首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ex vivo monocyte cytokine responses (IL-1beta, TNF-alpha, IL-12p70, IL-10, TGF-beta) to bacterial TLR2 and TLR4 ligands were quantified in 47 gastrointestinal (GI) nematode-exposed children in Pemba Island, Tanzania. Worminess (estimated by faecal egg counts (FEC)) had a positive relationship with pro-inflammatory TNF-alpha and IL-1beta responsiveness to the TLR ligands. In particular, there was a strong significant relationship with TNF-alpha response to TLR4 ligand (LPS). There were no significant associations between regulatory responses (IL-10, TGF-beta) and worminess. These results are consistent with the possibility that GI nematodes modulate innate responses and may indicate a potential mechanism for interactions between GI nematodiasis and important bystander pathogens.  相似文献   

2.
The cells of innate and adaptive immunity, although activated by different ligands, engage in cross talk to ensure a successful immune outcome. To better understand this interaction, we examined the demographic picture of individual TLR (TLRs 2-9) -driven profiles of eleven cytokines (IFN-alpha/beta, IFN-gamma, IL-12p40/IL-12p70, IL-4, 1L-13, TNF-alpha, IL-1beta, IL-2, IL-10) and four chemokines (MCP-1, MIP1beta, IL-8, and RANTES), and compared them with direct T-cell receptor triggered responses in an assay platform using human PBMCs. We find that T-cell activation by a combination of anti-CD3/anti-CD28/PHA induced a dominant IL-2, IL-13, and Type-II interferon (IFN-gamma) response without major IL-12 and little Type-I interferon (IFN-alphabeta) release. In contrast, TLR7 and TLR9 agonists induced high levels of Type-I interferons. The highest IFN-gamma levels were displayed by TLR8 and TLR7/8 agonists, which also induced the highest levels of pro-inflammatory cytokines IL-12, TNF-alpha, and IL-1beta. Amongst endosomal TLRs, TLR7 displayed a unique profile producing weak IL-12, IFN-gamma, TNF-alpha, IL-1beta, and IL-8. TLR7 and TLR9 resembled each other in their cytokine profile but differed in MIP-1beta and MCP1 chemokine profiles. Gram positive (TLR2, TLR2/6) and gram negative (TLR4) pathogen-derived TLR agonists displayed significant similarities in profile, but not in potency. TLR5 and TLR2/6 agonists paralleled TLR2 and TLR4 in generating pro-inflammatory chemokines MCP-1, MIP-1beta, RANTES, and IL-8 but yielded weak TNF-alpha and IL-1 responses. Taken together, the data show that diverse TLR agonists, despite their operation through common pathways induce distinct cytokine/chemokine profiles that in turn have little or no overlap with TCR-mediated response.  相似文献   

3.
Differential regulation and function of Fas expression on glial cells   总被引:8,自引:0,他引:8  
Fas/Apo-1 is a member of the TNF receptor superfamily that signals apoptotic cell death in susceptible target cells. Fas or Fas ligand (FasL)-deficient mice are relatively resistant to the induction of experimental allergic encephalomyelitis, implying the involvement of Fas/FasL in this disease process. We have examined the regulation and function of Fas expression in glial cells (astrocytes and microglia). Fas is constitutively expressed by primary murine microglia at a low level and significantly up-regulated by TNF-alpha or IFN-gamma stimulation. Primary astrocytes express high constitutive levels of Fas, which are not further affected by cytokine treatment. In microglia, Fas expression is regulated at the level of mRNA expression; TNF-alpha and IFN-gamma induced Fas mRNA by approximately 20-fold. STAT-1alpha and NF-kappaB activation are involved in IFN-gamma- or TNF-alpha-mediated Fas up-regulation in microglia, respectively. The cytokine TGF-beta inhibits basal expression of Fas as well as cytokine-mediated Fas expression by microglia. Upon incubation of microglial cells with FasL-expressing cells, approximately 20% of cells underwent Fas-mediated cell death, which increased to approximately 60% when cells were pretreated with either TNF-alpha or IFN-gamma. TGF-beta treatment inhibited Fas-mediated cell death of TNF-alpha- or IFN-gamma-stimulated microglial cells. In contrast, astrocytes are resistant to Fas-mediated cell death, however, ligation of Fas induces expression of the chemokines macrophage inflammatory protein-1beta (MIP-1beta), MIP-1alpha, and MIP-2. These data demonstrate that Fas transmits different signals in the two glial cell populations: a cytotoxic signal in microglia and an inflammatory signal in the astrocyte.  相似文献   

