首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The current work provides a design and fabrication technique for a micro channel system that can provide a uniform heat flux boundary condition on the channel wall and a well insulation on the wall to prevent heat loss from the channel to the outside ambient. Therefore, detailed micro-scale flow and heat transfer process and information along the channel can be studied. Semiconductor sensor material was selected to fabricate both the heaters and the arrays of temperature sensors on a silicon substrate. These heaters and sensors were then moved to a low thermal conductivity epoxy-glass substrate for fabrication of the channel. Design consideration and fabrication techniques involved in this processes will be discussed. A final measurement for the validation of the heaters and the sensors fabricated and a study of the flow friction behavior and the heat transfer coefficient distributions inside the micro channel will be presented. The local Nusselt number distrubution inside the micro channel is reported the first time in the open literature.  相似文献   

2.

Background  

Although specific light attributes, such as color and fluence rate, influence plant growth and development, researchers generally cannot control the fine spectral conditions of artificial plant-growth environments. Plant growth chambers are typically outfitted with fluorescent and/or incandescent fixtures that provide a general spectrum that is accommodating to the human eye and not necessarily supportive to plant development. Many studies over the last several decades, primarily in Arabidopsis thaliana, have clearly shown that variation in light quantity, quality and photoperiod can be manipulated to affect growth and control developmental transitions. Light emitting diodes (LEDs) has been used for decades to test plant responses to narrow-bandwidth light. LEDs are particularly well suited for plant growth chambers, as they have an extraordinary life (about 100,000 hours), require little maintenance, and use negligible energy. These factors render LED-based light strategies particularly appropriate for space-biology as well as terrestrial applications. However, there is a need for a versatile and inexpensive LED array platform where individual wavebands can be specifically tuned to produce a series of light combinations consisting of various quantities and qualities of individual wavelengths. Two plans are presented in this report.  相似文献   

3.
Absorption of power in large body volumes can occur with some approaches used for hyperthermia treatment of cancer. A systemic heat absorption rate exceeding the heat dissipation rate can lead to systemic temperature elevation that limits the magnitude and duration of application of power and hence the degree of preferential tumor temperature rise. We describe a hyperthermia approach consisting of regional electromagnetic power absorption and extracorporeal blood cooling with regulation of both systemic heat absorption and dissipation rates ("balanced heat transfer"). A test of this approach in five dogs with nonperfused tumor models demonstrated intratumoral temperatures greater than 42 degrees C, while systemic temperature remained at 33 degrees C and visceral temperatures within the heated region equilibrated between 33 and 42 degrees C. Solutions of the bioheat transfer equation were obtained for a simplified model with a tumor perfusion rate lower than surrounding normal tissue perfusion rate. In this model, the use of arterial blood temperatures less than 37 degrees C allowed higher power densities to be used, for given normal tissue temperatures, than when arterial temperature was greater than or equal to 37 degrees C. As a result, higher intratumoral temperatures were predicted. Control of arterial blood temperature using extracorporeal cooling may thus (1) limit systemic temperature rise produced by regional heating devices and (2) offer a means of improving intratumoral temperature elevations.  相似文献   

4.
5.
6.
Thermal conductance measures the ease with which heat leaves or enters  an organism''s body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)—in such a way that a scale-invariant ratio between both variables is equal to one—as could be expected from the Scholander–Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs.  相似文献   

7.
Jiao A  Han X  Critser JK  Ma H 《Cryobiology》2006,52(3):386-392
During freezing, cells are often damaged directly or indirectly by ice formation. Vitrification is an alternative approach to cryopreservation that avoids ice formation. The common method to achieve vitrification is to use relatively high concentrations of cryoprotectant agents (CPA) in combination with a relatively slow cooling rate. However, high concentrations of CPAs have potentially damaging toxic and/or osmotic effects on cells. Therefore, establishing methods to achieve vitrification with lower concentrations of CPAs through ultra-fast cooling rates would be advantageous in these aspects. These ultra-fast cooling rates can be realized by a cooling system with an ultra-high heat transfer coefficient (h) between the sample and coolant. The oscillating motion heat pipe (OHP), a novel cooling device utilizing the pressure change to excite the oscillation motion of the liquid plugs and vapor bubbles, can significantly increase h and may fulfill this aim. The current investigation was designed to numerically study the effects of different values of h on the transient heat transfer characteristics and vitrification tendencies of the cell suspension during the cooling processes in an ultra-thin straw (100 microm in diameter). The transient temperature distribution, the cooling rate and the volume ratio (x) of the ice quantity to the maximum crystallizable ice of the suspension were calculated. From these numerical results, it is concluded that the ultra-high h (>10(4) W/m2 K) obtained by OHPs could facilitate vitrification by efficiently decreasing x as well as the time to pass through the dangerous temperature region where the maximum ice formation happens. For comparison, OHPs can decrease both of the parameters to less than 20% of those from the widely used open pulled straw methods. Therefore, the OHP method will be a promising approach to improving vitrification tendencies of CPA solutions and could also decrease the required concentration of CPAs for vitrification, both of which are of great importance for the successful cryopreservation of cells by vitrification.  相似文献   

