首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Behavioral and physiological experiments have shown that medicinal leeches are able to detect low amplitude surface waves, and further, that the transduction of this stimulus modality occurs primarily, if not exclusively, at the annular sensilla (Young, Dedwylder, and Friesen, 1981; Friesen, 1981). Here we examine the morphology of these specialized sensory structures using light, scanning electron, and transmission electron microscopes. We found that three types of ciliated sensory cells occur at the sensilla: (1) a uniciliate cell, with an axial cilium that projects at least 12 μm beyond the cuticle; (2) a multiciliate cell with from two to four grouped cilia that extend 1–3 μm beyond the cuticle; and (3) a second multiciliate cell, whose cilia project parallel to the body surface but remain within the cuticle. The cilia of all three cell types arise from the cuplike depressions which form the apices of slender, elongated cells (approximately 2 μm diameter × 50 μm length). A complexly interconnected ring of microvilli surrounds the cilium of the uniciliate cells. The morphology of the uniciliate cells closely resembles the structure of vibration-sensitive sensory neurons found in other species. We propose, based on previous results and our new findings, that the uniciliate receptor cells are the sensillar movement receptors which mediate leech sensitivity to water movements.  相似文献   

2.
The cuticle of late parasitic stages of Paragordius varius (Leidy, 1851) is composed of a layer with large fibres and a second layer (often named the areolar layer) distal from it. In this paper, organs are described that start at the basal side of the epidermis, pass the epidermis and the fibrous layer of the cuticle and merge with large, cushion‐like structures in the distal layer of the cuticle. The epidermal part of the organs is composed of darkly stained cells, which are probably in contact with the basi‐epidermal nervous system. Up to four processes of this cell traverse the cuticle. These processes might include cilia, because they contain microtubule‐like structures. The probable connection to nerve cells and the connection to the cushion‐like structures in the outer cuticular layer make it likely that the organs described here are sensory in function.  相似文献   

3.
Freshwater oligochaetes have at least two kinds of external sense organs: multiciliate organs of short cilia (also present in earthworms) and sense organs with one to three long cilia (unknown in earthworms and possibly acting as rheoreceptors). Ciliate sense organs of freshwater oligochaetes are distributed over their entire body surface, including the clitellum. They are scattered on the prostomium and pigidium and are arranged into a transversal chaetal row and dispersed or forming a few other discrete transversal rows on chaetal segments. Three species display very prominent sense organs (sensory buds in Protuberodrilus tourenqui and papillae in Ophidonais serpentina and Spirosperma velutinus). The number of cilia per organ at the prostomium of freshwater families appears to be fewer than that of terrestrial ones. It is suggested that the total number of cilia at the prostomium of the freshwater species could be related to their habitat, evolving from an epibenthic to an endobenthic way of life.  相似文献   

4.
Birgit Rhode 《Zoomorphology》1989,108(5):315-322
Summary The nuchal organs of the protandric hermaphrodite Ophryotrocha puerilis were studied by electron microscopy. Ophryotrocha puerilis is the first species hitherto described which possesses four instead of two nuchal organs. These sensory structures are located as ciliary pits at the posterior margin of the prostomium. Histologically, the nuchal organs are composed of supporting cells with long motile cilia and bipolar sensory cells, the perikarya of which form four distinct nuchal ganglia adjoining the brain. These structural components are concentrically arranged around the central sensory area. This area is covered by a modified cuticle, whereas the cuticle above the peripheral region of the sense organ exhibits the appearance typical for polychaetes. Two types of vesicular material are produced in the basal supporting cells, a dense-cored one within the central supporting cells only and a clear irregular-shaped one in all of these cells. The first type is considered to be responsible for the formation of the modified cuticle. The significance of these most probably long-distance chemoreceptory organs and their possible role in reproductive behaviour is discussed.  相似文献   

5.
Abstract. We examined the nuchal organs of adults of the nereidid polychaete Platynereis dumerilii by means of scanning and transmission electron microscopy. The most prominent features of the nuchal organs are paired ciliary bands located dorsolaterally at the posterior margin of the prostomium. They are composed of primary sensory cells and multiciliated supporting cells, both covered by a thin cuticle. The supporting cells have motile cilia that penetrate the cuticle and are responsible for the movement of water. Subapically, they have a narrowed neck region; the spaces between the neck regions of these supporting cells comprise the olfactory chamber. The dendrites of the sensory cells give rise to a single modified cilium that crosses the olfactory chamber; numerous thin microvillus-like processes, presumably extending from the sensory cells, also traverse the olfactory chamber. At the periphery of the ciliated epithelium runs a large nervous process between the ciliated supporting cells. It consists of smaller bundles of sensory dendrites that unite to form the nuchal nerve, which leaves the ciliated epithelium basally and runs toward the posterior part of the brain, where the perikarya of the sensory cells are located in clusters. The ciliated epithelium of the nuchal organs is surrounded by non-ciliated, peripheral epidermal cells. Those immediately adjacent to the ciliated supporting cells have a granular cuticle; those further away have a smooth cuticle. The nuchal organs of epitokous individuals of P. dumerilii are similar to those described previously in other species of polychaetes and are a useful model for understanding the development of nuchal organs in polychaetes.  相似文献   

