首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

A large proportion of an organism's genome encodes for membrane proteins. Membrane proteins are important for many cellular processes, and several diseases can be linked to mutations in them. With the tremendous growth of sequence data, there is an increasing need to reliably identify membrane proteins from sequence, to functionally annotate them, and to correctly predict their topology.  相似文献   

2.

Background  

Odorant binding proteins (OBPs) are believed to shuttle odorants from the environment to the underlying odorant receptors, for which they could potentially serve as odorant presenters. Although several sequence based search methods have been exploited for protein family prediction, less effort has been devoted to the prediction of OBPs from sequence data and this area is more challenging due to poor sequence identity between these proteins.  相似文献   

3.

Background  

Protein function is often dependent on subsets of solvent-exposed residues that may exist in a similar three-dimensional configuration in non homologous proteins thus having different order and/or spacing in the sequence. Hence, functional annotation by means of sequence or fold similarity is not adequate for such cases.  相似文献   

4.

Background  

Accurate sequence alignments are essential for homology searches and for building three-dimensional structural models of proteins. Since structure is better conserved than sequence, structure alignments have been used to guide sequence alignments and are commonly used as the gold standard for sequence alignment evaluation. Nonetheless, as far as we know, there is no report of a systematic evaluation of pairwise structure alignment programs in terms of the sequence alignment accuracy.  相似文献   

5.

Background  

Multiple sequence alignments are a fundamental tool for the comparative analysis of proteins and nucleic acids. However, large data sets are no longer manageable for visualization and investigation using the traditional stacked sequence alignment representation.  相似文献   

6.
7.

Background  

The rapid completion of genome sequences has created an infrastructure of biological information and provided essential information to link genes to gene products, proteins, the building blocks for cellular functions. In addition, genome/cDNA sequences make it possible to predict proteins for which there is no experimental evidence. Clues for function of hypothetical proteins are provided by sequence similarity with proteins of known function in model organisms.  相似文献   

8.

Background  

Current protein clustering methods rely on either sequence or functional similarities between proteins, thereby limiting inferences to one of these areas.  相似文献   

9.

Background  

Protein sequence alignments have become indispensable for virtually any evolutionary, structural or functional study involving proteins. Modern sequence search and comparison methods combined with rapidly increasing sequence data often can reliably match even distantly related proteins that share little sequence similarity. However, even highly significant matches generally may have incorrectly aligned regions. Therefore when exact residue correspondence is used to transfer biological information from one aligned sequence to another, it is critical to know which alignment regions are reliable and which may contain alignment errors.  相似文献   

10.

Background  

In general, the length of a protein sequence is determined by its function and the wide variance in the lengths of an organism's proteins reflects the diversity of specific functional roles for these proteins. However, additional evolutionary forces that affect the length of a protein may be revealed by studying the length distributions of proteins evolving under weaker functional constraints.  相似文献   

11.

Background  

The functional selection and three-dimensional structural constraints of proteins in nature often relates to the retention of significant sequence similarity between proteins of similar fold and function despite poor sequence identity. Organization of structure-based sequence alignments for distantly related proteins, provides a map of the conserved and critical regions of the protein universe that is useful for the analysis of folding principles, for the evolutionary unification of protein families and for maximizing the information return from experimental structure determination. The Protein Alignment organised as Structural Superfamily (PASS2) database represents continuously updated, structural alignments for evolutionary related, sequentially distant proteins.  相似文献   

12.

Background  

Protein alignments are an essential tool for many bioinformatics analyses. While sequence alignments are accurate for proteins of high sequence similarity, they become unreliable as they approach the so-called 'twilight zone' where sequence similarity gets indistinguishable from random. For such distant pairs, structure alignment is of much better quality. Nevertheless, sequence alignment is the only choice in the majority of cases where structural data is not available. This situation demands development of methods that extend the applicability of accurate sequence alignment to distantly related proteins.  相似文献   

13.

Background  

The functional annotation of proteins relies on published information concerning their close and remote homologues in sequence databases. Evidence for remote sequence similarity can be further strengthened by a similar biological background of the query sequence and identified database sequences. However, few tools exist so far, that provide a means to include functional information in sequence database searches.  相似文献   

14.

Background  

Functional annotation of rapidly amassing nucleotide and protein sequences presents a challenging task for modern bioinformatics. This is particularly true for protein families sharing extremely low sequence identity, as for lipocalins, a family of proteins with varied functions and great diversity at the sequence level, yet conserved structures.  相似文献   

15.

Background  

Amino acid sequence probability distributions, or profiles, have been used successfully to predict secondary structure and local structure in proteins. Profile models assume the statistical independence of each position in the sequence, but the energetics of protein folding is better captured in a scoring function that is based on pairwise interactions, like a force field.  相似文献   

16.

Background  

The mechanism by which the arthropod Oskar and vertebrate TDRD5/TDRD7 proteins nucleate or organize structurally related ribonucleoprotein (RNP) complexes, the polar granule and nuage, is poorly understood. Using sequence profile searches we identify a novel domain in these proteins that is widely conserved across eukaryotes and bacteria.  相似文献   

17.

Background  

Prediction of protein folding and specific interactions from only the sequence (ab initio) is a major challenge in bioinformatics. It is believed that such prediction will prove possible if Anfinsen's thermodynamic principle is correct for all kinds of proteins, and all the information necessary to form a concrete 3D structure is indeed present in the sequence.  相似文献   

18.

Background  

Designing novel proteins with site-directed recombination has enormous prospects. By locating effective recombination sites for swapping sequence parts, the probability that hybrid sequences have the desired properties is increased dramatically. The prohibitive requirements for applying current tools led us to investigate machine learning to assist in finding useful recombination sites from amino acid sequence alone.  相似文献   

19.

Background  

One of the most evident achievements of bioinformatics is the development of methods that transfer biological knowledge from characterised proteins to uncharacterised sequences. This mode of protein function assignment is mostly based on the detection of sequence similarity and the premise that functional properties are conserved during evolution. Most automatic approaches developed to date rely on the identification of clusters of homologous proteins and the mapping of new proteins onto these clusters, which are expected to share functional characteristics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号