首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Thiol-activated neocarzinostatin chromophore abstracts tritium from the 5', but not from the 1' or 2' positions of deoxyribose in DNA and incorporates it into a stable, non-exchangeable form. The abstracted tritium remains covalently associated with the chromophore or its degradation product after treatment with acid or alkali, respectively. Drug activation and the consequent hydrogen abstraction reaction, presumably generating a carbon-centered radical at C-5', do not require molecular oxygen but have a dose-dependent relation with thiol. Under aerobic conditions, where base release and DNA strand breaks with nucleoside 5'-aldehyde at the 5'-ends are produced, hydrogen abstraction from C-5' parallels these parameters of DNA damage. It is possible to formulate a reaction scheme in which the carbon- centered radical at C-5' is an intermediate in the formation of the various DNA damage products found under both aerobic and anaerobic conditions.  相似文献   

2.
Glutathione-activated neocarzinostatin chromophore (NCS-Chrom) generates bistranded lesions at AGC.GCT sequences in DNA, consisting of an abasic site at the C residue and a strand break at the T residue on the complementary strand, due to hydrogen atom abstraction from C-1' and C-5', respectively. Earlier work showed that 2H from C-5' of T was selectively abstracted by the radical center at C-6 of activated NCS-Chrom, supporting a proposed model of the active-drug/DNA complex. However, since under the conditions used breaks at the T exceeded their inclusion in bistranded lesions, it was not clear what fraction of the hydrogen transfer represented bistranded lesions. Since virtually all abasic sites at the C are part of a bistranded lesions, hydrogen transfer from C-1' of C into the drug should reflect only the bistranded reaction. Accordingly, a self-complementary oligodeoxynucleotide 5'-GCAGCICTGC-3' was synthesized in which the C contained 2H at the C-1' position. In order to eliminate an 2H isotope effect on the transfer and to increase the extent of the bistranded reaction, an I residue was substituted for the G opposite the C residue. Sequencing gel electrophoretic analysis revealed that under one-hit kinetics, 37% of the damage reaction was associated with abasic site (alkali-labile break) formation at the C residue and 48% with direct strand breaks at the T residue. Thus, 74% of the damage involved a bistranded lesion. 1H NMR spectroscopic analysis of the reacted chromophore showed that 2H had been selectively transferred into the C-2 position to the extent of approximately 22%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
L F Povirk  I H Goldberg 《Biochimie》1987,69(8):815-823
The anti-tumor antibiotics neocarzinostatin and bleomycin specifically oxidize deoxyribose in DNA at the C-5' and C-4' positions, respectively. The resulting DNA lesions include strand breaks and apyrimidinic sites. Both agents are broad specificity mutagens, inducing, in various systems, base substitutions, frameshifts and deletions. Sequencing studies in bacterial systems have suggested that the base substitutions may result primarily from replicative bypass of the oxidized apyrimidinic sites.  相似文献   

4.
Dynemicin A, which is a hybrid antitumor antibiotic containing anthraquinone and enediyne cores, abstracts the C-1' hydrogen of DNA deoxyribose and then the damaged DNA leads to strand breaks with the formation of 5'- and 3'-phosphate termini. The lesions of C-4' hydrogen also occur at 3' side of G.C base pairs (i. e., 5'-CT and 5'-GA), leading to 5'-phosphate and 3'-phosphoglycolate termini or 4'-hydroxylated abasic sites. The C-1' hydrogen abstraction by dynemicin A is distinct from the preferential C-5' hydrogen abstraction of calicheamicin and neocarzinostatin.  相似文献   