6.
The nuchal organs of Stygocapitella subterranea are paired narrow pits. They are lined by unciliated cells at the opening and by ciliated cells at the basal parts. The primary sensory cells (6–8) are arranged in a single patch at the bottom of the nuchal pit. The nuclei of the sensory cells are located in the posterior portion of the brain. Their dendrites form the nuchal nerve which is sheathed by the ciliated cells. Each sensory cell bears up to 4 modified sensory cilia and several microvilli extending into the olfactory chamber. The sensory cilia show various patterns of axonemal organization and have no rootlets. The olfactory chamber is covered by a cuticular matrix. Another primary sensory cell lies at the opening of the nuchal pit. It bears cilia which penetrate the cuticle but are enveloped by the epicuticle. Retractor muscles insert caudally on the organ. The nuchal organ of S. subterranea shows similarities to those of opheliids but exhibits several features not to be found in other nuchal organs.  相似文献   

7.
The branchial warts on the endopodites of the gills are covered with goblet-shaped cuticular appendages, whose internal structure shows them to be chemoreceptors. The innervated goblets have a cuticular tubule that connects an external pore through their hollow interior with the epidermal sensillum. Associated sensory neurons give rise to small axons that pass through a synaptic plexus below the epidermis. The sense organs seem specialized for sampling the exhalent water current.  相似文献   

8.
Summary The dorsal integument of the girdle of the chiton Mopalia muscosa is covered by a chitinous cuticle about 0.1 mm in thickness. Within the cuticle are fusiform spicules composed of a central mass of pigment granules surrounded by a layer of calcium carbonate crystals. Tapered, curved chitinous hairs with a groove on the mesial surface pass through the cuticle and protrude above the surface. The spicules are produced by specialized groups of epidermal cells called spiniferous papillae and the hairs are produced by trichogenous papillae. Processes of pigment cells containing green granules are scattered among the cells of each type of papilla and among the common epidermal cells.The wall or cortex of each hair is composed of two layers. The cortex surrounds a central medulla that contains matrix material of low density and from 1 to 20 axial bundles of dendrites. The number of bundles within the medulla varies with the size of the hair. Each bundle contains from 1 to 25 dendrites ensheathed by processes of supporting cells. The dendrites and supporting sheath arise from epidermal cells of the central part of the papilla. At the base of each trichogenous papilla are several nerves that pass into the dermis. Two questions remain unresolved. The function of the hairs is unknown, and we have not determined whether the sensory cells are primary sensory neurons or secondary sensory cells.  相似文献   

9.
The structural differentiation of the nuchal organs during the post-embryonic development ofPygospio elegans is described. The sensory organs are composed of two cell types: ciliated cells and bipolar primary sensory cells, constituting the nuchal ganglion, which is associated with both the sensory epithelium and the brain. Since the sensory neurons are largely integrated into posterolateral parts of the cerebral ganglion, the nuchal organs are primary presegmental structures. The microvilli of the ciliated cells form a cover over the cuticle with a presumed protective function. An extracellular space extends between cuticle and sensory epithelium. The distal dendrites of the sensory cells terminate in sensory bulbs, bearing one modified sensory cilium each that projects into the olfactory chamber, embedded within the secretion of the ciliated cells. During development, the nuchal organs increase in size. This is accompanied by a shift in position, an expansion of the sensory area, and secretory activity of the ciliated cells. The nuchal ganglion differentiates into three nuchal centres forming three distinct sensory areas around the ciliated region. Each nuchal complex reveals two short nuchal nerves comprising the sensory axons, which enter the posterior circumesophageal connective. The sensory cells lying in the brain exhibit neurosecretory activity; the sensory cilia enlarge their surface area by dilating and branching. Nuchal organs accomplish the basic structural adaptions of chemoreceptors and show structural analogies to arthropod olfactory sensilla; thus, there is every reason to suppose chemoreceptor function.  相似文献   