8.
设计一种具有“微坝”和“微缝”结构的微流控芯片,能够物理隔离不同细胞,而且培养基中小分子营养物质可以自由流通。实验结果表明在芯片上可以共培养人肺腺癌细胞(A549)、人胚肺成纤维细胞(HLF-1)和人内皮细胞(HUVECs)三种细胞,在72 h培养后三种细胞生长状态良好,具有细胞图形化的特点和功能,为下一步开展多种细胞相互作用等相关研究提供重要的技术平台。  相似文献   

9.
The construction of the track for automatic, continuous horizontal transporting of the sensor which measures radiation with controlled velocity at various heights above the ground in a plant stand has been described.  相似文献   

10.
Non-conventional ceramic-based composite coatings were fabricated by air plasma spraying in order to evaluate their microstructural and electromagnetic properties. Different chromia-based formulations were selected and prepared in the form of feedstock materials for the fabrication of samples having an average thickness of about 3 mm. Waveguide testing was performed on the deposited coatings and most interesting results are reported and commented. Despite the complex formulation of investigated materials, as compared with standard materials for thermal spraying, it has been evidenced as plasma spraying can represent an interesting technique to produce functionalized surfaces with tailored electromagnetic properties, adding new potential application areas to the well-known fields where this technology is already present.  相似文献   

11.
We have designed an approach for modeling olfactory pathways by which one can explore how the properties of individual receptors affect the information coding capacity of an entire system. The effect of receptor tuning breadth on system performance was explored explicitly. We presented model sensory arrays with sets of stimuli randomly and uniformly distributed in an "olfactory space". Arrays of uniformly sized model receptors responding to 25-35% of the stimuli gave the best performance as measured by the ability to capture the most information about the stimulus set. Arrays of variably sized model receptors that were both more broadly and more narrowly tuned than this optimum could, however, perform better than uniform arrays. This method and the results obtained using it suggest a framework for considering the growing body of evidence on the functional properties of individual olfactory receptor and relay neurons from a systems coding perspective.  相似文献   

12.
Slush nitrogen (SN2) is a mixture of solid nitrogen and liquid nitrogen, with an average temperature of −207 °C. To investigate whether plunging a French plastic straw (commonly used for sperm cryopreservation) in SN2 substantially increases cooling rates with respect to liquid nitrogen (LN2), a numerical simulation of the heat conduction equation with convective boundary condition was used to predict cooling rates. Calculations performed using heat transfer coefficients in the range of film boiling confirmed the main benefit of plunging a straw in slush over LN2 did not arise from their temperature difference (−207 vs. −196 °C), but rather from an increase in the external heat transfer coefficient. Numerical simulations using high heat transfer (h) coefficients (assumed to prevail in SN2) suggested that plunging in SN2 would increase cooling rates of French straw. This increase of cooling rates was attributed to a less or null film boiling responsible for low heat transfer coefficients in liquid nitrogen when the straw is placed in the solid-liquid mixture or slush. In addition, predicted cooling rates of French straws in SN2 tended to level-off for high h values, suggesting heat transfer was dictated by heat conduction within the liquid filled plastic straw.  相似文献   

13.
Recent suggestions for an improved model of heat transfer in living tissues emphasize the existence of a convective mode due to flowing blood in addition to, or even instead of, the perfusive mode, as proposed in Pennes' "classic" bioheat equation. In view of these suggestions, it might be beneficial to develop a technique that will enable one to distinguish between these two modes of bioheat transfer. To this end, a concept that utilizes a multiprobe array of thermistors in conjunction with a revised bioheat transfer equation has been derived to distinguish between, and to quantify the perfusive and convective contribution of blood to heat transfer in living tissues. The array consists of two or more temperature sensors one of which also serves to locally insert a short pulse of heat into the tissue prior to the temperature measurements. A theoretical analysis shows that such a concept is feasible. The construction of the system involves the selection of several important design parameters, i.e., the distance between the probes, the heating power, and the pulse duration. The choice of these parameters is based on computer simulations of the actual experiment.  相似文献   

14.
We have investigated the sensitivity of ex situ (analysis under air condition) and in situ (analysis under liquid condition) spectral SPR sensors, which were self-constructed with fiber optic spectrometers. The sensitivity of SPR sensors was analyzed in the wavelength range of 550-780 nm by the interactions of streptavidin and biotinylated IgG, and the sensitivity was dependent on the wavelength of measurements. The sensitivity of an ex situ SPR sensor operated at the long wavelength range from 712 nm was approximately 2.6 times higher than that at the short wavelength range from 571 nm. In addition, the sensitivity of an ex situ spectral SPR sensor was about twice as high as that of an in situ spectral SPR sensor for the same resonance wavelength range. This was interpreted in that the difference in sensitivity between two SPR sensors was significantly caused by the evanescent field intensity at the metal/dielectric interface. Thus, it was suggested that ex situ spectral SPR sensors operated at the long wavelength range are sensitive biosensors for the high-throughput analysis of protein interactions on protein arrays.  相似文献   

