首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We used Glucose 6 phosphate dehydrogenase (G6PD) minus cells (89 cells) and G6PD containing cells (K1) to understand the mechanisms of bioreduction of disulfide and the redox regulation of protein and non protein thiols in mammalian cells. The 89 cells reduce hydroxyethyldisulfide (HEDS) to mercaptoethanol (ME) at a slower rate than K1 cells. HEDS reduction results in loss of nonprotein thiols (NPSH) and a decrease in protein thiols (PSH) in 89 cells. The effects are less dramatic with K1 cells. However, the loss of NPSH and PSH in K1 cells are increased in the absence of glucose. Glutathione-depletion with L-BSO partially blocks HEDS reduction in K1 and 89 cells. Treatment with the vicinal thiol reagent phenyl arsenic oxide (PAO) blocks reduction of HEDS in both cells. Surprisingly, dehydroepiandrosterone (DHEA), a known inhibitor of G6PD, inhibits the growth and blocks the reduction of HEDS both in 89 and K1 cells suggesting that its mechanism for inhibition of growth is not G6PD related.  相似文献   

2.
Glutathione (GSH) and more recently protein thiols (P-SH) have been found to play a major role in cellular radiation response. However, the effects of protein vicinal thiols, which are important for the functions of several major enzymes, on cellular responses to radiation have not been clearly delineated. Here we investigated the effects of depleting GSH and protein vicinal thiols (HS-P-SH) and P-SH on cell toxicity and radiation response. We used hydroxyethyldisulfide (HEDS, beta-mercaptoethanol-disulfide) alone and in combination with phenylarsine oxide (PAO) to alter P-SH, HS-P-SH and GSH. HEDS, a direct substrate for thioredoxin reductase and an indirect substrate for glutaredoxin (thioltransferase), did not alter protein vicinal thiols in cells. However, PAO, which specifically forms a covalent adduct with vicinal thiols, blocked bioreduction of HEDS; there was a concomitant and yet unexplained decrease in K1 cell GSH in the presence of HEDS and PAO. G6PD+ (K1) and G6PD- (E89) cells treated with L-buthionine sulfoximine (L-BSO) for 72 h to deplete GSH followed by PAO showed an increased cytotoxic response. However, the surviving E89 cells showed a 10,000-fold greater radiation lethality than the K1 cells. The effects of rapid depletion of GSH by a combination of L-BSO and dimethyfumarate (DMF), a glutathione-S-transferase substrate, were also investigated. Under these conditions, PAO radiosensitized the E89 cells more than 1000-fold over the K1 cells. The potential mechanisms for the altered response may be related to the inhibition of thioredoxin reductase and glutaredoxin. Both are key enzymes involved in DNA synthesis, protein homeostasis and cell survival. With GSH removed, vicinal thiols appear to play a critical role in determining cell survival and radiosensitivity. Decreasing P-SH and removing GSH and vicinal thiols is extremely toxic to K1 and E89 cells. We conclude that radiation sensitivity and cell survival are dependent on vicinal thiol and GSH. In the former and latter cases, the protein thiols are also important.  相似文献   