5.
D H Chin  I H Goldberg 《Biochemistry》1986,25(5):1009-1015
Spectroscopic analysis of the reduction of both nitro blue tetrazolium and ferricytochrome c induced by neocarzinostatin shows that superoxide free radical is produced during the spontaneous degradation of the antibiotic. The amount of superoxide free radical produced from neocarzinostatin is not affected by the presence of thiol, although earlier work has shown that DNA damage is stimulated at least 1000-fold by thiol. Transition metals are not involved in this reaction. Although superoxide dismutase inhibits the reduction of nitro blue tetrazolium and cytochrome c induced by neocarzinostatin, neither it nor catalase interferes with the action of neocarzinostatin on DNA, whether or not drug has been activated by thiol. The pH profiles for spontaneous base release and alkali-labile base release (a measure of nucleoside 5'-aldehyde formation at a strand break) do not correspond with that for the generation of superoxide free radical from neocarzinostatin. The same holds for supercoiled DNA cutting by neocarzinostatin chromophore in the absence of a thiol, which is an acid-favored reaction. These results indicate that the generation of superoxide free radical by the drug does not correlate with DNA damage activity, whether or not thiol is present. Furthermore, the failure of hydroxyl free-radical scavengers to inhibit drug-induced single-strand breaks in supercoiled DNA in the absence of thiol also indicates that a diffusible hydroxyl free radical is most probably not involved in this reaction.  相似文献   

6.
L F Povirk  I H Goldberg 《Biochemistry》1985,24(15):4035-4040
A 5'-end-labeled DNA restriction fragment was treated with the nonprotein chromophore of neocarzinostatin under anoxia in the presence of dithiothreitol, conditions known to maximize formation of chromophore-deoxyribose adducts. Under conditions where unmodified DNA was digested to completion, chromophore-treated DNA was highly resistant to digestion by exonuclease III plus the 3'----5' exonucleolytic activity of T4 DNA polymerase and partially resistant to digestion by exonuclease III plus snake venom exonuclease. The electrophoretic mobilities of the products of exonucleolytic digestion suggested that (i) digestion by exonuclease III or T4 polymerase terminated one nucleotide before the nucleotide containing the adduct, (ii) the remaining nucleotide directly adjacent to the adduct (3' side) could be removed by snake venom phosphodiesterase, but at a slow rate, (iii) the covalently linked chromophore decreased the electrophoretic mobilities of the digestion products by the equivalent of approximately three nucleotides, and (iv) adducts formed under anaerobic conditions occurred at the same nucleotide positions as the strand breaks formed under aerobic conditions (primarily at T and, to a lesser extent, A residues). The close similarity in sequence specificity of adducts and strand breaks suggests that a common form of nascent DNA damage may be a precursor to both lesions. A chromophore-induced free radical on C-5' of deoxyribose, subject to competitive fixation by addition reactions with either oxygen or chromophore, is the most likely candidate for such a precursor. The base specificity of adduct formation does not reflect the reported base specificity of neocarzinostatin-induced mutagenesis, suggesting that lesions other than adducts may be responsible for at least some neocarzinostatin-induced mutations, particularly those occurring at G X C base pairs.  相似文献   

7.
We have examined the DNA damage produced by reaction of peroxyl radicals with human fibroblast DNA. DNA damage consisted of both strand breaks and base modifications. The extent of strand breaks and base modifications induced as a function of peroxyl radical concentration was determined by quantitation of fragment size distributions using denaturing glyoxal-agarose gel electrophoresis. Both strand breaks and base modifications increased in a log linear fashion with respect to peroxyl radical concentration. Oxidative base modifications were observed to occur to a greater extent than strand breaks at every concentration measured. The sequence-specific distribution of peroxyl radical induced base damage was mapped for 803 nucleotide positions using the method of ligation mediated PCR. A total of 87% of all guanine positions in the examined sequences was found to be significantly oxidized. The order of reactivity of DNA bases toward oxidation by peroxyl radicals was found to be G > C > T. Adenine is essentially unreactive. The yield of oxidative base modifications at guanines and cytosines by peroxyl radicals depends on the exact specification of 5' and 3' flanking bases in a polarity dependent manner. Every guanine in the 5'XGC3' motif was found to be oxidized, where X is any 5' neighbor. In contrast, 5' and 3' purine flanks drastically reduced the extent of peroxyl radical G oxidation. The pattern of base modification and the influence of nearest neighbors differs substantially from that previously reported for hydrogen peroxide damage mediated by low valent transition metal ions for the identical DNA sequences.  相似文献   

