首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibitors of calcium-dependent proteases (calpains) such as leupeptin and antipain have been shown to selectively inhibit platelet activation by thrombin. Based upon this observation, it has been proposed that calpains play a role in the initiation of platelet activation. In the present studies, we have examined the effect of leupeptin on the earliest known event in thrombin-induced platelet activation: the interaction between the agonist, its receptors, and the guanine nucleotide-binding proteins which stimulate phospholipase C (Gp) and inhibit adenylyl cyclase (Gi). We found that leupeptin inhibited thrombin's ability to stimulate phosphoinositide hydrolysis, suppress cAMP formation, and dissociate Gp and Gi into subunits. Leupeptin had no effect, however, on the same responses to other agonists or on thrombin binding to platelets. Although these observations might suggest, as others have concluded, that calpain is involved in the initiation of platelet activation by thrombin, we also found that: 1) substituting platelet membranes for intact platelets and decreasing the free Ca2+ concentration below the threshold required for calpain activation did not diminish the effects of leupeptin on phosphoinositide hydrolysis and cAMP formation, 2) washing the platelets after incubation with leupeptin reversed the effects of the inhibitor, 3) permeabilizing the platelets with saponin did not enhance the inhibitory effects of leupeptin, and 4) leupeptin inhibited the proteolysis of fibrinogen and the hydrolysis of S2238 by thrombin. Similar results in these assays were obtained with antipain. Therefore, our observations suggest that the inhibition of platelet activation by leupeptin is due to a direct interaction with thrombin and need not reflect a role for calpain in the initiation of platelet activation.  相似文献   

2.
S Marc  D Leiber    S Harbon 《The Biochemical journal》1988,255(2):705-713
1. In the intact guinea-pig myometrium, carbachol and oxytocin stimulated a specific receptor-mediated phospholipase C activation, catalysing the breakdown of PtdIns(4,5)P2 with the sequential generation of InsP3, InsP2 and InsP. Stimulation of muscarinic receptors also triggered an inhibition of cyclic AMP accumulation caused by prostacyclin. 2. NaF plus AlCl3 mimicked the effects of carbachol and oxytocin by inducing, in a dose-dependent manner, the generation of all three inositol phosphates as well as uterine contractions. AlCl3 enhanced the fluoride effect, supporting the concept that A1F4- was the active species. Under similar conditions, fluoroaluminates activated the guanine nucleotide regulatory protein Gi, reproducing the inhibitory effect of carbachol on cyclic AMP concentrations. 3. Both carbachol- and oxytocin-mediated increases in inositol phosphates, as well as contractions, were insensitive to pertussis toxin, under conditions where the expression of Gi was totally prevented. Cholera toxin, which activates Gs and enhances cyclic AMP accumulation, failed to affect basal or oxytocin-evoked inositol phosphate generation, but induced a slight, though consistent, attenuation of the muscarinic inositol phosphate response, which was similarly evoked by forskolin. 4. The data provide evidence that, in the myometrium, (a) a G protein mediates the generation of inositol phosphates and the Ca2+-dependent contractile event, (b) the relevant G protein that most probably couples muscarinic and oxytocin receptors to phospholipase C is different from Gi and Gs, the proteins that couple receptors to adenylate cyclase, and (c) cyclic AMP does not seem to control the phosphoinositide cycle, but rather exerts a negative regulation at the muscarinic-receptor level.  相似文献   

3.
Substance P-induced inositol trisphosphate (InsP3) formation was inhibited by 1 microM-4 beta-phorbol 12,13-dibutyrate (PDBu) in rat parotid acinar cells. The inhibitory effect of PDBu was reversed by the protein kinase C inhibitors H-7 or K252a. Substance P also elicits a persistent desensitization of subsequent substance P-stimulated InsP3 formation. However, this desensitization was not inhibited by H-7. In addition, H-7 had no effect on the time course of substance P-induced InsP3 formation. These results suggest that, although activation of protein kinase C by phorbol esters can inhibit the substance P receptor-linked phospholipase C pathway, this mechanism apparently plays little, if any, role in regulating this system after activation by substance P.  相似文献   