3.
The major focus of this work was to investigate how altered protein thiol redox homeostasis affects radiation-induced cell death. We used the cells of wild-type CHO cell line K1, the CHO cell line E89, which is null for G6PD activity, and a radiation-sensitive CHO cell line, XRS5. The protein-thiol redox status of cells was altered with cell-permeable disulfides, hydroxyethyldisulfide (HEDS) or lipoate. HEDS is primarily reduced by thioltransferase (glutaredoxin), with GSH as the electron donor. In contrast, lipoate is reduced by thioredoxin reductase. HEDS was reduced at a greater rate than lipoate by G6PD-containing K1 (wild-type) cells. Reduction of disulfides by G6PD-deficient cells was significantly slower with HEDS as substrate and was nearly absent with lipoate. The rate of reduction of HEDS by E89 cells decelerated to near zero by 30 min, whereas the reduction continued at nearly the same rate during the entire measurement period for K1 cells. HEDS treatment decreased the GSH and protein thiol (PSH) content more in G6PD-deficient cells than in G6PD-containing cells. On the other hand, lipoate did not significantly alter the protein thiol, but it increased the GSH in K1 cells. Acute depletion of GSH by l-buthionine-sulfoximine (l-BSO) in combination with dimethylfumarate significantly decreased the rate of reduction of HEDS by K1 cells close to that of G6PD-deficient cells. Prior GSH depletion by l-BSO alone significantly decreased the PSH in glucose-depleted E89 cells exposed to HEDS, but this did not occur with K1 cells. The radiation response of G6PD-deficient cells was significantly sensitized by HEDS, but HEDS did not have this effect on K1 cells. The DNA repair-deficient XRS5 CHO cells displayed the same capacity as K1 cells for HEDS reduction, and like K1 cells the XRS5 cells were not sensitized to radiation by HEDS treatment. Deprivation of glucose, which provides the substrate for G6PD in the oxidative pentose phosphate cycle, decreased the rate of bioreduction of HEDS and lipoate in G6PD-containing cells to the level in G6PD-deficient cells. In the absence of glucose, HEDS treatment diminished non-protein thiol and protein thiol to the same level as those in G6PD-deficient cells and sensitized the K1 cells to HEDS treatment. However, depletion of glucose did not alter the sensitivity of XRS5 cells in either the presence or absence of HEDS. Overall the results suggest a major role for pentose cycle control of protein redox state coupled to the activities of the thioltransferase and thioredoxin systems. The results also show that protein thiol status is a critical factor in cell survival after irradiation.  相似文献   

4.
A method is described for measuring bioreduction of hydroxyethyl disulfide (HEDS) or alpha-lipoate by human A549 lung, MCF7 mammary, and DU145 prostate carcinomas as well as rodent tumor cells in vitro. Reduction of HEDS or alpha-lipoate was measured by removing aliquots of the glucose-containing media and measuring the reduced thiol with DTNB (Ellman's reagent). Addition of DTNB to cells followed by disulfide addition directly measures the formation of newly reduced thiol. A549 cells exhibit the highest capacity to reduce alpha-lipoate, while Q7 rat hepatoma cells show the highest rate of HEDS reduction. Millimolar quantities of reduced thiol are produced for both substrates. Oxidized dithiothreitol and cystamine were reduced to a lesser degree. DTNB, glutathione disulfide, and cystine were only marginally reduced by the cell cultures. Glucose-6-phosphate deficient CHO cells (E89) do not reduce alpha-lipoate and reduce HEDS at a much slower rate compared to wild-type CHO-K1 cells. Depletion of glutathione prevents the reduction of HEDS. The depletion of glutathione inhibited reduction of alpha-lipoate by 25% and HEDS by 50% in A549 cells, while GSH depletion did not inhibit alpha-lipoate reduction in Q7 cells but completely blocked HEDS reduction. These data suggest that the relative participation of the thioltransferase (glutaredoxin) and thioredoxin systems in overall cellular disulfide reduction is cell line specific. The effects of various inhibitors of the thiol-disulfide oxidoreductase enzymes (1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), arsenite, and phenylarsine oxide) support this conclusion.  相似文献   

5.
The behavior of glucose-6-phosphate dehydrogenase (G6PD)-deficient red cell membrane proteins upon treatment with diamide, the thiol-oxidizing agent (Kosower, N.S. et al. (1969) Biochem. Biophys. Res. Commun. 37, 593–596), was studied with the aid of monobromobimane, a fluorescent labeling agent (Kosower, N.S., Kosower, E.M., Newton, G.L. and Ranney, H.M. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 3382–3386) convenient for following membrane thiol group status. In diamide-treated G6PD-deficient red cells (and in glucose deprived normal cells), glutathione (GSH) is oxidized to glutathione disulfide (GSSG). When cellular GSH is absent, membrane protein thiols are oxidized with the formation of intrachain and interchain disulfides. Differences in sensitivity to oxidation are found among membrane thiols. In diamidetreated normal red cells, GSH is regenerated in the presence of glucose and membrane disulfides reduced. In G6PD-deficient cells, GSSG is not reduced, and the oxidative damage (disulfide formation) in the membrane not repaired. Reduction of membrane disulfides does occur after the addition of GSH to these membranes. A direct link between the thiol status of the cell membrane and cellular GSH is thereby established. GSH serves as a reductant of membrane protein disulfides, in addition to averting membrane thiol oxidation.  相似文献   

