首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The transport of 2-methyl-4-amino-5-hydroxymethylpyrimidine (hydroxymethylpyrimidine) was studied in resting cells of Saccharomyces cerevisiae. Hydroxymethylpyrimidine uptake was an energy- and temperature-dependent process which has an optimal pH at 4.5. The apparent Km for hydroxymethylpyrimidine uptake was 0.37 microM, and the uptake was inhibited by 2-methyl-4-amino-5-aminomethylpyrimidine, thiamin and pyrithiamin. Furthermore, hydroxymethylpyrimidine uptake was inhibited by 4-azido-2-nitrobenzoylthiamin, a specific and irreversible inhibitor of the yeast thiamin transport system and it was greatly impaired in the thiamin transport mutant of S. cerevisiae. Thus, hydroxymethylpyrimidine is taken up by a common transport system with thiamin in S. cerevisiae, but in contrast to thiamin transport, accumulated hydroxymethylpyrimidine is released from yeast cells showing an overshoot phenomenon.  相似文献   

2.
3.
The transport of 2-methyl-4-amino-5-hydroxymethylpyrimidine (MAHMP) by Salmonella typhimurium was studied using synthetic [methyl-3H3]MAHMP. It was found that an active transport system existed for MAHMP, having Km of 0.07 μM and Vmax 45 nmol·min?1·(g dry wt. cells)?1, that required glucose as a source of energy and was pH and temperature dependent. Uptake was inhibited by cyanide, azide, N-ethylmaleimide, 2,4-dinitrophenol and carbonyl cyanide m-chlorophenylhydrazone. Uptake was also weakly inhibited by oxythiamine, but not by thiamine, 2-methyl-4-amino-5-aminomethylpyrimidine, or 4-amino-5-hydroxymethylpyrimidine, indicating that the transport system is specific for MAHMP.  相似文献   

4.
5.
A mutant of Saccharomyces cerevisiae highly resistant to 2-amino-4-methyl-5-beta-hydroxyethylthiazole (2-aminohydroxyethylthiazole), an antimetabolite of 4-methyl-5-beta-hydroxyethylthiazole (hydroxyethylthiazole), has been isolated. Its resistance to 2-aminohydroxyethylthiazole was about 10(4) times that of the sensitive parent strain. The amount of thiamin synthesized in the cells of the resistant strain grown in minimal medium was less than half of that of the sensitive strain. The ability to synthesize thiamin from 2-methyl-4-amino-5-hydroxymethylpyrimidine (hydroxymethylpyrimidine) and hydroxyethylthiazole in the resistant strain was low compared with that of the sensitive strain. These results were found to be due to a deficiency of hydroxyethylthiazole kinase in the resistant strain: in sonic extracts of cells the enzyme activity was only 0.67% of that of the sensitive strain. Although the cells of the sensitive strain could accumulate exogenous hydroxyethylthiazole in the form of hydroxyethylthiazole monophosphate, no significant uptake of hydroxyethylthiazole by the cells of the resistant strain was observed. The possibilities that 2-aminohydroxyethylthiazole monophosphate may be the actual inhibitor of the growth of Saccharomyces cerevisiae, and that hydroxyethylthiazole may not be involved in the pathway of de novo synthesis of thiamin via hydroxyethylthiazole monophosphate, are discussed.  相似文献   

6.
7.
Sucrose was found to be directly transported into Saccharomyces cerevisiae without first being hydrolysed to its constituent monosaccharides. The yeast cells were adapted on sucrose media for either 2 or 14 d before uptake assays were carried out. The initial uptake rates of sucrose were higher in fully adapted cells (14 d) than in unadapted cells (2 d) for all concentrations of sucrose used in the study. This means that the sucrose transport system is induced if enough time is allowed for adaptation on sucrose.  相似文献   

8.
9.
l-Proline is transported into the yeast Saccharomyces cerevisiae against a concentration gradient of up to 135:1, the gradient decreasing with increasing proline concentration and suspension density. The concentrative uptake is practically unaffected by inhibitors, except antimycin. It is markedly reduced by anaerobic conditions. Uptake of l-proline, either by normal cells or in the presence of inhibitors, elicits no alkalification of the medium (estimated by pH and conductivity measurements) and no membrane depolarization (estimated by distribution of tetraphenylphosphonium). There is no relationship between the electrochemical potential gradient of protons and the measured accumulation ratios of proline. Likewise, intracellular ATP levels bear little relation to the accumulation. If, based on analogy with other yeasts and bacteria, l-proline is symported with H+ ions the process must occur in local domains of the membrane where both the ΔpH and the membrane potential may differ substantially from those measured in the bulk solution.  相似文献   

