of p53-related biomarkers were dependent upon the specific type of breast cancer involved.

Conclusions

These findings suggest that allicin induces apoptosis and regulates biomarker expression in breast cancer cell lines through modulating the p53 signaling pathway. Furthermore, our results promote the utility of allicin as compound for further studies as an anticancer drug targeting p53.

  相似文献   

20.
Curcumin (diferuloylmethane), the yellow pigment of turmeric, is one of the most commonly used and extensively studied phytochemicals due to its pleiotropic effects in several human cancers. In the current study, the therapeutic efficacy of curcumin was investigated in human colorectal carcinoma HCT-15 cells. Curcumin inhibited HCT-15 cells proliferation and induced apoptosis in a dose- and time-dependent manner. Hoechst 33342 and DCFHDA staining revealed morphological and biochemical features of apoptosis as well as ROS generation in HCT-15 cells treated with 30 and 50 μM curcumin. Over-expression of pre-mRNA processing factor 4B (Prp4B) and p53 mutations have been reported as hallmarks of cancer cells. Western blot analysis revealed that curcumin treatment activated caspase-3 and decreased expression of p53 and Prp4B in a time-dependent manner. Transfection of HCT-15 cells with Prp4B clone perturbed the growth inhibition induced by 30 μM curcumin. Fractionation of cells revealed increased accumulation of Prp4B in the nucleus, following its translocation from the cytoplasm. To further evaluate the underlying mechanism and survival effect of Prp4B, we generated siRNA-Prp4B HCT15 clones. Knockdown of Prp4B with siRNA diminished the protective effects of Prp4B against curcumin-induced apoptosis. These results suggest a possible underlying molecular mechanism in which Prp4B over-expression and activity are closely associated with the survival and regulation of apoptotic events in human colon cancer HCT-15 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号