6.
Glutathione oxidation and protein glutathionylation are considered hallmarks of oxidative stress in cells because they reflect thiol redox status in proteins. Our aims were to analyze the redox status of thiols and to identify mixed disulfides and targets of redox signaling in pancreas in experimental acute pancreatitis as a model of acute inflammation associated with glutathione depletion. Glutathione depletion in pancreas in acute pancreatitis is not associated with any increase in oxidized glutathione levels or protein glutathionylation. Cystine and homocystine levels as well as protein cysteinylation and γ-glutamyl cysteinylation markedly rose in pancreas after induction of pancreatitis. Protein cysteinylation was undetectable in pancreas under basal conditions. Targets of disulfide stress were identified by Western blotting, diagonal electrophoresis, and proteomic methods. Cysteinylated albumin was detected. Redox-sensitive PP2A and tyrosine protein phosphatase activities diminished in pancreatitis and this loss was abrogated by N-acetylcysteine. According to our findings, disulfide stress may be considered a specific type of oxidative stress in acute inflammation associated with protein cysteinylation and γ-glutamylcysteinylation and oxidation of the pair cysteine/cystine, but without glutathione oxidation or changes in protein glutathionylation. Two types of targets of disulfide stress were identified: redox buffers, such as ribonuclease inhibitor or albumin, and redox-signaling thiols, which include thioredoxin 1, APE1/Ref1, Keap1, tyrosine and serine/threonine phosphatases, and protein disulfide isomerase. These targets exhibit great relevance in DNA repair, cell proliferation, apoptosis, endoplasmic reticulum stress, and inflammatory response. Disulfide stress would be a specific mechanism of redox signaling independent of glutathione redox status involved in inflammation.  相似文献   

7.
Gaussia princeps luciferase (GLuc) generates an intense burst of blue light when exposed to coelenterazine in the absence of ATP. Here we show that this 5‐disulfide containing enzyme can be used as a facile and convenient substrate for studies of oxidative protein folding. Reduced GLuc (rGLuc), with 10 free cysteine residues, is completely inactive as a luciferase but >60% bioluminescence activity, compared to controls, can be recovered using a range of oxidizing regimens in the absence of the exogenous shuffling activity of protein disulfide isomerase (PDI). The sulfhydryl oxidase QSOX1 can be assayed using rGLuc in a simple bioluminescence plate reader format. Similarly, low concentrations of rGLuc can be oxidized by millimolar levels of dehydroascorbate, hydrogen peroxide or much lower concentrations of sodium tetrathionate. The oxidative refolding of rGLuc in the presence of a range of glutathione redox buffers is only marginally accelerated by micromolar levels of PDI. This modest rate enhancement probably results from a relatively simple disulfide connectivity in native GLuc; reflecting two homologous domains each carrying two disulfide bonds with a single interdomain disulfide. When GLuc is reoxidized under denaturing conditions the resulting scrambled protein (sGLuc) can be used in a sensitive bioluminescence assay for reduced PDI in the absence of added exogenous thiols. Finally, the general facility by which rGLuc can recover bioluminescent activity in vitro provides a sensitive method for the assessment of inhibitors of oxidative protein folding.  相似文献   

8.
The enzyme glucose-6-phosphate dehydrogenase (G6PD) plays an important role in maintaining the level of NADPH and in producing pentose phosphates for nucleotide biosynthesis. It is also of great value as an analytical reagent, being used in various quantitative assays. In searching for new strategies to purify this enzyme, the partitioning of G6PD in two-phase aqueous mixed (nonionic/cationic) micellar systems was investigated both experimentally and theoretically. Our results indicate that the use of a two-phase aqueous mixed micellar system composed of the nonionic surfactant C(10)E(4) (n-decyl tetra(ethylene oxide)) and the cationic surfactant C(n)TAB (alkyltrimethylammonium bromide, n = 8, 10, or 12) can improve significantly the partitioning behavior of G6PD relative to that obtained in the two-phase aqueous C(10)E(4) micellar system. This improvement can be attributed to electrostatic attractions between the positively charged mixed (nonionic/cationic) micelles and the net negatively charged enzyme G6PD, resulting in the preferential partitioning of G6PD to the top, mixed micelle-rich phase of the two-phase aqueous mixed micellar systems. The effect of varying the cationic surfactant tail length (n = 8, 10, and 12) on the denaturation and partitioning behavior of G6PD in the C(10)E(4) /C(n)TAB/buffer system was investigated. It was found that C(8)TAB is the least denaturing to G6PD, followed by C(10)TAB and C(12)TAB. However, the C(10)E(4)/C(12)TAB/buffer system generated stronger electrostatic attractions with the net negatively charged enzyme G6PD than the C(10)E(4)/C(10)TAB/buffer and the C(10)E(4)/C(8)TAB/buffer systems, when using the same amount of cationic surfactant. Overall, the two-phase aqueous mixed (C(10)E(4)/C(10)TAB) micellar system yielded the highest G6PD partition coefficient of 7.7, with a G6PD yield in the top phase of 71%, providing the optimal balance between the denaturing effect and the electrostatic attractions for the three cationic surfactants examined. A recently developed theoretical framework to predict protein partition coefficients in two-phase aqueous mixed (nonionic/ionic) micellar systems was implemented, and the theoretically predicted G6PD partition coefficients were found to be in reasonable quantitative agreement with the experimentally measured ones.  相似文献   