10.
The ultrastructure of the paired nerves, previously called frontal organ or X-organ, in copepod crustaceans was investigated. These nerves, running from the anterior margin of the brain to the frontal edge of the animals, are found to contain the dendrites of three types of morphologically different sensory neurons. The first unit consists of two dendrites (distinguished by their myelinization) leading to two small hairs on the front. Their detailed structure was not investigated. The second unit consists of a few large dendrites ending in branching cilia. The latter are surrounded by a specialized glial cell. The ciliary branches are regularly sized and arranged. The third unit consists of c. 17 dendrites ending with cilia at the cuticle. The cilia are split into irregular branches which are buried in modified epidermal cells which, in the case of Calanus, are connected with cuticular pores. By analogy with other presumed chemosensory organs in the Arthropoda, the second and the third unit are considered, on a morphological basis, to be chemoreceptors. The second unit receives internal stimuli. Because it resembles other X-organs in the Crustacea, all X-organs could have the same function. The third unit is thought of as receiving external stimuli.  相似文献   

11.
Lateral organs are sense organs visible as densely ciliated pits or papillae between the noto‐ and the neuropodia in certain taxa of sedentary polychaetes. Ultrastructural studies in about 10 species of the following taxa Maldanidae, Opheliidae, Orbiniidae, Paraonidae, Magelonidae, Spionidae, Poecilochaetidae and Terebellidae have been designed to evaluate whether these organs are homologous among polychaetes. In spite of great external diversity, the investigations revealed an overall ultrastructural similarity. Differences between species investigated mainly concern the size of the organs as well as the number and arrangement of cells. The organs comprise supportive cells and uniciliated penetrative sensory cells. Their dendrites are closely arranged and thus their cilia may resemble multiciliated cells. There are two types of sensory cells: one type possesses no or mainly thin microvilli of which usually only a few reach the cuticular surface, and in the other type the cilium is consistently surrounded by 10 strong microvilli, which form a pore‐like opening in the cuticle. Further differences occur in the structure of the rootlet system. Basally, a retractor muscle attaches to the organ. The systematic significance of these organs within Annelida is discussed with respect to the conflicting phylogenetic hypotheses explaining the relationships of annelid taxa.  相似文献   

12.
This work summarizes the observations on 30 species of microdriles belonging to the families Naididae (Rhyacodrilinae, Pristininae, Naidinae, Phallodrilinae, and Tubificinae), Phreodrilidae, Lumbriculidae, and Enchytraeidae using scanning electron microscopy. The lumbricid Eiseniella tetraedra, a megadrile species common in typical microdrile habitats, was used for comparison. Microdriles display external ciliate sense structures along the entire body; even at the clitellum and in budding and regeneration zones. According to the shape of the cilia, these sense structures can be divided into receptors of blunt cilia, receptors of sharp cilia, and composed receptors. Sense receptors can be morphologically unconspicuous or clearly defined on sensory buds or papillae. All microdriles studied have receptors of blunt cilia. Enchytraeids have characteristic receptors of short cilia. Pristina (Pristininae), Chaetogaster, Ophidonais, and Stylaria (Naidinae) have receptors of long blunt cilia. Composed receptors were found only in some microdriles and E. tetraedra. Receptors of sharp cilia have been found in most microdriles. Enchytraeids might be the only exception, but sharp cilia are probably present in the amphibiotic Cognettia sphagnetorum. Sensory cells with long sharp cilia might play a rheoreceptor role, and their presence in E. tetraedra and C. sphagnetorum would imply the reappearing of an ancient character that was probably lost with the transit from aquatic to terrestrial habitats. Some lumbriculids have ciliated fields. Anatomically, these structures appear as intermediate between the typical isolate sensory structures of microdriles and the sensillae of the hirudineans. The general pattern in microdriles is that uniciliate receptors and multiciliate receptors are separated, which supports the presumed aquatic origin of the clitellates. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Two components, a basal cuticle and an epicuticle, make up the cuticle ofA. mucosa. The basal cuticle consists of collagen fibrils, which are arranged in about 20 layers. The orientation of the fibrils changes rectangularly from one layer to the next. Fine filaments interweave the basal cuticle. The epicuticle, which is covered by a layer of electron dense material, is composed of irregularly arranged thin filaments. Branched microvilli of the epidermal cells penetrate the cuticle. Bacteria are found in the basal cuticle. Dorsally each segment has a band of densely packed smooth cilia. Laterally and partly ventrally aggregates of cilia are observed. These cilia exhibit apically artificial swellings. At least six different mucous cells are observed in the epidermis, morphologically distinguishable by the structure of the secretion products. Mucus is secreted via exocytosis through cuticular pores. During this process the mucus might expand. The secreted mucus consists of filamentous subunits.  相似文献   