8.
Free radical mechanisms in neocarzinostatin-induced DNA damage   总被引:7,自引:0,他引:7  
The molecular mechanisms by which the antitumor protein antibiotic, neocarzinostatin, interacts with DNA and causes DNA sugar damage is discussed. Physical binding of the nonprotein chromophore of neocarzinostatin to DNA, involving an intercalative process and dependent on the microheterogeneity of DNA structure, is followed by thiol activation of the drug to a probable radical species. The latter attacks the deoxyribose, especially at thymidylate residues, by abstracting a hydrogen atom from C-5' to generate a carbon-centered radical on the DNA. This nascent form of DNA damage either reacts with dioxygen to form a peroxyl radical derivative, which eventuates in a strand break with a nucleoside 5'-aldehyde at the 5'-end or reacts with the bound drug to form a novel drug-deoxyribose covalent adduct. Nitroaromatic radiation sensitizers can substitute for dioxygen, but the DNA damage products are different. Similarities between the various biological effects of neocarzinostatin and ionizing radiation are reviewed.  相似文献   

9.
Mechanisms based on one-electron oxidation appear incomplete in explaining cellular radiosensitization by nitroaromatic compounds such as misonidazole. Evidence is presented for a novel mechanism that may be involved in enhancing DNA strand breakage due to a variety of agents, including ionizing radiation, that generate carbon-centered radicals on DNA deoxyribose. Under anaerobic conditions the carbon-centered radical generated selectively at C-5' of deoxyribose of thymidylate residues in DNA by the antitumor antibiotic neocarzinostatin reacts with misonidazole to produce a DNA damage product in the form of 3'-(formyl phosphate)-ended DNA. In an 18O-transfer experiment we find that the carbonyl oxygen of the activated formyl moiety (trapped as formyl-Tris) is derived from the nitro group oxygen of misonidazole. This result strongly supports a mechanism in which a nitroxide radical adduct, formed by the addition of misonidazole to the radical at C-5' of deoxyribose, cleaves between the N and O so as to form an oxy radical precursor of the formyl moiety and a two-electron reduction species of misonidazole.  相似文献   

10.
L S Kappen  I H Goldberg 《Biochemistry》1983,22(21):4872-4878
Among the lesions induced in DNA by neocarzinostatin chromophore are spontaneous and alkali-dependent base release, sugar damage, and single-strand breaks with phosphate (PO4) at their 3' ends and PO4 or nucleoside 5'-aldehyde at the 5' ends. By measuring alkali-dependent thymine release and decomposition of the 5'-terminal thymidine 5'-aldehyde in drug-cut DNA, we show that the kinetics are the same for each process and that the nucleoside aldehyde is the source of about 85% of alkali-dependent thymine release. Reduction of the 5'-aldehyde ends to 5'-hydroxyls followed by incorporation of 32P from [gamma-32P]ATP by polynucleotide kinase permits their selective quantitation. Nucleoside 5'-aldehyde so measured accounts for over 80% of the drug-generated 5' ends; the remainder have PO4 termini. Since these techniques also include the contribution of alkali-labile sites in the measurement of PO4 ends, DNA sequencing was used to measure the ends directly. Using 3'-32P end-labeled DNA restriction fragments as substrates for the drug, it was found that drug attack at a T results in mainly two bands--the stronger one represents oligonucleotide with 5'-terminal nucleoside 5'-aldehyde and may account for over 90% of a particular break. Its structure was verified by its isolation from the sequencing gel, followed by various chemical and enzymatic treatments. In each case, the mobility of the product on the gel was altered in a predictable manner. In addition to spontaneous breaks, neocarzinostatin also causes alkali-labile breaks preferentially at T residues. These sites are heterogeneous in their sensitivity to alkali and are protected by reduction.  相似文献   