9.
Arabidopsis peroxisomes contain an incomplete oxidative pentose-phosphate pathway (OPPP), consisting of 6-phosphogluconolactonase and 6-phosphogluconate dehydrogenase isoforms with peroxisomal targeting signals (PTS). To start the pathway, glucose-6-phosphate dehydrogenase (G6PD) is required; however, G6PD isoforms with obvious C-terminal PTS1 or N-terminal PTS2 motifs are lacking. We used fluorescent reporter fusions to explore possibly hidden peroxisomal targeting information. Among the six Arabidopsis G6PD isoforms only plastid-predicted G6PD1 with free C-terminal end localized to peroxisomes. Detailed analyses identified SKY as an internal PTS1-like signal; however, in a medial G6PD1 reporter fusion with free N- and C-terminal ends this cryptic information was overruled by the transit peptide. Yeast two-hybrid analyses revealed selective protein-protein interactions of G6PD1 with catalytically inactive G6PD4, and of both G6PD isoforms with plastid-destined thioredoxin m2 (Trx(m2) ). Serine replacement of redox-sensitive cysteines conserved in G6PD4 abolished the G6PD4-G6PD1 interaction, albeit analogous changes in G6PD1 did not. In planta bimolecular fluorescence complementation (BiFC) demonstrated that the G6PD4-G6PD1 interaction results in peroxisomal import. BiFC also confirmed the interaction of Trx(m2) with G6PD4 (or G6PD1) in plastids, but co-expression analyses revealed Trx(m2) -mediated retention of medial G6PD4 (but not G6PD1) reporter fusions in the cytosol that was stabilized by CxxC113S exchange in Trx(m2) . Based on preliminary findings with plastid-predicted rice G6PD isoforms, we dismiss Arabidopsis G6PD4 as non-functional. G6PD4 orthologs (new P0 class) apparently evolved to become cytosolic redox switches that confer thioredoxin-relayed alternative targeting to peroxisomes.  相似文献   

10.
The redox poise of the mitochondrial glutathione pool is central in the response of mitochondria to oxidative damage and redox signaling, but the mechanisms are uncertain. One possibility is that the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) and the consequent change in the GSH/GSSG ratio causes protein thiols to change their redox state, enabling protein function to respond reversibly to redox signals and oxidative damage. However, little is known about the interplay between the mitochondrial glutathione pool and protein thiols. Therefore we investigated how physiological GSH/GSSG ratios affected the redox state of mitochondrial membrane protein thiols. Exposure to oxidized GSH/GSSG ratios led to the reversible oxidation of reactive protein thiols by thiol-disulfide exchange, the extent of which was dependent on the GSH/GSSG ratio. There was an initial rapid phase of protein thiol oxidation, followed by gradual oxidation over 30 min. A large number of mitochondrial proteins contain reactive thiols and most of these formed intraprotein disulfides upon oxidation by GSSG; however, a small number formed persistent mixed disulfides with glutathione. Both protein disulfide formation and glutathionylation were catalyzed by the mitochondrial thiol transferase glutaredoxin 2 (Grx2), as were protein deglutathionylation and the reduction of protein disulfides by GSH. Complex I was the most prominent protein that was persistently glutathionylated by GSSG in the presence of Grx2. Maintenance of complex I with an oxidized GSH/GSSG ratio led to a dramatic loss of activity, suggesting that oxidation of the mitochondrial glutathione pool may contribute to the selective complex I inactivation seen in Parkinson's disease. Most significantly, Grx2 catalyzed reversible protein glutathionylation/deglutathionylation over a wide range of GSH/GSSG ratios, from the reduced levels accessible under redox signaling to oxidized ratios only found under severe oxidative stress. Our findings indicate that Grx2 plays a central role in the response of mitochondria to both redox signals and oxidative stress by facilitating the interplay between the mitochondrial glutathione pool and protein thiols.  相似文献   