4.
The relative amounts of different pro- and anti-inflammatory cytokines released at the site of infection by bronchoalveolar lavage (BAL) cells may influence the presentation of tuberculosis. To investigate this hypothesis the in situ release by BAL cells of the following cytokines was measured and correlated with the chest X-ray findings of 43 patients with pulmonary tuberculosis: interleukin (IL)-8, macrophage inflammatory protein-1alpha (MIP-1alpha), IL-6, tumor necrosis factor-alpha (TNF-alpha), transforming growth factor-beta (TGF-beta), interferon-gamma (IFN-gamma), IL-2, IL-4 and IL-5. The release of IL-8 and IL-6 decreased with the progression of the disease, while the release of MIP-1alpha was increased in patients with advanced tuberculosis. The release of TNF-alpha and TGF-beta did not differ between patients with or without cavitary lesions. The Th1 (IFN-gamma and IL-2) and Th2 (IL-4 and IL-5) cytokine release exhibited a gradual increment with the advance of tuberculosis. Thus, our data provide evidence that a Th0 cytokine pattern is predominant at the site of pulmonary tuberculosis. In conclusion, immunoparalysis status could not be observed in our patients with severe tuberculosis.  相似文献   

5.
Toll-like receptors (TLRs) have been implicated in the regulation of host responses to microbial Ags. This study characterizes the role of TLR4 in the innate immune response to intrapulmonary administration of Haemophilus influenzae in the mouse. Two different strains of mice efficiently cleared aerosolized H. influenzae concurrent with a brisk elaboration of IL-1beta, IL-6, TNF-alpha, macrophage-inflammatory protein (MIP)-1alpha, and MIP-2 in bronchoalveolar lavage and a corresponding mobilization of intrapulmonary neutrophils. Congenic strains of mice deficient in TLR4 demonstrated a substantial delay in clearance of H. influenzae with diminished IL-1beta, IL-6, TNF-alpha, MIP-1alpha, and MIP-2 in bronchoalveolar lavage and a notable absence of intrapulmonary neutrophils. In TLR4-expressing animals, but not TLR4-deficient animals, TNF-alpha and MIP-1alpha expression was up-regulated in epithelial cells of the conducting airway in response to H. influenzae which was preceded by an apparent activation of the NF-kappaB pathway in these cells based on the findings of decreased overall IkappaB and an increase in its phosphorylated form. This study demonstrates a critical role of TLR4 in mediating an effective innate immune response to H. influenzae in the lung. This suggests that the airway epithelia might contribute to sensing of H. influenzae infection and signaling the innate immune response.  相似文献   

6.
Inhalation of Bacillus anthracis, a bioterrorism agent, results in a high mortality rate despite appropriate antibiotic therapy. Macrophages appear to be a key factor in B. anthracis pathogenesis. The burst of pro-inflammatory cytokines from macrophages could be a major cause of death in anthrax. However, preactivation of Toll-like receptors (TLRs) could modify the host response. TLR ligands stimulate the release of activating cytokines but may also down-modulate the subsequent deleterious cytokine response to pathogens. We developed a cell culture model to measure macrophage responses to B. anthracis spores and bacilli. We found that germination from spores to bacilli produced a substantial stimulus for the secretion of the cytokines IL-6, TNF-alpha, IL-10, and IL-12 p40. Our studies showed that pretreatment of mouse macrophages with the TLR9 ligand ISS-1018, or the TLR7 ligands R-848 and IT-37, results in a substantial decrease in the subsequent secretion of IL-6 and TNF-alpha in response to B. anthracis infection of macrophages. Furthermore, the TLR7 and TLR9 ligands significantly decreased anthrax-induced cytotoxicity in the macrophages. These findings suggest that TLR ligands may contribute to the enhancement of innate immunity in B. anthracis infection by suppressing potentially deleterious pro-inflammatory cytokine responses and by improving macrophage viability.  相似文献   