4.
The hormone-sensitive adenylyl cyclase system is under dual control, receiving both stimulatory and inhibitory inputs. Guanine nucleotide-binding regulatory proteins (G-proteins) transduce signals from cell surface receptors to effectors such as adenylyl cyclase. Hormonal stimulation is propagated via Gs, inhibition by Gi. Persistent (24-h) activation of the stimulatory pathway of adenylyl cyclase by the diterpene forskolin or the beta-adrenergic agonist isoproterenol in S49 mouse lymphoma cells enhanced the effects of somatostatin mediated via the inhibitory pathway of adenylyl cyclase. Stimulating cells with forskolin or isoproterenol for 24 h resulted in a 3-fold increase in the steady-state levels of Gi alpha 2 and a 25% decline in Gs alpha, as quantified by immunoblotting. Within 12 h of stimulation of adenylyl cyclase, Gi alpha 2 mRNA levels increased 4-fold, measured by DNA-excess solution hybridization. Gs alpha mRNA levels, in contrast, increased initially (25%), but then declined to 75% of control. In S49 variants that lack functional protein kinase A (kin-), stimulation by isoproterenol failed to alter Gi alpha 2 expression at either the protein or the mRNA levels. A 3-fold increase in relative synthesis rate and no change in the half-life (approximately 80 h) of Gi alpha 2 was observed in response to forskolin stimulation. Although Gs alpha synthesis increased (70%) modestly in response to forskolin stimulation, the half-life of Gs alpha actually decreased from 55 h in naive cells to 34 h in treated cells. Thus, the two G-protein-mediated pathways controlling adenylyl cyclase display "cross-regulation." Persistent activation of the stimulatory pathway increases Gi alpha 2 mRNA and expression. Transiently elevated Gs alpha mRNA levels are counterbalanced by a reduction in the half-life of the protein.  相似文献   

5.
The phorbol ester 12-O-tetradecanoyl-phorbol 13-acetate (TPA) and thyroliberin exerted additive stimulatory effects on prolactin release and synthesis in rat adenoma GH4C1 pituicytes in culture. Both TPA and thyroliberin activated the adenylate cyclase in broken cell membranes. When combined, the secretagogues displayed additive effects. TPA did not alter the time course (time lag) of adenylate cyclase activation by hormones, guanosine 5'-[beta,gamma-imino]triphosphate or forskolin, nor did it affect the enzyme's apparent affinity (basal, 7.2 mM; thyroliberin-enhanced, 2.2 mM) for free Mg2+. The TPA-mediated adenylate cyclase activation was entirely dependent on exogenously added guanosine triphosphate. ED50 (dose yielding half-maximal activation) was 60 microM. Access to free Ca2+ was necessary to express TPA activation of the enzyme, however, the presence of calmodulin was not mandatory. TPA-stimulated adenylate cyclase activity was abolished by the biologically inactive phorbol ester, 4 alpha-phorbol didecanoate, by the protein kinase C inhibitor polymyxin B and by pertussis toxin, while thyroliberin-sensitive adenylate cyclase remained unaffected. Experimental conditions known to translocate protein kinase C to the plasma membrane and without inducing adenylate cyclase desensitization, increased both basal and thyroliberin-stimulated enzyme activities, while absolute TPA-enhanced adenylate cyclase was maintained. Association of extracted GTP-binding inhibitory protein, Gi, from S49 cyc- murine lymphoma cells with GH4C1 cell membranes yielded a reduction of basal and hormone-stimulated adenylate cyclase activities, while net inhibition of the cyclase of somatostatin was dramatically enhanced. However, TPA restored completely basal and hormone-elicited adenylate cyclase activities in the Gi-enriched membranes. Finally, TPA completely abolished the somatostatin-induced inhibition of adenylate cyclase in both hybrid and non-hybrid membranes. These data suggest that, in GH4C1 cells, protein kinase C stimulation by phorbol esters completely inactivates the n alpha i subunit of the inhibitory GTP-binding protein, leaving the n beta subunit functionally intact. It can also be inferred that thyroliberin conveys its main effect on the adenylate cyclase through activation of the stimulatory GTP-binding protein, Gs.  相似文献   