15.
Rabin Y 《Cryobiology》2003,46(2):109-120
This report presents a technique for estimating the propagation of uncertainty in measurements into mathematical simulations of heat transfer. The motivation for this report is to show the dramatic uncertainty associated with estimating the value of the so-called "lethal temperature," even in a case where a perfect correlation appears to exist between histo-pathologic observations and a corresponding heat transfer simulation. Although the example presented in this report relates to cryosurgery, the technique proposed in this report is rather general and can be applied to any heat transfer problem. The uncertainty analysis presented in this report can be considered as an extension of the well-known concept of the rule of the square root of the sum of the square errors. A comparison of the new technique with the worst case scenario concept is also presented. In conclusion, it is recommended that the proposed technique be routinely applied when presenting simulated results, whether as a part of a theoretical study, or in comparison with experimental data.  相似文献   

16.
Whole animal testing is an essential part in evaluating the toxicological and pharmacological profiles of chemicals and pharmaceuticals, but these experiments are expensive and cumbersome. A cell culture analog (CCA) system, when used in conjunction with a physiologically based pharmacokinetic (PBPK) model, provides an in vitro supplement to animal studies and the possibility of a human surrogate for predicting human response in clinical trials. A PBPK model mathematically simulates animal metabolism by modeling the absorption, distribution, metabolism, and elimination kinetics of a chemical in interconnected tissue compartments. A CCA uses mammalian cells cultured in interconnected chambers to physically represent the corresponding PBPK. These compartments are connected by recirculating tissue culture medium that acts as a blood surrogate. The purpose of this article is to describe the design and basic operation of the microscale manifestation of such a system. Microscale CCAs offer the potential for inexpensive, relatively high throughput evaluation of chemicals while minimizing demand for reagents and cells. Using microfabrication technology, a three-chamber ("lung"-"liver"-"other") microscale cell culture analog (microCCA) device was fabricated on a 1 in. (2.54 cm) square silicon chip. With a design flow rate of 1.76 microL/min, this microCCA device achieves approximate physiological liquid-to-cell ratio and hydrodynamic shear stress while replicating the liquid residence time parameters in the PBPK model. A dissolved oxygen sensor based on collision quenching of a fluorescent ruthenium complex by oxygen molecules was integrated into the system, demonstrating the potential to integrate real-time sensors into such devices.  相似文献   

17.
18.
The heat activation of bacterial spores was studied by means of differential thermal analysis in the temperature range 30-110 degrees C using the spores of Bacillus cereus. The thermogram showed three endothermic peaks at 56, 95, and 103 degrees C with one exothermic peak at 105 degrees C during the heating process. The spore coat separated from the native spores also showed a peak at 56 degrees C on its heating thermogram. The peak at 56 degrees C was reversible for both native spores and the spore coat. It was suggested that this peak at 56 degrees C might be related to the heat-activation process that takes place in the spore-coat region. It seems that the peak is due to the denaturation or the structural change of the spore-coat protein that might facilitate either the permeation of germination stimulators or the release of some germination inhibitor into or out of the spores.  相似文献   

19.
The use of solid supported membranes (SSM) was investigated for reconstitution of ion channels and for potential application to screen pharmacological reagents affecting ion channel function. The voltage-gated Kv1.5 K+ channel was reconstituted on an SSM and a current was measured. This current was dependent on the presence of K+, but not Na+, indicating that the Kv1.5 K+ channel maintained cation specificity when reconstituted on SSM. Two pharmacological reagents applied to Kv1.5 K+ channels reconstituted on SSM had similar inhibitory effects as those measured using Kv1.5 in biological membranes. SSM-mounted ion channels were stable enough to be washed with buffer solution and reused many times, allowing solution exchange essential for pharmacological drug screening.  相似文献   

20.
The dissolved oxygen concentration is a crucial parameter in aerobic bioprocesses due to the low solubility of oxygen in water. The present study describes a new method for determining the oxygen transfer rate (OTR) in shaken-culture systems based on the sodium sulfite method in combination with an electrochemical oxygen sensor. The method replaces the laborious titration of the remaining sulfite by an on-line detection of the end point of the reaction. This method is a two-step procedure that can be applied in arbitrary flasks that do not allow the insertion of electrodes. The method does not therefore depend on the type of vessel in which the OTR is detected. The concept is demonstrated by determination of the OTR for standard baffled 1-L shake flasks and for opaque Ultra Yield™ flasks. Under typical shaking conditions, kLa values in the standard baffled flasks reached values up to 220 h-1, whereas the kLa values of the Ultra Yield flasks were significantly higher (up to 422 h-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号