11.
L S Kappen  C Q Chen  I H Goldberg 《Biochemistry》1988,27(12):4331-4340
Neocarzinostatin chromophore produces alkali-labile, abasic sites at cytidylate residues in AGC sequences in oligonucleotides in their duplex form. Glutathione is the preferred thiol activator of the drug in the formation of these lesions. The phosphodiester linkages on each side of the abasic site are intact, but when treated with alkali, breaks are formed with phosphate moieties at each end. Similar properties are exhibited by the abasic lesions produced at the purine residue to which the C in AGC is base-paired on the complementary strand. The abasic sites at C residues differ from those produced by acid-induced depurination in the much greater lability of the phosphodiester linkages on both sides of the deoxyribose, in the inability of NaBH4 to prevent alkali-induced cleavage, and in the relative resistance to apurinic/apyrimidinic endonucleases. The importance of DNA microstructure in determining attack site specificity in abasic site formation at C residues is shown not only by the requirement for the sequence AGC but also by the findings that substitution of G by I 5' to the C decreases the attack at C, whereas placement of an I opposite the C markedly enhances the reaction. Quantitation of the abstraction of 3H into the drug from C residues in AGC specifically labeled in the deoxyribose at C-5' or C-1',2' suggests that, in contrast to the attack at C-5' in the induction of direct strand breaks at T residues, abasic site formation at C residues may involve attack at C-1'. Each type of lesion may exist on the complementary strands of the same DNA molecule, forming a double-stranded lesion.  相似文献   

12.
Elsamicin A is an antitumor antibiotic with fascinating chemical structure and a good candidate for pharmaceutical development. Molecular mechanism of DNA backbone cleavage mediated by Fe(II)-elsamicin A has been examined. Product analysis using DNA sequencing gels and HPLC reveals the production of damaged DNA fragments bearing 3'-/5'-phosphate and 3'-phosphoglycolate termini associated with formation of free base. In addition, hydrazine-trapping experiments indicate that C-4' hydroxylated abasic sites are formed concomitant with DNA degradation by Fe(II)-elsamicin A. The results lead to the conclusion that the hydroxyl radical formed in Fe(II)-elsamicin A plus dithiothreitol system oxidizes the deoxyribose moiety via hydrogen abstraction predominantly at the C-4' carbon of the deoxyribose backbone and ultimately produces strand breakage of DNA.  相似文献   

13.
The oxidative reaction of polydeoxyadenylic-deoxythymidylic acid [poly(dA-dT)] with neocarzinostatin that produces 5'-thymidine aldehyde esterified to the 5'-end of strand breaks proceeds with hydrogen abstraction. The abstracted hydrogen is covalently bound to the non-protein component of neocarzinostatin; only a small amount (5%) is washed out into solvent. These data rule out a peroxyl radical as the primary DNA damaging species involved in the production of the 5'-aldehyde group. In contrast to earlier reports, it is demonstrated that alpha-tocopherol is not an inhibitor of the reaction.  相似文献   

14.
Lomax ME  Cunniffe S  O'Neill P 《Biochemistry》2004,43(34):11017-11026
Ionizing radiation induces clustered DNA damage sites which have been shown to challenge the repair mechanism(s) of the cell. Evidence demonstrating that base excision repair is compromised during the repair of an abasic (AP) site present within a clustered damage site is presented. Simple bistranded clustered damage sites, comprised of either an AP-site and 8-oxoG or two AP-sites, one or five bases 3' or 5' to each other, were synthesized in oligonucleotides, and repair was carried out in xrs5 nuclear extracts. The rate of repair of an AP-site when present opposite 8-oxoG is reduced by up to 2-fold relative to that when an AP-site is present as an isolated lesion. The mechanism of repair of the AP-site shows asymmetry, depending on its position relative to 8-oxoG on the opposite strand. The AP-site is rejoined by short-patch base excision repair when the lesions are 5' to each other, whereas when the lesions are 3' to one another, rejoining of the AP-site occurs by both long-patch and short-patch repair processes. The major stalling of repair occurs at the DNA ligase step. 8-OxoG and an AP-site present within a cluster are processed sequentially, limiting the formation of double-strand breaks to <4%. In contrast, when two AP-sites are contained within the clustered DNA damage site, both AP-sites are incised simultaneously, giving rise to double-strand breaks. This study provides new insight into understanding the processes that lead to the biological consequences of radiation-induced DNA damage and ultimately tumorigenesis.  相似文献   