6.
Pathways of transduction employed by receptors for sphingosine 1-phosphate (S1P) are identified by the nature of second messengers and/or downstream targets regulated and, more formally, by direct assays of heterotrimeric G protein activation. The different methods generally agree. S1P1 couples to members of the Gi family, apparently selectively, although reported pertussis toxin (PTX)-insensitive actions make categorical statements regarding exclusivity difficult. S1P2 and S1P3 couple to members of the Gi, Gq, and G12/13 families. S1P4 couples to Gi and possibly G12/13, while S1P5 couples to Gi and G12/13 but not to Gq. In virtually all circumstances, coupling of S1P receptors to Gi is reflected in PTX-sensitive inhibition of adenylyl cyclase, activation of extracellular-regulated kinases (ERKs), and, depending on the cell, activation of phospholipase C (PLC). Coupling to Gq is reflected in PTX-insensitive activation of phospholipase C. Coupling to G12/13 is reflected in activation of Rho and subsequent activation of serum response factor (SRF). Specific linkages have been verified in almost all instances by receptor-promoted [35S]GTPgammaS/GDP exchange on identified G proteins.  相似文献   

7.
Luteinizing hormone (LH) interacts with its plasma membrane receptor to activate the formation of cyclic AMP via the regulatory GTP binding protein (Gs). This is followed by a desensitization of that same hormonal response which is caused by an uncoupling of the LH receptor from Gs. The coupling between Gs and the adenylate cyclase catalytic unit remains intact. Treatment of Leydig and other cell types with phorbol esters mimics hormone-induced desensitization. However, differences between hormone- and phorbol ester-induced desensitization have been found. In testis Leydig cells phorbol esters, as well as uncoupling the LH receptor from Gs, also inactivates the subunit of the inhibitory GTP binding protein (Gi). These studies suggested that activation of protein kinase may be involved in the hormone-induced desensitization of adenylate cyclase. Paradoxically, it has also been found that two inhibitors of protein kinase C, sphingosine and psychosine also inhibited LH-induced cyclic AMP production. These effects were mainly found during the initial stimulatory period with LH. It is suggested that activation of adenylate cyclase may require a protein kinase C-mediated phosphorylation step which is followed by further phosphorylation resulting in uncoupling of the receptor from Gs. No direct stimulation of inositol 1,4,5-trisphosphate (Ins[1,4,5]P3), diacylglycerol and/or activation of protein kinase C by LH in Leydig cells has been demonstrated. An alternative mechanism of protein kinase C activation has been proposed for brain cells, i.e. that involving arachidonic acid activation of protein kinase C instead of diacylglycerol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The activation of phospholipase C in human platelets is coupled to agonist receptors via guanine nucleotide-binding protein(s), and prior treatment of permeabilized platelets with GTP gamma S, GDP beta S, or pertussis toxin modifies platelet responses to agonists. Pertussis toxin is thought to act primarily as an uncoupler of Gi from cell receptors due to its ADP-ribosylating activity. However, we have found that pertussis toxin by itself can act as an agonist for intact or permeabilized platelets. Though believed to lack receptors for pertussis toxin, intact platelets, when incubated with the toxin (5-20 micrograms/ml), undergo aggregation and accumulate inositol trisphosphate and phosphatidic acid. Treatment of platelets with aspirin, incubation in the presence of creatine phosphate/creatine phosphokinase, or omission of Ca2+ and fibrinogen do not affect toxin-mediated phospholipase C activation. These effects are not observed with the ADP-ribosylating S1 monomer of toxin in intact or permeabilized platelets. Further, modification of the holotoxin with N-ethylmaleimide eliminates the toxin's ADP-ribosylating activity but does not affect its promotion of platelet aggregation and phospholipase C activation. Therefore, the activating effect of holotoxin is separable from its ADP-ribosylating activity and does not depend either upon cyclooxygenase or the ADP that may be released during platelet activation. Given the combined potentially stimulatory and inhibitory effects of pertussis holotoxin, we suggest caution in interpretation of results with this material.  相似文献   