11.
Glutaredoxins are ubiquitous proteins that catalyze the reduction of disulfides via reduced glutathione (GSH). Escherichia coli has three glutaredoxins (Grx1, Grx2, and Grx3), all containing the classic dithiol active site CPYC. We report the cloning, expression, and characterization of a novel monothiol E. coli glutaredoxin, which we name glutaredoxin 4 (Grx4). The protein consists of 115 amino acids (12.7 kDa), has a monothiol (CGFS) potential active site and shows high sequence homology to the other monothiol glutaredoxins and especially to yeast Grx5. Experiments with gene knock-out techniques showed that the reading frame encoding Grx4 was essential. Grx4 was inactive as a GSH-disulfide oxidoreductase in a standard glutaredoxin assay with GSH and hydroxyethyl disulfide in a complete system with NADPH and glutathione reductase. An engineered CGFC active site mutant did not gain activity either. Grx4 in reduced form contained three thiols, and treatment with oxidized GSH resulted in glutathionylation and formation of a disulfide. Remarkably, this disulfide of Grx4 was a direct substrate for NADPH and E. coli thioredoxin reductase, whereas the mixed disulfide was reduced by Grx1. Reduced Grx4 showed the potential to transfer electrons to oxidized E. coli Grx1 and Grx3. Grx4 is highly abundant (750-2000 ng/mg of total soluble protein), as determined by a specific enzyme-link immunosorbent assay, and most likely regulated by guanosine 3',5'-tetraphosphate upon entry to stationary phase. Grx4 was highly elevated upon iron depletion, suggesting an iron-related function for the protein.  相似文献   

12.
Two synthetic analogues of murine epidermal growth factor, [Abu6, 20] mEGF4-48 (where Abu denotes amino-butyric acid) and [G1, M3, K21, H40] mEGF1-48, have been investigated by NMR spectroscopy. [Abu6, 20] mEGF4-48 was designed to determine the contribution of the 6-20 disulfide bridge to the structure and function of mEGF. The overall structure of this analogue was similar to that of native mEGF, indicating that the loss of the 6-20 disulfide bridge did not affect the global fold of the molecule. Significant structural differences were observed near the N-terminus, however, with the direction of the polypeptide chain between residues four and nine being altered such that these residues were now located on the opposite face of the main beta-sheet from their position in native mEGF. Thermal denaturation experiments also showed that the structure of [Abu6, 20] mEGF4-48 was less stable than that of mEGF. Removal of this disulfide bridge resulted in a significant loss of both mitogenic activity in Balb/c 3T3 cells and receptor binding on A431 cells compared with native mEGF and mEGF4-48, implying that the structural changes in [Abu6, 20] mEGF4-48, although limited to the N-terminus, were sufficient to interfere with receptor binding. The loss of binding affinity probably arose mainly from steric interactions of the dislocated N-terminal region with part of the receptor binding surface of EGF. [G1, M3, K21, H40] mEGF1-48 was also synthesized in order to compare the synthetic polypeptide with the corresponding product of recombinant expression. Its mitogenic activity in Balb/c 3T3 cells was similar to that of native mEGF and analysis of its 1H chemical shifts suggested that its structure was also very similar to native.  相似文献   