15.
The radiation chemical yields of unaltered base release have been measured in three crystalline double-stranded DNA oligomers after X irradiation at 4 K. The yields of released bases are between 10 and 20% of the total free radical yields measured at 4 K. Using these numbers, we estimate that the yield of DNA strand breaks due to the direct effect is about 0.1 micromol J(-1). The damage responsible for base release is independent of the base type (C, G, A or T) and is not scavenged by anthracycline drugs intercalated in the DNA. For these reasons, reactions initiated by the hydroxyl radical have been ruled out as the source of base release. Since the intercalated anthracycline scavenges electrons and holes completely but does not inhibit base release, the possibility for damage transfer from the bases to the sugars can also be ruled out. The results are consistent with a model in which primary radical cations formed directly on the sugar-phosphate backbone react by two competing pathways: deprotonation, which localizes the damage on the sugar, and hole tunneling, which transfers the damage to the base stack. Quantitative estimates indicate that these two processes are approximately equally efficient.  相似文献   

16.
When ionizing radiation traverses a DNA molecule, a combination of two or more base damages, sites of base loss or single strand breaks can be produced within 1-4 nm on opposite DNA strands, forming a multiply damaged site (MDS). In this study, we reconstituted the base excision repair system to examine the processing of a simple MDS containing the base damage, 8-oxoguanine (8-oxoG), or an abasic (AP) site, situated in close opposition to a single strand break, and asked if a double strand break could be formed. The single strand break, a nucleotide gap containing 3' and 5' phosphate groups, was positioned one, three or six nucleotides 5' or 3' to the damage in the complementary DNA strand. Escherichia coli formamidopyrimidine DNA glycosylase (Fpg), which recognizes both 8-oxoG and AP sites, was able to cleave the 8-oxoG or AP site-containing strand when the strand break was positioned three or six nucleotides away 5' or 3' on the opposing strand. When the strand break was positioned one nucleotide away, the target lesion was a poor substrate for Fpg. Binding studies using a reduced AP (rAP) site in the strand opposite the gap, indicated that Fpg binding was greatly inhibited when the gap was one nucleotide 5' or 3' to the rAP site.To complete the repair of the MDS containing 8-oxoG opposite a single strand break, endonuclease IV DNA polymerase I and Escherichia coli DNA ligase are required to remove 3' phosphate termini, insert the "missing" nucleotide, and ligate the nicks, respectively. In the absence of Fpg, repair of the single strand break by endonuclease IV, DNA polymerase I and DNA ligase occurred and was not greatly affected by the 8-oxoG on the opposite strand. However, the DNA strand containing the single strand break was not ligated if Fpg was present and removed the opposing 8-oxoG. Examination of the complete repair reaction products from this reaction following electrophoresis through a non-denaturing gel, indicated that a double strand break was produced. Repair of the single strand break did occur in the presence of Fpg if the gap was one nucleotide away. Hence, in the in vitro reconstituted system, repair of the MDS did not occur prior to cleavage of the 8-oxoG by Fpg if the opposing single strand break was situated three or six nucleotides away, converting these otherwise repairable lesions into a potentially lethal double strand break.  相似文献   

17.
The microstructural requirements for optimal interaction of neocarzinostatin chromophore (NCS-C) with DNA have been investigated using a series of hexadeoxyribonucleotides with modified bases such as O6-methyl G (MeG), I, 5-methyl C (MeC), U, or 5-Bromo U (BrU) at specific sites in its preferred trinucleotide 5'GNaNb3':5'Na,Nb,C3' (Na = A, C, or T). Results show that MeG:C and G:MeC in place of G:C improve direct strand cleavage at the target Nb (Nb = T greater than A much greater than C greater than G), whereas MeC:G and C:MeG in place of Na:Nb, hinder cleavage. The optimal base target at Nb appears to be determined by its ability to form T:A type base pairing instead of C:G type. The observed differences in DNA strand cleavage patterns can be rationalized by induced changes in target site structure and are compatible with a model for NCS-C:DNA interaction in which the naphthoate moiety intercalates between 5'GNa3', and the activated tetrahydro-s-indacene, lying in the minor groove, abstracts a hydrogen atom from C-5' of Nb.  相似文献   

