首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species with seemingly identical morphology but with distinct genetic differences are abundant in the marine environment and frequently co‐occur in the same habitat. Such cryptic species are typically delineated using a limited number of mitochondrial and/or nuclear marker genes, which do not yield information on gene order and gene content of the genomes under consideration. We used next‐generation sequencing to study the composition of the mitochondrial genomes of four sympatrically distributed cryptic species of the Litoditis marina species complex (PmI, PmII, PmIII, and PmIV). The ecology, biology, and natural occurrence of these four species are well known, but the evolutionary processes behind this cryptic speciation remain largely unknown. The gene order of the mitochondrial genomes of the four species was conserved, but differences in genome length, gene length, and codon usage were observed. The atp8 gene was lacking in all four species. Phylogenetic analyses confirm that PmI and PmIV are sister species and that PmIII diverged earliest. The most recent common ancestor of the four cryptic species was estimated to have diverged 16 MYA. Synonymous mutations outnumbered nonsynonymous changes in all protein‐encoding genes, with the Complex IV genes (coxI‐III) experiencing the strongest purifying selection. Our mitogenomic results show that morphologically similar species can have long evolutionary histories and that PmIII has several differences in genetic makeup compared to the three other species, which may explain why it is better adapted to higher temperatures than the other species.  相似文献   

2.
Lactic acid bacteria (LAB) are Gram positive bacteria, widely distributed in nature, and industrially important as they are used in a variety of industrial food fermentations. The use of genetic engineering techniques is an effective means of enhancing the industrial applicability of LAB. However, when using genetic engineering technology, safety becomes an essential factor for the application of improved LAB to the food industry. Cloning and expression systems should be derived preferably from LAB cryptic plasmids that generally encode genes for which functions can be proposed, but no phenotypes can be observed. However, some plasmid-encoded functions have been discovered in cryptic plasmids originating from Lactobacillus, Streptococcus thermophilus, and Pediococcus spp. and can be used as selective marker systems in vector construction. This article presents information concerning LAB cryptic plasmids, and their structures, functions, and applications. A total of 134 cryptic plasmids collated are discussed.  相似文献   

3.
4.
5.
6.
1. Protective coloration in insects may be aposematic or cryptic, and some species change defensive strategy between instars. In Sweden, the adult striated shieldbugs Graphosoma lineatum (Heteroptera: Pentatomidae) undergo a seasonal colour change from pale brown and black striation in the pre‐hibernating adults, to red and black striation in the same post‐hibernating individuals. To the human eye the pre‐hibernating adults appear cryptic against the withered late summer vegetation, whereas the red and black post‐hibernating adults appear aposematic. This suggests a possibility of a functional colour change. However, what is cryptic to the human eye is not necessarily cryptic to a potential predator. 2. Therefore we tested the effect of coloration in adult G. lineatum on their detectability for avian predators. Great tits (Parus major) were trained to eat sunflower seeds hidden inside the emptied exoskeletons of pale or red G. lineatum. Then the detection time for both colour forms was measured in a dry vegetation environment. 3. The birds required a longer time to find the pale form of G. lineatum than the red one. The pale form appears more cryptic on withered late summer vegetation than the red form, not only to the human eye but also to avian predators. The result supports the idea that the adult individuals of G. lineatum undergo a functional change from a cryptic protective coloration to an aposematic one.  相似文献   

7.
Indirect genetic effects (IGEs) occur when genes expressed in one individual alter the phenotype of an interacting partner. IGEs can dramatically affect the expression and evolution of social traits. However, the interacting phenotype(s) through which they are transmitted are often unknown, or cryptic, and their detection would enhance our ability to accurately predict evolutionary change. To illustrate this challenge and possible solutions to it, we assayed male leg‐tapping behavior using inbred lines of Drosophila melanogaster paired with a common focal male strain. The expression of tapping in focal males was dependent on the genotype of their interacting partner, but this strong IGE was cryptic. Using a multiple‐regression approach, we identified male startle response as a candidate interacting phenotype: the longer it took interacting males to settle after being startled, the less focal males tapped them. A genome‐wide association analysis identified approximately a dozen candidate protein‐coding genes potentially underlying the IGE, of which the most significant was slowpoke. Our methodological framework provides information about candidate phenotypes and candidate single‐nucleotide polymorphisms that underpin a strong yet cryptic IGE. We discuss how this approach can facilitate the detection of cryptic IGEs contributing to unusual evolutionary dynamics in other study systems.  相似文献   