13.
Glucose‐6‐phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway (PPP) and plays an essential role in the oxidative stress response by producing NADPH, the main intracellular reductant. G6PD deficiency is the most common human enzyme defect, affecting more than 400 million people worldwide. Here, we show that G6PD is negatively regulated by acetylation on lysine 403 (K403), an evolutionarily conserved residue. The K403 acetylated G6PD is incapable of forming active dimers and displays a complete loss of activity. Knockdown of G6PD sensitizes cells to oxidative stress, and re‐expression of wild‐type G6PD, but not the K403 acetylation mimetic mutant, rescues cells from oxidative injury. Moreover, we show that cells sense extracellular oxidative stimuli to decrease G6PD acetylation in a SIRT2‐dependent manner. The SIRT2‐mediated deacetylation and activation of G6PD stimulates PPP to supply cytosolic NADPH to counteract oxidative damage and protect mouse erythrocytes. We also identified KAT9/ELP3 as a potential acetyltransferase of G6PD. Our study uncovers a previously unknown mechanism by which acetylation negatively regulates G6PD activity to maintain cellular NADPH homeostasis during oxidative stress.  相似文献   

14.
Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the oxidative pentose phosphate cycle, regulates the NADPH/NADP(+) ratio in eukaryotic cells. G6PD deficiency is one of the most common mutations in humans and is known to cause health problems for hundreds of millions worldwide. Although it is known that decreased G6PD functionality can result in increased susceptibility to oxidative stress, the molecular targets of this stress are not known. Using a Chinese hamster ovary G6PD-null mutant, we previously demonstrated that exposure to a thiol-specific oxidant, hydroxyethyldisulfide, caused enhanced radiation sensitivity and an inability to repair DNA double strand breaks. We now demonstrate a molecular mechanism for these observations: the direct inhibition of DNA end binding activity of the Ku heterodimer, a DNA repair protein, by oxidation of its cysteine residues. Inhibition of Ku DNA end binding was found to be reversible by treatment of the nuclear extract with dithiothreitol, suggesting that the homeostatic regulation of reduced cysteine residues in Ku is a critical function of G6PD and the oxidative pentose cycle. In summary, we have discovered a new layer of DNA damage repair, that of the functional maintenance of repair proteins themselves. In view of the rapidly escalating number of roles ascribed to Ku, these results may have widespread ramifications.  相似文献   

15.
It has been proposed that certain cell-surface proteins undergo redox reactions, that is, transfer of hydrogens and electrons between closely spaced cysteine thiols that can lead to reduction, formation, or interchange of disulfide bonds. This concept was tested using a membrane-impermeable trivalent arsenical to identify closely spaced thiols in cell-surface proteins. We attached the trivalent arsenical, phenylarsenoxide, to the thiol of reduced glutathione to produce 4-(N-(S-glutathionylacetyl)amino)phenylarsenoxide (GSAO). GSAO bound tightly to synthetic, peptide, and protein dithiols like thioredoxin, but not to monothiols. To identify cell-surface proteins that contain closely spaced thiols, we attached a biotin moiety through a spacer arm to the primary amino group of the gamma-glutamyl residue of GSAO (GSAO-B). Incorporation of GSAO-B into proteins was assessed by measuring the biotin using streptavidin-peroxidase. Up to 12 distinct proteins were labeled with GSAO-B on the surface of endothelial and fibrosarcoma cells. The pattern of labeled proteins differed between the different cell types. Protein disulfide isomerase was one of the proteins on the endothelial and fibrosarcoma cell surface that incorporated GSAO-B. These findings demonstrate that the cell-surface environment can support the existence of closely spaced protein thiols and suggest that at least some of these thiols are redox active.  相似文献   

16.
BACKGROUND: Gene transfer efficiency into primitive hematopoietic cells may be limited by their expression of surface receptors allowing vector entry. Vectors pseudotyped with the vesicular stomatitis virus (VSV-G) envelope do not need receptors to enter cells, and therefore may provide superior transduction efficiency. METHODS: Using a competitive repopulation model in the rhesus macaque, we examined in vivo gene marking levels of blood cells transduced with two vectors: (i) a VSV-G pseudotyped retrovirus and (ii) a conventional amphotropic retrovirus. The VSV-G vector, containing the human glucose-6-phosphate dehydrogenase (G6PD) gene, was constructed for treatment of severe hemolytic anemia caused by G6PD deficiency. Three myeloablated animals were transplanted with peripheral blood CD34+ cells, half of which were transduced with the VSV-G vector and the other half with the amphotropic vector. RESULTS: In all animals post-transplantation, levels of in vivo marking in circulating granulocytes and mononuclear cells were similar: 1% or less with both vectors. In one animal, the human G6PD enzyme transferred by the VSV-G vector was expressed in erythrocytes, early after transplantation, at a level of 45% of the endogenous rhesus G6PD protein. CONCLUSIONS: In a clinically relevant animal model, we found similar in vivo marking with a VSV-G pseudotyped and a standard amphotropic oncoretroviral vector. Amphotropic receptor expression may not be a limiting factor in transduction efficiency, but VSV-G pseudotypes possess other practical advantages that may make them advantageous for clinical use.  相似文献   