7.
Neutrophils undergo constitutive death by apoptosis, leading to safe nonphlogistic phagocytosis and clearance by macrophages. Recent work has shown that before secondary necrosis, neutrophils exhibiting classical features of apoptosis can progress to a morphologically defined late apoptotic state. However, whether such neutrophils could be safely cleared was unknown. We now report that human late apoptotic neutrophils could be purified from cultured neutrophil populations undergoing constitutive death and were subsequently ingested by human monocyte-derived macrophages by serum-independent mechanisms that did not trigger the release of IL-8 or TNF-alpha. Such ingestion was specifically inhibited by Abs to thrombospondin-1 and the alpha(v)beta(3) vitronectin receptor. Murine bone marrow-derived macrophage phagocytosis of late and early apoptotic neutrophils occurred by similar mechanisms, proceeding with the same efficiency as that observed for wild-type controls when macrophages from [alpha(m)](-/-) or [beta(2)](-/-) mice were used. We conclude that specific nonphlogistic, beta(2) integrin-independent mechanisms involving thrombospondin-1 and alpha(v)beta(3) allow macrophages to ingest late apoptotic neutrophils without eliciting inflammatory cytokine secretion.  相似文献   

8.
9.
Pseudomonas aeruginosa infection, one of the major complications of burn wounds, may lead to sepsis and death. Using the Multi-Probe Template/RNase protection assay, we have compared the expression of different cytokine genes within the skin and livers of thermally injured mice infected with P. aeruginosa PAO1. Thermal injury alone enhanced or up-regulated certain cytokines, including macrophage colony-stimulating factor (M-CSF), interleukin 1 (IL-1)RI, IL-1 beta, macrophage inflammatory protein (MIP)-1 beta and MIP-2; while PAO1 challenge alone up-regulated tumour necrosis factor alpha (TNF-alpha) and transforming growth factor beta (TGF-beta) expression. The combination of thermal injury plus PAO1 infection enhanced the expression of several pro-inflammatory and haematopoietic cytokines [stem cell factor (SCF), leukocyte inhibitory factor (LIF), IL-6 and TNF-alpha]; induced the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) and G-CSF by 5 h and the expression of additional cytokines, including TGF-beta, TNF-beta, lymphotoxin beta (LT-beta), interferon gamma (IFN-gamma), and IFN-beta by 40 h post-burn/infection. While the most intense cytokine expression occurred in the skin, the majority of cytokines tested were also expressed in the liver by 40 h post-burn/infection. These results suggest that in P. aeruginosa infection of burn wounds: (1) up-regulation of the expression of different cytokines, locally and within the livers of burned mice, is an indication of P. aeruginosa -induced sepsis; and (2) IL-6 and G-CSF play an important role in the host response mechanism.  相似文献   

10.
Although TLR7 and TLR8 are phylogenetically and structurally related, their relative functions are largely unknown. The role of TLR7 has been established using TLR7-deficient mice and small molecule TLR7 agonists. The absence of TLR8-selective agonists has hampered our understanding of the role of TLR8. In this study TLR agonists selective for TLR7 or TLR8 were used to determine the repertoire of human innate immune cells that are activated through these TLRs. We found that TLR7 agonists directly activated purified plasmacytoid dendritic cells and, to a lesser extent, monocytes. Conversely, TLR8 agonists directly activated purified myeloid dendritic cells, monocytes, and monocyte-derived dendritic cells (GM-CSF/IL-4/TGF-beta). Accordingly, TLR7-selective agonists were more effective than TLR8-selective agonists at inducing IFN-alpha- and IFN-regulated chemokines such as IFN-inducible protein and IFN-inducible T cell alpha chemoattractant from human PBMC. In contrast, TLR8 agonists were more effective than TLR7 agonists at inducing proinflammatory cytokines and chemokines, such as TNF-alpha, IL-12, and MIP-1alpha. Thus, this study demonstrated that TLR7 and TLR8 agonists differ in their target cell selectivity and cytokine induction profile.  相似文献   