8.
Cryptic splice sites are used only when use of a natural splice site is disrupted by mutation. To determine the features that distinguish authentic from cryptic 5′ splice sites (5′ss), we systematically analyzed a set of 76 cryptic 5′ss derived from 46 human genes. These cryptic 5′ss have a similar frequency distribution in exons and introns, and are usually located close to the authentic 5′ss. Statistical analysis of the strengths of the 5′ss using the Shapiro and Senapathy matrix revealed that authentic 5′ss have significantly higher score values than cryptic 5′ss, which in turn have higher values than the mutant ones. β-Globin provides an interesting exception to this rule, so we chose it for detailed experimental analysis in vitro. We found that the sequences of the β-globin authentic and cryptic 5′ss, but not their surrounding context, determine the correct 5′ss choice, although their respective scores do not reflect this functional difference. Our analysis provides a statistical basis to explain the competitive advantage of authentic over cryptic 5′ss in most cases, and should facilitate the development of tools to reliably predict the effect of disease-associated 5′ss-disrupting mutations at the mRNA level.  相似文献   

9.
Integrated into their bacterial hosts’ genomes, prophage sequences exhibit a wide diversity of length and gene content, from highly degraded cryptic sequences to intact, functional prophages that retain a full complement of lytic-function genes. We apply three approaches—bioinformatics, analytical modelling and computational simulation—to understand the diverse gene content of prophages. In the bioinformatics work, we examine the distributions of over 50,000 annotated prophage genes identified in 1384 prophage sequences, comparing the gene repertoires of intact and incomplete prophages. These data indicate that genes involved in the replication, packaging, and release of phage particles have been preferentially lost in incomplete prophages, while tail fiber, transposase and integrase genes are significantly enriched. Consistent with these results, our mathematical and computational approaches predict that genes involved in phage lytic function are preferentially lost, resulting in shorter prophages that often retain genes that benefit the host. Informed by these models, we offer novel hypotheses for the enrichment of integrase and transposase genes in cryptic prophages. Overall, we demonstrate that functional and cryptic prophages represent a diversity of genetic sequences that evolve along a parasitism-mutualism continuum.  相似文献   

10.
Control of invasions is facilitated by their early detection, but this may be difficult when invasions are cryptic due to similarity between invaders and native species. Domesticated conspecifics offer an interesting example of cryptic invasions because they have the ability to hybridize with their native counterparts, and can thus facilitate the introgression of maladaptive genes. We assessed the cryptic invasion of escaped domestic American mink (Neovison vison) within their native range. Feral mink are a known alien invader in many parts of the world, but invasion of their native range is not well understood. We genetically profiled 233 captive domestic mink from different farms in Ontario, Canada and 299 free‐ranging mink from Ontario, and used assignments tests to ascertain genetic ancestries of free‐ranging animals. We found that 18% of free‐ranging mink were either escaped domestic animals or hybrids, and a tree regression showed that these domestic genotypes were most likely to occur south of a latitude of 43.13°N, within the distribution of mink farms in Ontario. Thus, domestic mink appear not to have established populations in Ontario in locations without fur farms. We suspect that maladaptation of domestic mink and outbreeding depression of hybrid and introgressed mink have limited their spread. Mink farm density and proximity to mink farms were not important predictors of domestic genotypes but rather, certain mink farms appeared to be important sources of escaped domestic animals. Our results show that not all mink farms are equal with respect to biosecurity, and thus that the spread of domestic genotypes can be mitigated by improved biosecurity.  相似文献   