9.
The effects of lithium on platelet phosphoinositide metabolism.   总被引:3,自引:1,他引:2       下载免费PDF全文
The effects on phosphoinositide metabolism of preincubation of platelets for 90 min with 10 mM-Li+ were studied. Measurements were made of [32P]phosphate-labelled phosphoinositides and of [3H]inositol-labelled inositol mono-, bis- and tris-phosphate (InsP, InsP2 and InsP3). Li+ had no effect on the basal radioactivity in the phosphoinositides or in InsP2 or InsP3, but it caused a 1.8-fold increase in the basal radioactivity in InsP. Li+ caused a 4-, 3- and 2-fold enhanced thrombin-induced accumulation of label in InsP, InsP2 and InsP3 respectively. Although the elevated labelling of InsP2 and InsP3 returned to near-basal values within 30-60 min, the high labelling of InsP did not decline over a period of 60 min after addition of thrombin to Li+-treated platelets, consistent with inhibition of InsP phosphatase by Li+. The effect of Li+ was not due to a shift in the thrombin dose-response relationship; increasing concentrations of thrombin enhanced the initial rate of production of radiolabelled inositol phosphates, whereas Li+ affected either a secondary production or the rate of their removal. The only observed effect of Li+ on phosphoinositide metabolism was a thrombin-induced decrease (P less than 0.05) in labelled phosphatidylinositol 4-phosphate in Li+-treated platelets; this suggests an effect on phospholipase C. Li+ enhanced (P less than 0.05) the thrombin-induced increase in labelled lysophosphatidylinositol, suggesting an effect on phospholipase A2. It is concluded that Li+ inhibits InsP phosphatase and has other effects on phosphoinositide metabolism in activated platelets. The observed effects occur too slowly to be the mechanism by which Li+ potentiates agonist-induced platelet activation.  相似文献   

10.
Rabbit platelets were labelled with [3H]glycerol and incubated with or without phorbol 12-myristate 13-acetate (PMA). Membranes were then isolated and assayed for phospholipase D (PLD) activity by monitoring [3H]phosphatidylethanol formation in the presence of 300 mM-ethanol. At a [Ca2+free] of 1 microM, PLD activity was detected in control membranes, but was 5.4 +/- 0.8-fold (mean +/- S.E.M.) greater in membranes from PMA-treated platelets. Under the same conditions, 10 microM-guanosine 5'-[gamma-thio]triphosphate (GTP[S]) stimulated PLD by 18 +/- 3-fold in control membranes, whereas PMA treatment and GTP[S] interacted synergistically to increase PLD activity by 62 +/- 12-fold. GTP[S]-stimulated PLD activity was observed in the absence of Ca2+, but was increased by 1 microM-Ca2+ (3.5 +/- 0.2-fold and 1.8 +/- 0.1-fold in membranes from control and PMA-treated platelets respectively). GTP exerted effects almost as great as those of GTP[S], but 20-30-fold higher concentrations were required. Guanosine 5'-[beta-thio]diphosphate inhibited the effects of GTP[S] or GTP, suggesting a role for a GTP-binding protein in activation of PLD. Thrombin (2 units/ml) stimulated the PLD activity of platelet membranes only very weakly and in a GTP-independent manner. The actions of PMA and analogues on PLD activity correlated with their ability to stimulate protein kinase C in intact platelets. Staurosporine, a potent protein kinase inhibitor, had both inhibitory and, at higher concentrations, stimulatory effects on the activation of PLD by PMA. The results suggest that PMA not only stimulates PLD via activation of protein kinase C but can also activate the enzyme by a phosphorylation-independent mechanism in the presence of staurosporine. However, under physiological conditions, full activation of platelet PLD may require the interplay of protein kinase C, increased Ca2+ and a GTP-binding protein, and may occur as a secondary effect of the activation of phospholipase C.  相似文献   

11.
12-O-Tetradecanoylphorbol-13-acetate (TPA) enhances the apparent maximal velocity of adenylate cyclase in S49 lymphoma cells, an effect that seems not to result from an increased rate of activation of the catalytic subunit by the stimulatory GTP-binding protein (Gs) (Bell, J. D., Buxton, I. L. O., and Brunton, L. L. (1985) J. Biol. Chem. 260, 2625-2628). In membranes from wild type S49 cells, this enhancing effect of TPA is largely GTP-dependent; TPA enhances forskolin-stimulated adenylate cyclase activity by 35% in the presence of guanine nucleotide but only slightly (approximately 10%) in its absence. TPA causes comparable results in membranes from the cyc- variant that lacks the GTP-binding subunit of Gs. Blockade of the activity of the inhibitory GTP-binding protein (Gi) by high concentrations of Mg2+ (100 mM) or Mn2+ (3 mM) abolishes the effect of TPA to enhance adenylate cyclase activity in wild type membranes. The potentiation by TPA of cAMP accumulation in intact cells is greater than and not additive with the similar effect of pertussis toxin (an agent known to abolish hormonal inhibition of adenylate cyclase). Kinetic experiments indicate that TPA decreases the rate of activation of Gi by guanine nucleotide. We conclude that the resultant withdrawal of tonic inhibition of adenylate cyclase is one mechanism by which phorbol esters enhance guanine nucleotide-dependent cAMP synthesis.  相似文献   