11.
The mechanisms that control complement protein synthesis are incompletely understood. Recent evidence suggests that cytokines are involved in the regulation of hepatic synthesis of circulating complement components. Therefore, we compared the effects of human recombinant IL-1alpha, IL-1beta, IL-6, IFN-gamma, and TNF-alpha individually or in combination, on HepG2 secretion of complement component C3, the major opsonic protein of the complement system. HepG2 cells were incubated with each cytokine alone and with various combinations of the cytokines. At 24, 48, 72, and 96 h of incubation, the C3 and albumin secreted by the HepG2 cells were quantified by a sandwich ELISA. IL-1alpha and IFN-gamma significantly enhanced C3 secretion by the cells (P<0.02 vs. control cells). IL-1beta when combined with either IL-6 or IFN-gamma also increased C3 secretion (P<0.03 vs. control cells). The stimulatory effect on HepG2 cells by the IL-1beta/IL-6 combination was synergistic. With the exception of IL-1alpha, which increased albumin secretion, HepG2 secretion of albumin was not affected by incubation with individual cytokines or the cytokine combinations. Therefore, IL-1alpha, IFN-gamma, and the combination of IL-1beta with IL-6 or IFN-gamma specifically enhanced C3 secretion by HepG2 cells. The greatest magnitude of C3 secretion was induced by the combination of IL-1beta and IL-6.  相似文献   

12.
Dendritic cells (DC) are APCs essential for the development of primary immune responses. In pluristratified epithelia, Langerhans cells (LC) are a critical subset of DC which take up Ags and migrate toward lymph nodes upon inflammatory stimuli. TLR allow detection of pathogen-associated molecular patterns (PAMP) by different DC subsets. The repertoire of TLR expressed by human LC is uncharacterized and their ability to directly respond to PAMP has not been systematically investigated. In this study, we show for the first time that freshly purified LC from human skin express mRNA encoding TLR1, TLR2, TLR3, TLR5, TLR6 and TLR10. In addition, keratinocytes ex vivo display TLR1-5, TLR7, and TLR10. Accordingly, highly enriched immature LC efficiently respond to TLR2 agonists peptidoglycan and lipoteichoic acid from Gram-positive bacteria, and to dsRNA which engages TLR3. In contrast, LC do not directly sense TLR7/8 ligands and LPS from Gram-negative bacteria, which signals through TLR4. TLR engagement also results in cytokine production, with marked differences depending on the PAMP detected. TLR2 and TLR3 ligands increase IL-6 and IL-8 production, while dsRNA alone stimulates TNF-alpha release. Strikingly, only peptidoglycan triggers IL-10 secretion, thereby suggesting a specific function in tolerance to commensal Gram-positive bacteria. However, LC do not produce IL-12p70 or type I IFNs. In conclusion, human LC are equipped with TLR that enable direct detection of PAMP from viruses and Gram-positive bacteria, subsequent phenotypic maturation, and differential cytokine production. This implies a significant role for LC in the control of skin immune responses.  相似文献   

13.
Macrophage inflammatory protein (MIP)-3alpha is a chemokine involved in the migration of T cells and immature dendritic cells. To study the contribution of proinflammatory cytokines and chemokines to the recruitment of these cells in rheumatoid arthritis (RA) synovium, we looked at the effects of the monocyte-derived cytokines IL-1beta and TNF-alpha and the T cell-derived cytokine IL-17 on MIP-3alpha production by RA synoviocytes. Addition of IL-1beta, IL-17, and TNF-alpha induced MIP-3alpha production in a dose-dependent manner. At optimal concentrations, IL-1beta (100 pg/ml) was much more potent than IL-17 (100 ng/ml) and TNF-alpha (100 ng/ml). When combined at lower concentrations, a synergistic effect was observed. Conversely, the anti-inflammatory cytokines IL-4 and IL-13 inhibited MIP-3alpha production by activated synoviocytes, but IL-10 had no effect. Synovium explants produced higher levels of MIP-3alpha in RA than osteoarthritis synovium. MIP-3alpha-producing cells were located in the lining layer and perivascular infiltrates in close association with CD1a immature dendritic cells. Addition of exogenous IL-17 or IL-1beta to synovium explants increased MIP-3alpha production. Conversely, specific soluble receptors for IL-1beta, IL-17, and TNF-alpha inhibited MIP-3alpha production to various degrees, but 95% inhibition was obtained only when the three receptors were combined. Similar optimal inhibition was also obtained with IL-4, but IL-13 and IL-10 were less active. These findings indicate that interactions between monocyte and Th1 cell-derived cytokines contribute to the recruitment of T cells and dendritic cells by enhancing the production of MIP-3alpha by synoviocytes. The inhibitory effect observed with cytokine-specific inhibitors and Th2 cytokines may have therapeutic applications.  相似文献   