17.
Our previous studies provided evidence that E10R, a vaccinia virus protein belonging to the ERV1/ALR family, has a redox function and is required for virion assembly. Repression of E10R prevented the formation of intramolecular disulfide bonds of the G4L glutaredoxin, the L1R membrane protein, and the structurally related F9L protein. Here, we demonstrate an oxidation pathway (E10R(SS) --> G4L(SS) --> L1R(SS), F9L(SS)) in which G4L occupies an intermediate position. By reacting free thiols with 4-acetamido-4'-malemideylstilbene-2,2'-disulfonic acid, alkylated and nonalkylated disulfide-bonded forms of G4L could be resolved from each other by polyacrylamide gel electrophoresis. The cysteines of intracellular G4L were in both disulfide and reduced forms, whereas those of E10R, L1R, and F9L and virion-associated G4L were mostly disulfide bonded. Repression of G4L expression prevented the formation of disulfide bonds in both L1R and F9L but not E10R. Both cysteines of G4L were required for L1R and F9L disulfide bond formation or for trans-complementation of virus infectivity when G4L expression was repressed. No role in the E10R-G4L redox pathway was found for O2L, a nonessential glutaredoxin encoded by vaccinia virus. We suggest that cytoplasmic G4L is a redox shuttle between membrane-associated E10R and L1R or F9L.  相似文献   

18.
Parkinson's disease (PD) is a well known neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compact (SN). Although the exact mechanism remains unclear, oxidative stress plays a critical role in the pathogenesis of PD. DJ-1 is a multifunctional protein, a potent antioxidant and chaperone, the loss of function of which is linked to the autosomal recessive early onset of PD. Therefore, we investigated the protective effects of DJ-1 protein against SH-SY5Y cells and in a PD mouse model using a cell permeable Tat-DJ-1 protein. Tat-DJ-1 protein rapidly transduced into the cells and showed a protective effect on 6-hydroxydopamine (6-OHDA)-induced neuronal cell death by reducing the reactive oxygen species (ROS). In addition, we found that Tat-DJ-1 protein protects against dopaminergic neuronal cell death in 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP)-induced PD mouse models. These results suggest that Tat-DJ-1 protein provides a potential therapeutic strategy for against ROS related human diseases including PD.  相似文献   

19.
In previous parts of this study we developed procedures for the high‐efficiency chemical extraction of soluble and insoluble protein from intact Escherichia coli cells. Although high yields were obtained, extraction of recombinant protein directly from cytoplasmic inclusion bodies led to low product purity due to coextraction of soluble contaminants. In this work, a two‐stage procedure for the selective extraction of recombinant protein at high efficiency and high purity is reported. In the first stage, inclusion‐body stability is promoted by the addition of 15 mM 2‐hydroxyethyldisulfide (2‐HEDS), also known as oxidized β‐mercaptoethanol, to the permeabilization buffer (6 M urea + 3 mM ethylenediaminetetraacetate [EDTA]). 2‐HEDS is an oxidizing agent believed to promote disulfide bond formation, rendering the inclusion body resistant to solubilization in 6 M urea. Contaminating proteins are separated from the inclusion‐body fraction by centrifugation. In the second stage, disulfide bonds are readily eliminated by including reducing agent (20 mM dithiothreitol [DTT]) into the permeabilization buffer. Extraction using this selective two‐stage process yielded an 81% (w/w) recovery of the recombinant protein Long‐R3‐IGF‐I from inclusion bodies located in the cytoplasm of intact E. coli, at a purity of 46% (w/w). This was comparable to that achieved by conventional extraction (mechanical disruption followed by centrifugation and solubilization). A pilot‐scale procedure was also demonstrated using a stirred reactor and diafiltration. This is the first reported study that achieves both high extraction efficiency and selectivity by the chemical treatment of cytoplasmic inclusion bodies in intact bacterial cells. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 62: 455–460, 1999.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号