12.
In the course of examining the role of protein kinase C in signal transduction in dispersed chief cells from guinea pig stomach, we observed that phorbol esters inhibit prostaglandin (PG)-stimulated increases in cyclic adenosine monophosphate (cAMP). Phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, decreased maximal levels of PGE2-stimulated cAMP by 40%. This dose-dependent effect was observed within 30 sec and was maximal by 1 min of incubation at 37 degrees C. Phorbols that do not activate protein kinase C did not have this effect. Adding H7, a protein kinase C inhibitor, abolished the inhibitory effects of PMA, indicating that these effects are not caused by activation of cyclic nucleotide phosphodiesterases. PMA did not alter the increase in cellular cAMP caused by cholera toxin, forskolin, secretin, or vasoactive intestinal peptide. Hence the site of these prostanoid-specific actions of protein kinase C does not appear to be stimulatory or inhibitory guanine nucleotide binding proteins or the catalytic component of the adenylyl cyclase system. In dispersed chief cells, activation of protein kinase C may inhibit prostanoid-induced stimulation of the adenylyl cyclase system by a direct effect on prostaglandin receptors.  相似文献   

13.
Stimulation of washed human platelets with alpha-thrombin was accompanied by aggregation, formation of inositol phosphates and phosphatidic acid, liberation of arachidonic acid, mobilization of intracellular Ca2+ stores, and influx of Ca2+ from the extracellular medium. Each of these responses was potentiated by a short pretreatment with epinephrine, although alone this agent was ineffective. A prolonged (5 min) stimulation with alpha-thrombin desensitized both phospholipase C and Ca2+ mobilization to a further thrombin challenge. Epinephrine added following thrombin desensitization restored both the ability of thrombin to release Ca2+ stores and stimulate inositol phospholipid hydrolysis. Resensitization was mediated by alpha 2-adrenergic receptors and lasted about 3 min, after which the Ca2+ levels returned again to basal levels. Pretreatment of platelets with phorbol dibutyrate at concentrations which specifically activate protein kinase C increased the rate of desensitization of the thrombin-induced release of Ca2+ stores and abolished the ability of epinephrine to restore the thrombin response. The protein kinase C inhibitor, staurosporine, blocked the inhibitory effect of phorbol ester and also reduced the rate of desensitization of thrombin and subsequent epinephrine action. These results suggest that thrombin activation of protein kinase C phosphorylates and inactivates a signaling protein which is common to both thrombin and alpha 2-adrenergic receptors. This protein is involved in thrombin stimulation of phospholipase C but is not directly stimulatory since epinephrine alone does not activate this enzyme. We searched for a known second messenger protein common to both thrombin and alpha 2-adrenergic receptors which was phosphorylated in intact platelets by protein kinase C in parallel with thrombin-induced desensitization. The alpha subunit of the inhibitory GTP-binding protein, Gi, was the only candidate which fulfilled all of these criteria as shown by immunoprecipitation. Therefore, we suggest that alpha i maintains the thrombin receptor in a state which can couple to phospholipase C when activated with thrombin. This permissive state of alpha i is blocked by phosphorylation by thrombin-activated protein kinase C.  相似文献   