10.
Ribonucleotide reductase is responsible for providing the deoxyribonucleotide precursors for DNA synthesis. In most species the enzyme consists of a large and a small subunit, both of which are required for activity. In mammalian cells, the small subunit is the site of action of several antitumor agents, including hydroxyurea and 4-methyl-5-amino-1-formylisoquinoline thiosemicarbazone (MAIQ). The mRNA levels for the small subunit of ribonucleotide reductase (RNR2) and sensitivity to hydroxyurea and MAIQ were determined in four strains of the yeast, Saccharomyces cerevisiae. Two strains exhibited significantly different sensitivities to both hydroxyurea and MAIQ, which closely correlated with differences in the levels of RNR2 mRNA. These results are consistent with recent observations with mammalian cells in culture, and indicate that a common mechanism of resistance to hydroxyurea and related drugs occurs through the elevation in ribonucleotide reductase message levels. A transplason mutagenized strain with marked structural modifications in RNR2 DNA and mRNA showed an extreme hypersensitivity to hydroxyurea but not to MAIQ, providing evidence that the two drugs do not inhibit the RNR2 subunit by the same mechanism. In addition, a yeast strain isolated for low but reproducible resistance to MAIQ exhibited a sensitivity to hydroxyurea similar to the parental wild-type strain, supporting the idea that the two drugs inhibit the activity of RNR2 by unique mechanisms. These yeast strains provide a useful approach for further studies into the regulation of eucaryotic ribonucleotide reduction and drug resistance mechanism involving a key rate-limiting step in DNA synthesis.  相似文献   

11.
The mechanism of cerium uptake by Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
  相似文献   

12.
Biotransformation of the highly substituted pyridine derivative 2-amino-4-methyl-3-nitropyridine by Cunninghamella elegans ATCC 26269 yielded three products each with a molecular weight of 169?Da which were identified as 2-amino-5-hydroxy-4-methyl-3-nitropyridine, 2-amino-4-hydroxymethyl-3-nitropyridine, and 2-amino-4-methyl-3-nitropyridine-1-oxide. Biotransformation by Streptomyces antibioticus ATCC 14890 gave two different products each with a molecular weight of 169?Da; one was acid labile and converted to the other stable product under acidic conditions. The structure of the stable product was established as 2-amino-4-methyl-3-nitro-6(1H)-pyridinone, and that of the less stable product was assigned as its tautomer 2-amino-6-hydroxy-4-methyl-3-nitropyridine. Four of the five biotransformation products are new compounds. Several strains of Aspergillus also converted the same substrate to the lactam 2-amino-4-methyl-3-nitro-6(1H)-pyridinone. Microbial hydroxylation by C. elegans was found to be inhibited by sulfate ion. In order to improve the yield and productivity of the 5-hydroxylation reaction by C. elegans, critical process parameters were determined and Design of Experiments (DOE) analyses were performed. Biotransformation by C. elegans was scaled up to 15-l fermentors providing 2-amino-5-hydroxy-4-methyl-3-nitropyridine at ca. 13?% yield in multi-gram levels. A simple isolation process not requiring chromatography was developed to provide purified 2-amino-5-hydroxy-4-methyl-3-nitropyridine of excellent quality.  相似文献   

13.
Transport of S-adenosylmethionine in Saccharomyces cerevisiae   总被引:11,自引:8,他引:3  
The properties of a specific system for the transport of S-adenosylmethionine in yeast are described. The process was pH-, temperature-, and energy-dependent, and showed saturation kinetics. The K(m) for the system was 3.3 x 10(-6)m. Of the S-adenosylmethionine moieties tested, only S-adenosylhomocysteine competitively inhibited the uptake of the adenosylsulfonium compound. Adenine, adenosine, methionine, homocysteine, and the sulfonium compound S-methylmethionine were without effect. The analogue S-adenosylethionine showed competitive inhibition. Under conditions of inhibition of protein synthesis by cycloheximide or methionine starvation, permease activity was stable. The mutant sam-p3 apparently was able to transport S-adenosylmethionine only by diffusion. Uptake by diploids containing this mutation was directly proportional to the gene dose.  相似文献   

14.
Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Arsenic trioxide is a toxic metalloid and carcinogen that is also used as an anticancer drug, and for this reason it is important to identify the routes of arsenite uptake by cells. In this study the ability of hexose transporters to facilitate arsenic trioxide uptake in Saccharomyces cerevisiae was examined. In the absence of glucose, strains with disruption of the arsenite efflux gene ACR3 accumulated high levels of (73)As(OH)(3). The addition of glucose inhibited uptake by approximately 80%. Disruption of FPS1, the aquaglyceroporin gene, reduced glucose-independent uptake by only about 25%, and the residual uptake was nearly completely inhibited by hexoses, including glucose, galactose, mannose, and fructose but not pentoses or disaccharides. A strain lacking FPS1, ACR3, and all genes for hexose permeases except for HXT3, HXT6, HXT7, and GAL2 exhibited hexose-inhibitable (73)As(OH)(3) uptake, whereas a strain lacking all 18 hexose transport-related genes (HXT1 to HXT17 and GAL2), FPS1 and ACR3, exhibited <10% of wild type (73)As(OH)(3) transport. When HXT1, HXT3, HXT4, HXT5, HXT7, or HXT9 was individually expressed in that strain, hexose-inhibitable (73)As(OH)(3) uptake was restored. In addition, the transport of [(14)C]glucose was inhibited by As(OH)(3). These results clearly demonstrate that hexose permeases catalyze the majority of the transport of the trivalent metalloid arsenic trioxide.  相似文献   