11.
Inter‐ and intra‐specific physiological variations of intertidal macroalgae have been well investigated. However, studies on physiological responses of cryptic algal species have been poorly documented. Bostrychia intricata is a widespread marine red alga in the Southern Hemisphere, and has many cryptic species. We investigated the effect of different salinities and temperatures on the specific growth rate of three cryptic species (N2, N4 and N5) of B. intricata from New Zealand. Our data indicated that all cryptic species grew at the full range of salinities and temperatures tested, but exhibited a significant difference in their specific growth rates. Cryptic species N4 had a higher growth rate than the other two cryptic species under all experimental conditions, whereas cryptic species N2 occasionally showed a higher growth rate than cryptic species N5 at high salinities and lower temperatures. The distinct physiological properties of these cryptic species may explain their distribution pattern (a wider distribution of cryptic species N4 than N2 and N5) in New Zealand. The physiological divergence between the cryptic species could be related to their levels of evolutionary divergence, with more similar physiology between cryptic species, which share a more recent common ancestor (N2 and N5). Our findings underline that morphologically indistinguishable cryptic algal species are different in many other aspects and are truly independent entities.  相似文献   

12.
Introns are flanked by a partially conserved coding sequence that forms the immediate exon junction sequence following intron removal from pre-mRNA. Phylogenetic evidence indicates that these sequences have been targeted by numerous intron insertions during evolution, but little is known about this process. Here, we test the prediction that exon junction sequences were functional splice sites that existed in the coding sequence of genes prior to the insertion of introns. To do this, we experimentally identified nine cryptic splice sites within the coding sequence of actin genes from humans, Arabidopsis, and Physarum by inactivating their normal intron splice sites. We found that seven of these cryptic splice sites correspond exactly to the positions of exon junctions in actin genes from other species. Because actin genes are highly conserved, we could conclude that at least seven actin introns are flanked by cryptic splice sites, and from the phylogenetic evidence, we could also conclude that actin introns were inserted into these cryptic splice sites during evolution. Furthermore, our results indicate that these insertion events were dependent upon the splicing machinery. Because most introns are flanked by similar sequences, our results are likely to be of general relevance.  相似文献   

13.
Crypsis results from a complex interaction among prey coloration, background matching, behaviour and predator visual perception. Tadpoles are known to have varied adaptations to escape predation, but the use of crypsis is little explored, although it is likely for certain species. We investigated potential escape mechanisms related to active escape (fleeing) and crypsis improvement in Bokermannohyla alvarengai tadpoles, proposing a new method to measure cryptic potential. We studied the range of distances covered by threatened and fleeing tadpoles and the proportion of tadpoles that seek shelter or remain exposed after fleeing. We hypothesized that tadpoles that remain exposed may use alternative strategies to avoid detection, such as reaching deeper microhabitats or positioning themselves on substrates that confer greater crypsis than the ones they were on before disturbance. A significantly greater proportion of tadpoles remained exposed after disturbance and positioned themselves on backgrounds that offered greater cryptic potential, but did not differ in depth. Tadpoles may respond to a trade‐off between sheltering and being cryptic. On the one hand, they may remain close to retreat sites or they may escape to microhabitats that provide appropriate background matching as a means to achieve crypsis. On the other hand, the absence of matching backgrounds in the tadpoles' vicinities may induce them to seek shelter. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 437–446.  相似文献   

14.
Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood‐stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site‐specific recombination in P. falciparum, capable of excising loxP‐flanked sequences from a genomic locus with close to 100% efficiency within the time‐span of a single erythrocytic growth cycle. DiCre‐mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre‐expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood‐stage parasite genes.  相似文献   