14.
Jakobs, Bauer & Watanabe [(1985) Eur. J. Biochem. 151, 425-430] reported that treatment of platelets with phorbol 12-myristate 13-acetate (PMA) prevented GTP- and agonist-induced inhibition of adenylate cyclase in membranes from the platelets. This was attributed to the phosphorylation of the inhibitory guanine nucleotide-binding protein (Gi) by protein kinase C. In the present study, the effects of PMA on cyclic [3H]AMP formation and protein phosphorylation were studied in intact human platelets labelled with [3H]adenine and [32P]Pi. Incubation mixtures contained indomethacin to block prostaglandin synthesis, phosphocreatine and creatine kinase to remove ADP released from the platelets, and 3-isobutyl-1-methylxanthine to inhibit cyclic AMP phosphodiesterases. Under these conditions, PMA partially inhibited the initial formation of cyclic [3H]AMP induced by prostaglandin E1 (PGE1), but later enhanced cyclic [3H]AMP accumulation by blocking the slow decrease in activation of adenylate cyclase that follows addition of PGE1. PMA had more marked and exclusively inhibitory effects on cyclic [3H]AMP formation induced by prostaglandin D2 and also inhibited the action of forskolin. Adrenaline, high thrombin concentrations and, in the absence of phosphocreatine and creatine kinase, ADP inhibited cyclic [3H]AMP formation induced by PGE1. The actions of adrenaline and thrombin were attenuated by PMA, but that of ADP was little affected, suggesting differences in the mechanisms by which these agonists inhibit adenylate cyclase. sn-1,2-Dioctanoylglycerol (diC8) had effects similar to those of PMA. The actions of increasing concentrations of PMA or diC8 on the modulation of cyclic [3H]AMP formation by PGE1 or adrenaline correlated with intracellular protein kinase C activity, as determined by 32P incorporation into the 47 kDa substrate of the enzyme. Parallel increases in phosphorylation of 20 kDa and 39-41 kDa proteins were also observed. Platelet-activating factor, [Arg8]vasopressin and low thrombin concentrations, all of which inhibit adenylate cyclase in isolated platelet membranes, did not affect cyclic [3H]AMP formation in intact platelets. However, the activation of protein kinase C by these agonists was insufficient to account for their failure to inhibit cyclic [3H]AMP formation. Moreover, high thrombin concentrations simultaneously activated protein kinase C and inhibited cyclic [3H]AMP formation. The results show that, in the intact platelet, the predominant effects of activation of protein kinase C on adenylate cyclase activity are inhibitory, suggesting actions additional to inactivation of Gi.  相似文献   

15.
In this study, the influence of the inhibitory mu-opioid receptor on the potencies of 5'-guanosine alpha-thiotriphosphate (GTP gamma S) and GDP at the inhibitory GTP-binding protein (Gi) were investigated in an adenylyl cyclase system. It was hoped that a receptor-mediated change in the potency of either GTP gamma S or GDP in affecting adenylyl cyclase activity may elucidate how a receptor alters cyclase activity via its G-protein. In an adenylyl cyclase system employing 5'-adenylyl imidodiphosphate as substrate, GTP gamma S, a nonhydrolyzable analog of GTP, inhibited forskolin-stimulated adenylyl cyclase activity in the absence of morphine; morphine failed to significantly affect the apparent potency of GTP gamma S. GDP blocked the GTP gamma S-induced inhibition of adenylyl cyclase; morphine profoundly diminished the ability of GDP to block the inhibitory effect of GTP gamma S. The IC50 values of GTP gamma S were 0.02 +/- 0.01, 0.18 +/- 0.04, and 2.2 +/- 0.5 microM in the absence of other drugs, in the presence of a combination of 100 microM GDP and morphine, and in the presence of 100 microM GDP, respectively. GDP blocked the inhibitory effect of GTP gamma S (0.3 microM) in a concentration-dependent manner; the EC50 for GDP was 16 +/- 2.6 microM in the absence of morphine and 170 +/- 32 microM in the presence of morphine. Exposure of 7315c cells to pertussis toxin for 3 h resulted in a small decrease in the potency of GTP gamma S in inhibiting cyclase. However, the relative potency of GDP in blocking the GTP gamma S-mediated inhibition of cyclase was increased: the EC50 values of GDP were 11 +/- 4 and 0.81 +/- 0.2 microM in untreated and pertussis toxin-treated membranes, respectively. In untreated membranes, there was a brief lag in the GTP gamma S-induced inhibition of adenylyl cyclase; morphine diminished this lag. In membranes treated with pertussis toxin, there was an exaggerated lag in the onset of GTP gamma S inhibition of adenylyl cyclase activity; morphine could no longer affect this lag. Thus, uncoupling the mu-opioid receptor from Gi appeared to increase the affinity of Gi for GDP. These data suggest that the effect of an inhibitory receptor is to decrease the affinity of Gi for GDP by virtue of its interaction with the carboxy-terminal region of Gi alpha.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Stimulation of human platelets by thrombin leads to rises of both inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) within 10 s. The mass of Ins(1,4,5)P3 was measured in platelet extracts after conversion to [3-32P]Ins(1,3,4,5)P4 with Ins(1,4,5)P3 3-kinase and [gamma-32P]ATP. Basal levels were equivalent to 0.2 microM and rose to 1 microM within 10 s of stimulation by thrombin. The mass of Ins(1,3,4)P3 was more than 10-fold greater than that of Ins(1,4,5)P3 between 10 and 60 s of thrombin stimulation. These results indicate that the majority of InsP3 liberated by phospholipase C in stimulated platelets must be the non-cyclic Ins(1,4,5)P3 in order to allow rapid phosphorylation by Ins(1,4,5)P3 3-kinase to Ins(1,3,4,5)P4 and then dephosphorylation to Ins(1,3,4)P3 by 5-phosphomonoesterase. A significant proportion of the InsP3 extracted from thrombin-stimulated platelets under neutral conditions is resistant to Ins(1,4,5)P3 3-kinase but susceptible after acid treatment, implying the presence of inositol 1,2-cyclic 4,5-trisphosphate (Ins(1,2cyc4,5)P3. The relative proportion of Ins(1,2cyc4,5)P3 increases with time. We suggest that such gradual accumulation is attributable to the relative insensitivity of this compound to hydrolytic and phosphorylating enzymes. Therefore, early Ca2+ mobilization in platelets is more likely to be effected by Ins(1,4,5)P3 than by Ins(1,2cyc4,5)P3.  相似文献   