18.
RADACK was conceived to simulate the radiation-induced attack to different DNA forms and complexes. It allows to separately calculate the probability of attack to each reactive atom of the sugar and of the base and takes into account the sequence-dependent structure of DNA as known from crystallographic or NMR studies or resulting from molecular modelling. The calculations are aimed to assess sequence-, structure- and ligand-dependent modulation of damages of sugar and bases, leading to single strand breaks (frank strand breaks, FSB) and alkali-labile base modifications (alkali-revealed breaks, ARB), respectively. The modelling procedure and the results of simulations for some representative structures (B, Z and quadruplex forms) are here described and discussed. The calculated relative probabilities of OH* radical attack to all reaction sites are compared to experimental FSB and ARB values. By a fitting procedure, the relative efficiencies of conversion of the C4' and C5'-centred radicals into FSB, epsilon (C4'): epsilon (C5'), and the relative efficiencies of base radicals- to- ARB conversion, epsilon(T) : epsilon(A) : epsilon(C) : epsilon(G), are then deduced for each DNA form. The ability of the model to account for the distribution of damages in DNA-ligand complexes is proven by its successful application to two DNA-protein systems : the lac repressor-lac operator complex and the nuclcosome core.  相似文献   

19.
Treatment of an end-labeled DNA restriction fragment with the nonprotein chromophore of neocarzinostatin induced lesions which, after treatment with endonuclease IV or putrescine, were expressed as site-specific double-strand breaks. Analysis of the termini at cleavage sites in each strand showed that the neocarzinostatin-induced lesions consisted of an apurinic/apyrimidinic site plus a closely opposed break in the complementary strand. The break always occurred opposite the base two positions upstream from the apurinic/apyrimidinic site and had the 3'-phosphate and 5'-aldehyde termini characteristic of neocarzinostatin-induced breaks. This positioning suggests that neocarzinostatin simultaneously attacks two DNA sugars on opposite edges of the minor groove. The sequence specificity for formation of apurinic/apyrimidinic sites with closely opposed breaks reflected that of neocarzinostatin-induced mutagenesis. The potent mutagenicity of these lesions may be attributable to the presence of closely opposed damage in both DNA strands.  相似文献   

20.
Ionising radiation produces clustered DNA damage. Recent studies have established that the efficiency of excision of a lesion within clustered damage sites is reduced. This study presents evidence that the repair of clustered DNA damage is compromised, relative to that of the isolated lesions, since the lifetime of both lesions is extended by up to eight fold. Simple clustered damage sites, comprised of a single-strand break, one or five bases 3' or 5' to 8-oxoG on the opposite strand, were synthesised in oligonucleotides and repair carried out in XRS5 nuclear extracts. The rate of repair of the single-strand break within these clustered damage sites is reduced, mainly due to inhibition of the DNA ligase III/XRCC1 complex. The single-strand break, present as an isolated lesion, is repaired by short-patch base excision repair, however the mechanism of repair of the single-strand break within the clustered damage site is asymmetric. When the lesions are 5' to each other, the single-strand break is rejoined by short-patch repair whereas the rejoining of the single-strand break occurs by long-patch type repair when the lesions are 3' to one another. The retardation of DNA ligase III/XRCC1 complex, following addition of one base, is responsible for the initiation of long-patch base excision repair when the lesions are 3' to each other. The lesions within the cluster are processed sequentially, the single-strand break being repaired before excision of 8-oxoG, limiting the formation of double-strand breaks to <2%. Stalled processing of clustered DNA damage is suggested to have implications for mutation induction by radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号