15.
16.
A system is described that enables the cloning of genes specifying detrimental proteins inEscherichia coli. The system is based on pUC plasmids and was developed for the expression of theBacillus subtilis csaA gene, which is lethal when expressed at high levels. Suppressor strains that tolerate the presence of plasmids for high-level expression ofcsaA were isolated, which contained small cryptic deletion variants of the parental plasmid in high copy numbers. The cryptic plasmids consisted mainly of the pUC replication functions and lacked thecsaA region and selectable markers. The co-resident, incompatible, cryptic plasmids enabled the maintenance of thecsaA plasmids by reducing their copy number 20-fold, which resulted in a concomitant 3- to 7-fold reduction in the expression of plasmid-encoded genes. Strains carrying these cryptic endogenous plasmids proved to be useful for the construction of pUC-based recombinant plasmids carrying other genes, such as theskc gene ofStreptococcus equisimilis, which cannot be cloned in high copy numbers inE. coli. Several strategies to reduce production levels of heterologous proteins specified by plasmids are compared.  相似文献   

17.
18.
Retention of cryptic genes in microbial populations   总被引:5,自引:0,他引:5  
Cryptic genes are silenced genes that can still be reactivated by mutation. Since they can make no positive contribution to the fitness of their carriers, it is not clear why many cryptic genes in microbial populations have not degenerated into useless DNA sequences. Hall et al. (1983) have suggested that cryptic genes have persisted because of occasional strong environmental selection for reactivated genes. The present mathematical study supports their suggestion. It shows that a cryptic gene can be retained without having any selective advantage over a useless DNA sequence, if selection for the reactivated gene occasionally occurs for a substantially long time.   相似文献   

19.
The collembolan Folsomia candida Willem, 1902, is widely distributed throughout the world and has been frequently used as a test organism in soil ecology and ecotoxicology studies. However, it is questioned as an ideal “standard” because of differences in reproductive modes and cryptic genetic diversity between strains from various geographical origins. In this study, we obtained two high-quality chromosome-level genomes of F. candida, for a parthenogenetic strain (named FCDK, 219.08 Mb, 25,139 protein-coding genes) and a sexual strain (named FCSH, 153.09 Mb, 21,609 protein-coding genes), reannotated the genome of the parthenogenetic strain reported by Faddeeva-Vakhrusheva et al. in 2017 (named FCBL, 221.7 Mb, 25,980 protein-coding genes) and conducted comparative genomic analyses of the three strains. High genome similarities between FCDK and FCBL based on synteny, genome architecture, mitochondrial and nuclear gene sequences suggest that they are conspecific. The seven chromosomes of FCDK are each 25%–54% larger than the corresponding chromosomes of FCSH, showing obvious repetitive element expansions and large-scale inversions and translocations but no whole-genome duplication. The strain-specific genes, expanded gene families and genes in nonsyntenic chromosomal regions identified in FCDK are highly related to the broader environmental adaptation of parthenogenetic strains. In addition, FCDK has fewer strain-specific microRNAs than FCSH, and their mitochondrial and nuclear genes have diverged greatly. In conclusion, FCDK/FCBL and FCSH have accumulated independent genetic changes and evolved into distinct species after 10 million years ago. Our work provides important genomic resources for studying the mechanisms of rapidly cryptic speciation and soil arthropod adaptation to soil ecosystems.  相似文献   

20.
Cryptic species are rarer than their combined, morphologically recognisable species. Each cryptic species may have its own habitat requirements and distribution, and each should be considered separately in biodiversity conservation. This investigation explores how well the two cryptic species of the wetland moss Hamatocaulis vernicosus (Mitt.) Hedenäs s.l., included in Annex II of the EU Habitat Directive, are safeguarded in existing protected sites in Sweden. Further, the northern distribution limit of the southern of the two cryptic species is explored. The distributions of the two cryptic species and their intraspecific variation are judged by the nuclear ITS1?+?2 and the two chloroplast markers rpl16 and trnL-trnF for a set of 89 specimens. The genetic differences between the two cryptic species are significant, but there are no differences between the protected and non-protected subsets within the respective species. The protected areas therefore represent these two species’ genetic variation well. The populations of both cryptic species appear stable, according to their genetic signals. One of the two cryptic species occurs almost throughout Sweden, whereas the other occurs only to the south of the southern limit of the southern boreal zone, except for two finds slightly further north in climatically mild areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号