17.
In platelets activated by thrombin, the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C produces inositol 1,4,5-triphosphate (IP3) and diacylglycerol, metabolites which are known to cause Ca2+ release from the platelet dense tubular system and granule secretion. Previous studies suggest that phospholipase C activation is coupled to platelet thrombin receptors by a guanine nucleotide-binding protein or G protein. The present studies examine the contribution of this protein to thrombin-induced platelet activation and compare its properties with those of Gi, the G protein which mediates inhibition of adenylate cyclase by thrombin. In platelets permeabilized with saponin, nonhydrolyzable GTP analogs reproduced the effects of thrombin by causing diacylglycerol formation, Ca2+ release from the dense tubular system and serotonin secretion. In intact platelets, fluoride, which by-passes the thrombin receptor and directly activates G proteins, caused phosphoinositide hydrolysis and secretion. Fluoride also caused an increase in the platelet cytosolic free Ca2+ concentration that appeared to be due to a combination of Ca2+ release from the dense tubular system and increased Ca2+ influx across the platelet plasma membrane. Guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which inhibits G protein function, inhibited the ability of thrombin to cause IP3 and diacylglycerol formation, granule secretion, and Ca2+ release from the dense tubular system in saponin-treated platelets. Increasing the thrombin concentration overcame the effects of GDP beta S on secretion without restoring diacylglycerol formation. The effects of GDP beta S on platelet responses to thrombin which had been subjected to partial proteolysis (gamma-thrombin) were similar to those obtained with native alpha-thrombin despite the fact that gamma-thrombin is a less potent inhibitor of adenylate cyclase than is alpha-thrombin. Thrombin-induced diacylglycerol formation and 45Ca release were also inhibited when the saponin-treated platelets were preincubated with pertussis toxin, an event that was associated with the ADP-ribosylation of a protein with Mr = 41.7 kDa. At each concentration tested, the inhibition of thrombin-induced diacylglycerol formation by pertussis toxin paralleled the inhibition of thrombin's ability to suppress PGI2-stimulated cAMP formation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Human platelet membrane proteins were phosphorylated by exogenous, partially purified Ca2+-activated phospholipid-dependent protein kinase (protein kinase C). The phosphorylation of one of the major substrates for protein kinase C (Mr = 41 000) was specifically suppressed by the beta subunit of the inhibitory guanine-nucleotide-binding regulatory component (Gi, Ni) of adenylate cyclase. The free alpha subunit of Gi (Mr = 41 000) also served as an excellent substrate for the kinase (greater than 0.5 mol phosphate incorporated per mol of subunit), but the Gi oligomer (alpha X beta X gamma) did not. Treatment of cyc- S49 lymphoma cells, which are deficient in Gs/Ns (the stimulatory component) but contain functional Gi/Ni, with the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate, a potent activator of protein kinase C, did not alter stimulation of adenylate cyclase catalytic activity by forskolin, whereas the Gi/Ni-mediated inhibition of the cyclase by the hormone, somatostatin, was impaired in these membranes. The results suggest that the alpha subunit of the inhibitory guanine-nucleotide-binding regulatory component of adenylate cyclase may be a physiological substrate for protein kinase C and that the function of the component in transducing inhibitory hormonal signals to adenylate cyclase is altered by its phosphorylation.  相似文献   