14.
The integument and podia of the sea cucumber Thyone briareus were examined by bright field and electron microscopy. The epidermal surface was found to be covered by an acellular, PAS positive cuticle which appeared to be secreted by the underlying epidermal cells. Although the superficial portion of the cuticle contains numerous fine filaments, their ultrastructure bears no resemblance to collagen fibers. The epidermal cells are widely spaced and have long apical processes that extend along the under surface of the cuticle forming a contiguous epithelium. The apical expansions of the epidermal cells are attached to one another by means of septate desmosomes which may run continuously around all epidermal cells. Special attachment structures within these apical expansions appear to bind the cuticle to the dermis. The epidermal cells and their apical expansions are separated from the dermis by an 800 Å thick basement membrane. Granule containing cells in the upper dermis send processes up to the cuticle where they are bound to the typical epidermal cells by septate desmosomes. The abundant membrane bound granules of the cells enter villous-like processes which pass through the cuticle. The function of these cells may be to produce an adhesive material on the podia or they may be pigment cells. The thick dermis consists of a superficial zone, containing largely ground substance; a middle or laminated zone containing laminae of collagen fibers arranged in an orthogonal fashion; and a hypodermis consisting largely of ground substance and reticular fibers. Fibroblasts are abundant in the superficial dermis and between the collagen laminae. Wandering coelomocytes, or morula cells, accumulate between the collagen laminae and in the hypodermis. They may also become an integral part of the epidermis by forming septate desmosomes with epidermal cells. Morula cells contain highly specialized spherules whose tinctorial properties and electron microscopic appearance suggest that they contain protein and mucopolysaccharide.  相似文献   

15.
Summary The cavity receptor organ (previously X-organ or organ of Bellonci) of Artemia salina consists of ciliated neurons whose cilia protrude into a cavity beneath the cuticle. The neuronal dendrites penetrate a giant accompanying cell and epidermal cells before entering the cavity. The cavity beneath the cuticle, the ciliated neurons and the connexion with the medulla terminalis justifies a homologization with the frontal filament organ of cirripeds and the third unit of copepods. The term cavity receptor is suggested for this organ. It is hardly homologous with the second unit of copepods and the organs described for many malacostracans under the names of sensory pore X-organ or organ of Bellonci. The latter organs are very similar to the cavity receptor but have an internal cavity formed by glial cells.The cavity receptor organ was previously considered neurosecretory but in the light of the present knowledge it is rather sensory although a double function cannot be denied.This investigation was supported by grants (to R. E.) 2760-3 and 2760-4 from the Swedish Natural Science Research Council. One of us (P. S. L.) was on sabbatical leave from the University of Tasmania.  相似文献   

16.
Summary A study of the fine structure of the sense organs on the prostomial cirri and palps of Nereis diversicolor shows them to consist of two types of cell. There are between 7 and 15 sensory cells and a similar number of associated cells which contain many osmiophilic granules. The cell bodies of both are sub-epidermal, having a long distal process which reaches the surface in a raised sensory hillock. The sensory cells carry a cilium, which passes through the cuticle and emerges surrounded by a sheath formed from the outer layers of the epicuticle. Scanning electron micrographs show the surface of the cirrus to be covered by hair-like epicuticular microvilli, through which the sheathed cilia protrude. There is also a second type of sensory cell which occurs singly between the epithelial cells. The distal membrane of this cell is formed into a tuft of approximately 55 large microvilli which open through a pore in the epicuticle. It is suggested by their position and structure, that both these receptors resemble chemoreceptors.We should like to acknowledge the advice and technical help of Dr. J. A. Nott of the N.E.R.C. unit of Electron Microscopy, Menai Bridge, and Dr. P. E. Secker of the School of Electronic Engineering for use of the Cambridge Stereoscan. The work is supported by a grant from the Science Research Council to D.A.D.  相似文献   