14.
Dendritic cells (DCs) are potent antigen presenting cells reported to undergo irreversible functional 'maturation' in response to inflammatory signals such as TNF-alpha. The current paradigm holds that this DC maturation event is required for full functional capacity and represents terminal differentiation of this cell type, culminating in apoptotic cell death. This provides a possible mechanism for avoiding dysregulated immunostimulatory activity, but imposes constraints on the capacity of DCs to influence subsequent immune responses and to participate in immunological memory. We report that the cell surface and functional effects induced by TNF-alpha are reversible and reinducible. These effects are accompanied by a concordant modulation of cytokine mRNA expression that includes the induction of proinflammatory factors (IL-15, IL-12, LT-alpha, LT-beta, TNF-alpha, RANTES) which is coincident with the down-regulation of counter-regulatory cytokines (IL-10, TGF-beta1, TGF-beta2, IL-1 RA, MCP-1). The resultant net effect is a dendritic cell activation state characterized by a transient proinflammatory posture. These results demonstrate that 1) human DCs do not undergo terminal 'maturation' in response to TNF-alpha, 2) DC phenotypes are more pleiotropic than previously thought, and 3) DCs are potential immunoregulatory effector cells with implications for control of immune responses in both in vivo and in vitro systems.  相似文献   

15.
We examined the effect of TGF-beta 1 on the chemotactic migratory ability of human monocyte-derived dendritic cells (DCs). Treatment of immature DCs with TGF-beta 1 resulted in increased expressions of CCR-1, CCR-3, CCR-5, CCR-6, and CXC chemokine receptor-4 (CXCR-4), which were concomitant with enhanced chemotactic migratory responses to their ligands, RANTES (for CCR-1, CCR-3, and CCR-5), macrophage-inflammatory protein-3 alpha (MIP-3 alpha) (for CCR-6), or stromal cell-derived growth factor-1 alpha (for CXCR-4). Ligation by TNF-alpha resulted in down-modulation of cell surface expressions of CCR-1, CCR-3, CCR-5, CCR-6, and CXCR-4, and the chemotaxis for RANTES, MIP-3 alpha, and stromal cell-derived growth factor-1 alpha, whereas this stimulation up-regulated the expression of CCR-7 and the chemotactic ability for MIP-3beta. Stimulation of mature DCs with TGF-beta 1 also enhanced TNF-alpha-induced down-regulation of the expressions of CCR-1, CCR-3, CCR-5, CCR-6, and CXCR-4, and chemotaxis to their respective ligands, while this stimulation suppressed TNF-alpha-induced expression of CCR-7 and chemotactic migratory ability to MIP-3 beta. Our findings suggest that TGF-beta 1 reversibly regulates chemotaxis of DCs via regulation of chemokine receptor expression.  相似文献   