15.
Regulation by heme of sterol uptake in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
The leaky heme mutants G204, G216, and G214 are shown to accumulate exogenous sterols. Unlike hem mutants which have complete blocks in the heme pathway, these strains do not require ergosterol, methionine, or unsaturated fatty acids for growth. The addition of aminolevulinic acid to the growth medium inhibited sterol uptake in G204 96% but had only a slight effect on sterol uptake by strains G214 and G216. Sterol uptake in all three strains was inhibited 83-94% when cells were grown in the presence of hematin. Sterol analysis of these strains grown in the presence and absence of either aminolevulinic acid or hematin revealed that saturation of the cell membrane with ergosterol was not responsible for the dramatic decrease in sterol uptake. These results suggest that sterol uptake by yeast cells is controlled by heme, and explain the non-viability of yeast strains that are heme competent and auxotrophic for sterols.  相似文献   

16.
The synthesis of 2-methyl-5-amino-4-oxo-3-sulfonyl esters, potentialprecursors of Xaa[COCH2]Ala, Xaa[E-CH=CH]Ala andXaa[CH2CH2]Ala pseudodipeptides, has been investigated byalkylation of aminoacid-derived -ketosulfones with ethyl 2-bromo- or2-triflyloxypropionate in different basic conditions. Yields in 2-methyl-5-amino-4-oxo-3-sulfonyl esters are low but starting -ketosulfones are recovered in good yield.  相似文献   

17.
Summary The synthesis of 2-methyl-5-amino-4-oxo-3-sulfonyl esters, potential precursors of XaaΨ[COCH2]Ala, XaaΨ[E-CH=CH]Ala and XaaΨ[CH2CH2]Ala pseudodipeptides, has been investigated by alkylation of aminoacid-derived β-ketosulfones with ethyl 2-bromo- or 2-triflyloxypropionate in different basic conditions. Yields in 2-methyl-5-amino-4-oxo-3-sulfonyl esters are low but starting β-ketosulfones are recovered in good yield.  相似文献   

18.
The transport of thiamine and 4-methyl-5-hydroxyethylthiazole (MHET), its thiazole moiety, was studied using whole cells of Salmonella typhimurium. It was found that the bacteria possessed an active transport system for thiamine that had Km 0.21 μM and Vmax 33 nmol·min?1·(mg dry wt. cells)?1. Transport of thiamine was glucose dependent, whereas MHET uptake was dependent on both glucose and 2-methyl-4-amino-5-hydroxymethylpyrimidine (MAHMP), the pyrimidine moiety of thiamine. Uptake of both thiamine and MHET was severely curtailed by cyanide, azide, N-ethylmaleimide and carbonyl cyanide m-chlorophenylhydrazone. Oxythiamine inhibited thiamine, but not MHET, uptake and thiamine slightly inhibited MHET uptake. 2-Methyl-4-amino-5-methoxymethylpyrimidine and 4-amino-5-hydroxymethylpyrimidine were unable to replace MAHMP as stimulators of MHET uptake, but 2-methyl-4-amino-5-aminomethylpyrimidine was marginally effective in this regard. Similar results were obtained with attempts to replace MAHMP as a growth requirement for a purD mutant of Salmonella typhimurium. MHET uptake showed saturation kinetics only in the presence of MAHMP, and is not otherwise actively transported.  相似文献   

19.
20.
Regulation of Biotin Transport in Saccharomyces cerevisiae   总被引:2,自引:4,他引:2       下载免费PDF全文
The metabolic control of biotin transport in Saccharomyces cerevisiae was investigated. Nonproliferating cells harvested from cultures grown in excess biotin (25 ng/ml) took up small amounts of biotin, whereas cells grown in biotin-sufficient medium (0.25 ng/ml) accumulated large amounts of the vitamin. Transport was inhibited maximally in cells grown in medium containing 9 ng (or more) of biotin per ml. When avidin was added to biotin-excess cultures, the cells developed the ability to take up large amounts of biotin. Boiled avidin was without effect, as was treatment of cells with avidin in buffer. Avidin did not relieve transport inhibition when added to biotin-excess cultures treated with cycloheximide, suggesting that protein synthesis was required for cells to develop the capacity to take up biotin after removal of extracellular vitamin by avidin. Cycloheximide did not inhibit the activity of the preformed transport system in biotin-sufficient cells. The presence of high intracellular free biotin pools did not inhibit the activity of the transport system. The characteristics of transport in biotin-excess cells (absence of temperature or pH dependence, no stimulation by glucose, absence of iodoacetate inhibition, independence of uptake on cell concentration, and nonsaturation kinetics) indicated that biotin entered these cells by diffusion. The results suggest that the synthesis of the biotin transport system in S. cerevisiae may be repressed during growth in medium containing high concentrations of biotin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号