17.
Abstract. A retractable head region somewhat resembling the introvert of sipunculans is a characteristic feature of members of the annelid taxon Fauveliopsidae. The morphology of fauvelopsids is not well known, and additional data might help to resolve their relationships with other annelids and sipunculans. Ultrastructural investigations of the anterior end of adults of Fauveliopsis cf. adriatica revealed peculiar brain and sensory structures. From the neuropil of the brain, two pairs of lobes mainly composed of neuronal somata extend posteriorly into the peristomium and the following segment. The nuchal organs are embedded in the median pair of lobes, as are additional photoreceptor‐like sensory structures, the ocellar tubes, which are found at the bases of epidermal follicles that extend deeply into the brain. The retractor muscles of the prostomium are attached to the apices of these follicles, which are lined by tendon and supportive cells. The lumen of each follicle is completely filled with cuticular material that forms a rod. Monociliary sensory cells are present all along the length of each follicle; their cilia extend into the cuticle, and are oriented parallel to the longitudinal axis of the tube. Basally, each follicle forms an ovoid extension that is devoid of cuticular material and densely filled with numerous sensory processes—microvilli and cilia—of bipolar sensory cells. The terminal end of the 40‐μm‐deep follicle is formed by two conspicuous cells that contain numerous densely packed vesicles that resemble pigment granules. The ocellar tubes of fauveliopsids are strikingly similar to the ocular tubes of sipunculids. These similarities may reflect common ancestry or may represent convergent evolution; both alternatives are partially supported by previous morphological and molecular studies.  相似文献   

18.
Summary Two pairs of ganglia are found in the propodial region of the veliger of Onchidoris bilamellata: the anterolateral pair is located at the foremost corners of the propodium, and the frontal pair is located beside the propodial midline. Both sets of ganglia are positioned below the epidermis, and they are joined to the cerebral ganglia by large, common connectives. Each ganglion possesses sensory cells, nerve cells and sheath cells, and the frontal pair contains a complement of secretory cells. Externally, the propodial ganglia are manifested as sensory fields. The fields of the anterolateral pair are elliptical in shape, and each appears as a band of cilia bordering an unciliated zone. The region devoid of cilia is composed of ordinary epidermal cells, whereas the ciliated portion is comprised of dendritic endings originating from cells in the ganglion. Dendrites arise from one type of sensory cell and pass through the epidermis in bundles. Each dendrite terminates as a single cilium at the epidermal surface. Sensory fields of the frontal ganglia are key-shaped and oppose one another on the anterior end of the foot. Each field appears as a flat, circular, unciliated region which extends into a ciliated groove that runs dorsally toward the mouth. The groove contains the terminals of secretory cells, ciliated sensory cells, and the cell bodies of nonciliated sensory cells. The nonciliated sensory cells, characterized by a microvillous apex, are the dominant cells in the flattened circular zone. The space between the frontal ganglia and the epidermis is bridged by bundles of processes which are similar to those of the anterolateral ganglia. However, these tracts contain collections of the apical processes of secretory cells, the dendrites of ciliated sensory cells, and the axons of nonciliated sensory cells. Morphological and behavioral evidence indicates that the propodial ganglia serve a chemosensory function during settlement and metamorphosis.  相似文献   

19.
 Lattice organs consist of five pairs of sensory organs situated on the dorsal carapace in cypris larvae of the Crustacea Cirripedia. The lattice organs in cypris larvae of Trypetesa lampas (Acrothoracica) and Peltogaster paguri (Rhizocephala) represent the two main types found in cirripedes, but only minor differences exist at the TEM level. Each lattice organ is innervated by two bipolar, primary receptor cells. The inner dendritic segment of each receptor cell carries two outer dendritic segments. The outer dendritic segments contain modified cilia with a short ciliary segment (9×2+0 structure). Two sheath cells envelop the dendrite except for the distal ends of the outer dendritic segments. This distal end enters a cavity in the carapace cuticle and reaches a terminal pore situated at the far end of the cavity. The cuticle above the cavity is modified. In both species the epicuticle is partly perforated by numerous small pores and the underlying exocuticle is much thinner and less electron dense than the regular exocuticle. Lattice organs very probably have a chemosensory function and are homologous with the sensory dorsal organ of other crustacean taxa. Accepted: 18 August 1998  相似文献   

20.
A cephalic organ of presumed sensory function is described in nauplii and copepodids of the ascidicolous copepod Doropygus seclusus Illg. The receptor, located bilaterally in the anterodorsal head region, is composed of dendrites of extra optic protocerebral origin which have ciliary protrusions with basal bodies, no rootlets, and a basal infrastructure of the 9 + 0 type. The cilia do not branch and their distal terminations contain only one to four microtubules. In nauplii and free-living copepodids, a large epidermal supporting cell encapsulates the end of one dendrite and its cilia in a sac. Other dendrites and their cilia pass through the supporting cell and, terminally, the cilia escape to form a whorled fascicle which contacts the anterolateral cephalic cuticle. The latter end organ reaches its greatest development in the second copepodid stage — the stage which infects the ascidian. All of the symbiotic stages of the copepod have only a proportionately smaller end organ of the saccular type and apparently lack the end organ consisting of whorls of ciliary ends. The function of the receptor is unknown, but it is suggested that the end organ which disappears in the symbiotic stages functions in second copepodids in host recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号