16.
Thymic stromal lymphopoietin (TSLP) is elevated in asthma and triggers dendritic cell-mediated activation of Th2 inflammatory responses. Although TSLP has been shown to be produced mainly by airway epithelial cells, the regulation of epithelial TSLP expression has not been extensively studied. We investigated the expression of TSLP in cytokine- or TLR ligand-treated normal human bronchial epithelial cells (NHBE). The mRNA for TSLP was significantly up-regulated by stimulation with IL-4 (5.5-fold) and IL-13 (5.3-fold), weakly up-regulated by TNF-alpha, TGF-beta, and IFN-beta, and not affected by IFN-gamma in NHBE. TSLP mRNA was only significantly up-regulated by the TLR3 ligand (dsRNA) among the TLR ligands tested (66.8-fold). TSLP was also induced by in vitro infection with rhinovirus. TSLP protein was detected after stimulation with dsRNA (120 +/- 23 pg/ml). The combination of TNF-alpha and IL-4 produced detectable levels of TSLP protein (40 +/- 13 pg/ml). In addition, TSLP was synergistically enhanced by a combination of IL-4 and dsRNA (mRNA; 207-fold, protein; 325 +/- 75 pg/ml). The induction of TSLP by dsRNA was dependent upon NF-kappaB and IFN regulatory factor 3 (IRF-3) signaling via TLR3 as indicated by a study with small interfering RNA. The potent topical glucocorticoid fluticasone propionate significantly suppressed dsRNA-dependent TSLP production in NHBE. These results suggest that the expression of TSLP is induced in airway epithelial cells by stimulation with the TLR3 ligand and Th2 cytokines and that this response is suppressed by glucocorticoid treatment. This implies that respiratory viral infection and the recruitment of Th2 cytokine producing cells may amplify Th2 inflammation via the induction of TSLP in the asthmatic airway.  相似文献   

17.
18.
Recent studies suggest that transforming growth factor-beta (TGF-beta) production is up-regulated at sites of tissue injury, inflammation and repair, or fibrosis. Endothelial cells represent a potentially important in vivo source of TGF-beta; however, the identity of endogenous modulators of TGF-beta production by these cells remains unclear. To address this issue, the effects of the cytokines, IL-1 beta, and TNF-alpha on TGF-beta production by rat pulmonary artery endothelial cells were examined. Conditioned media from cells treated with 0 to 20 ng/ml IL-1 beta and/or TNF-alpha were assayed for TGF-beta activity using a mink lung epithelial cell line. The results show that rat pulmonary artery endothelial cells secreted undetectable amounts of active TGF-beta in the absence of cytokines. However, upon acidification of the conditioned media before assay, a time-dependent increase in TGF-beta activity was noted in media from both untreated and cytokine-treated cells. However, both IL-1 beta and TNF-alpha treatment caused the secretion of significantly greater amounts of TGF-beta activity than control cells, in a dose-dependent manner, with maximal response obtained at cytokine doses of greater than 10 ng/ml. At equivalent doses of cytokine tested, the magnitude of the response was significantly greater with IL-1 beta. These responses were paralleled by increases in steady state mRNA levels for TGF-beta 1. Addition of both cytokines resulted in a synergistic response. Synergism with IL-1 beta was also noted with the fibrogenic agent bleomycin. Kinetic studies indicated that a minimum of 4 h of treatment with either IL-1 beta or TNF-alpha was required for detection of significant increases in either secreted TGF-beta activity or steady state TGF-beta 1 mRNA levels. Thus, endothelial cells could play a role in various TGF-beta-dependent processes in vivo, in situations wherein IL-1 beta and/or TNF-alpha may be present at comparable concentrations.  相似文献   

19.
Apoptotic cells protect mice against lipopolysaccharide-induced shock   总被引:1,自引:0,他引:1  
LPS is a main causative agent of septic shock. There is a lack of effective therapies. In vitro studies have shown that uptake of apoptotic cells actively inhibits the secretion by activated macrophages (Mphi) of proinflammatory mediators such as TNF-alpha and that such uptake increases the antiinflammatory and immunosuppressive cytokine TGF-beta. We therefore investigated the protective effect of apoptotic cells against LPS-induced endotoxic shock in mice. The current report is the first study to demonstrate that administration of apoptotic cells can protect mice from LPS-induced death, even when apoptotic cells were administered 24 h after LPS challenge. The beneficial effects of administration of apoptotic cells included 1) reduced circulating proinflammatory cytokines, 2) suppression of polymorphonuclear neutrophil infiltration in target organs, and 3) decreased serum LPS levels. LPS can quickly bind to apoptotic cells and these LPS-coated apoptotic cells can be recognized and cleared by Mphi in a CD14/thrombospondin/vitronectin receptor-dependent manner, accompanied with suppression of TNF-alpha and enhancement of IL-10 expression by LPS-activated Mphi. Apoptotic cells may therefore have therapeutic potential for the treatment of septic shock.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号