19.
Adrenaline or UK 14304 (a specific alpha 2-adrenoceptor agonist) and phorbol ester (phorbol 12,13-dibutyrate; PdBu) or bioactive diacylglycerols (sn-1,2-dioctanoylglycerol; DiC8) synergistically induced platelet aggregation and ATP secretion. The effect on aggregation was more pronounced than the effect on secretion, and it was observed in aspirinized, platelet-rich plasma or suspensions of washed aspirinized platelets containing ADP scavengers. No prior shape change was found. In the presence of adrenaline, DiC8 induced reversible aggregation and PdBu evoked irreversible aggregation that correlated with the different kinetics of DiC8- and PdBu-induced protein kinase C activation. Adrenaline and UK 14304 did not induce or enhance phosphorylation induced by DiC8 or PdBu of myosin light chain (20 kDa), the substrate of protein kinase C (47 kDa), or a 38 kDa protein. Immunoprecipitation studies using a Gcommon alpha antiserum or a Gi alpha antiserum showed that Gi alpha is not phosphorylated after exposure of platelets to PdBu or PdBu plus adrenaline. Adrenaline, PdBu or adrenaline plus PdBu did not cause stimulation of phospholipase C as reflected in production of [32P]phosphatidic acid. Adrenaline caused a small increase of Ca2+ in the platelet cytosol of platelets loaded with Indo-1; this effect was also observed in the absence of extracellular Ca2+. However, under conditions of maximal aggregation induced by adrenaline plus PdBu, no increase of cytosolic Ca2+ was observed. Platelet aggregation induced by PdBu plus adrenaline was not inhibited by a high intracellular concentration of the calcium chelator Quin-2. These experiments indicate that alpha 2-adrenoceptor agonists, known to interact with Gi, and protein kinase C activators synergistically induced platelet aggregation through a novel mechanism. The synergism occurs distally to Gi protein activation and protein kinase C-dependent protein phosphorylation and does not involve phospholipase C activation or Ca2+ mobilization.  相似文献   

20.
Polymorphonuclear leukocytes (PMNs) activate phospholipase C via a guanine nucleotide regulatory (G) protein. Pretreatment of the PMNs with pertussis toxin (PT) or 4-beta-phorbol 12-myristate 13-acetate (PMA) inhibited chemoattractant-induced inositol trisphosphate generation. To determine the loci of inhibition by PT and PMA, G protein-mediated reactions in PMN plasma membranes were examined. Plasma membranes prepared from untreated and PMA-treated PMNs demonstrated equivalent ability of a GTP analogue to suppress high affinity binding of the chemoattractant-N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe) to its receptor. The rate, but not the extent, of high affinity binding of GTP gamma[35S] to untreated PMN membranes was stimulated up to 2-fold by preincubation with 1 microM fMet-Leu-Phe. The ability of fMet-Leu-Phe to stimulate the rate of GTP gamma S binding was absent in membranes prepared from PT-treated PMNs, but remained intact in membranes from PMA-treated cells. Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) via phospholipase C could be activated in untreated PMN membranes by either fMet-Leu-Phe plus GTP or GTP gamma S alone at low concentrations of Ca2+ (0.1-1 microM). Membranes prepared from PT-treated PMNs degraded PIP2 upon exposure to GTP gamma S, but not fMet-Leu-Phe plus GTP. In contrast, membranes prepared from phorbol ester-treated PMNs did not hydrolyze PIP2 when incubated with GTP gamma S. Treatment with PT or PMA did not affect the ability of 1 mM Ca2+ to activate PIP2 hydrolysis in PMN membranes, indicating that neither treatment directly inactivated phospholipase C. Therefore, PT appears to block coupling of the chemoattractant receptors to G protein activation, while phorbol esters disrupt coupling of the activated G protein to phospholipase C. The phorbol ester-mediated effect may mimic a negative feedback signal induced by protein kinase C activation by diacylglycerol generated upon activation of phospholipase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号