首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of lipid peroxidation on 5-HT2 receptor binding was examined in prefrontal cortex membranes from sheep brain. Lipid peroxidation was induced with ascorbic acid and ferrous sulphate and measured by the thiobarbituric acid method. In lipid-peroxidized membranes, [3H]ketanserin specific binding was inhibited. The Bmax values decreased by 80%, from 50.1±3.5 fmol/mg protein in control membranes to 10.1±2.0 fmol/mg protein in peroxidized membranes, indicating a decrease in the number of 5-HT2 binding sites. However, the KD values for the [3H]ketanserin specific binding did not significantly change. In order to further characterize [3H]ketanserin binding, the inhibition potency (IC50 values) of antagonists or agonists of serotonin and dopamine receptors for [3H]ketanserin specific binding was determined. In control membranes, the order of the inhibition potency of the drugs tested was the following: ketanserin (−log [IC50] = 8.56±0.70) ritanserin (−log [IC50] = 8.13±0.30) methysergide (−log [IC50] = 7.42±0.50) spiperone (−log [IC50] = 7.23±0.18) serotonin (−log [IC50] = 6.99±0.65) haloperidol (−log [IC50] = 6.95±0.65) dopamine (−log [IC50] = 5.82±0.76). After membrane lipid peroxidation, the IC50 value for ritanserin was significantly increased, suggesting a decreased capacity for displacing [3H]ketanserin specific binding. Other antagonists of 5-HT2 receptors showed apparent increases in IC50 values upon peroxidation, whereas spiperone was shown to be the most potent drug (−log [IC50] = 7.19±1.06) in inhibiting [3H]ketanserin specific binding. A decrease in polyunsaturated fatty acids, namely docosahexaenoic acid (22:6) was also observed in peroxidized membranes. These results indicate a modulating role of the surrounding lipids and of the physical properties of the membranes on the binding activity of 5-HT2 receptors upon the lipid peroxidation process, which can be involved in the tissue impairment that occurs during the aging process and in post-ischemic situations.  相似文献   

2.
The binding of the Ca2+-channel blocker d-cis-[3H]diltiazem to guinea pig skeletal muscle microsomes is temperature-dependent. At 2°C the KD is 39 nM and Bmax is 11 pmol/mg protein. The binding is fully reversible (K−1 = 0.02 min−1). The binding sites discriminate between the diastereoisomers 1- and d-cis-diltiazem, recognize verapamil, gallopamil and tiapamil, and are sensitive to La3+-inhibition. At 30°C the KD is 37 nM and the Bmax is 2.9 pmol/mg protein. D-cis-diltiazem-labelling is regulated by the 1,4-dihydropyridine Ca2+-channel blockers and a novel Ca2+-channel activator in a temperature-dependent manner. At 30°C an enhancement of d-cis-diltiazem binding by the channel blockers is observed. This is attributed to a Bmax increase. EC50-values for enhancement and the maximal enhancement differ for the individual 1,4-dihydropyridines. At 2°C 1,4-dihydropyridines inhibit d-cis-[3H]diltiazem binding. This is attributed to a Bmax decrease. We have directly labelled one of the drug receptor sites within the Ca2+-channel which can allosterically interact with the 1,4-dihydropyridine binding sites.  相似文献   

3.
The activity of the muscarinic cholinergic system (acetylcholine, ACh; acetylcholinesterase, AChE; choline acetyltransferase, ChAT; muscarinic acetylcholine receptors) was studied in the carp brain. The ACh content (13.9 ± 1.1 nmol/g wet tissue) was estimated by gas chromatography after microwave irradiation focused to the head. The AChE and ChAT activities were 153 ± 13 nmol/min/mg protein and 817 ± 50 pmol/min/mg protein, respectively. The characteristics of [3H](−)quinuclidinyl benzilate ([3H](−)QNB) and [3H]pirenzepine ([3H]PZ) binding were also studied in brain membranes. Their specific binding was linearly dependent on the protein content and they appeared to bind with high affinity to a single, saturable binding site. A dissociation constant (Kd) of 47 ± 6.3 pM and a maximum number of binding sites (Bmax) of 627 ± 65 fmol/mg protein were obtained for [3H](−)QNB, with a Kd value of 3.85 ± 0.67 nM and a Bmax value of 95.3 ± 6.25 fmol/mg protein for [3H]PZ binding. The [3H]PZ binding amounted to only 15% of the [3H](−)QNB-labeled sites, as estimated from the ratio of the Bmax values of [3H](−)QNB and [3H]PZ, suggesting a low density of M1 subtype. Atropine sulfate, atropine methylnitrate and PZ inhibited the binding of both radioligands with Hill slopes (nH) close to unity. The nH value of AF-DX 116 was close to 1 against [3H](−)QNB binding, while it was 0.75 against [3H]PZ binding. The displacement curves of oxotremorine and carbachol were shallow for the binding of both radioligands. The rank order of potency of muscarinic ligands against [3H](−)QNB binding (Ki nM) was atropine sulfate (0.55) > atropine methylnitrate (1.61) > PZ (61.19) > oxotremorine (156.3) > AF-DX 116 (307) > carbachol (1301), while in the case of [3H]PZ binding it was atropine sulfate (0.24) > atropine methylnitrate (0.34) > PZ (10.38) > AF-DX 116 (55.87) > oxotremorine (62.79) > carbachol (1696). The results indicate the presence of a well-developed muscarinic cholinergic system with predominantly M2 receptors in the carp brain.  相似文献   

4.
[3H]Neurotensin (NT) was found to bind specifically and with high affinity to crude membranes prepared from rat uterus. Scatchard analysis of saturation binding studies indicated that [3H]NT apparently binds to two sites (high affinity Kd 0.5 nM; low affinity Kd 9 nM) with the density of high affinity sites (41 fmoles/mg prot.) being about one-third that of the low affinity sites (100 fmoles/mg prot.). In competition studies, NT and various fragments inhibited [3H]NT binding with the following potencies (IC50): NT 8–13 (0.4 nM), NT 1–13 (4 nM), NT 9–13 (130 nM), NT 1–11, NT 1–8 (>100 μM). Quantitatively similar results were obtained using brain tissue. These findings raise the possibility of a role for NT in uterine function.  相似文献   

5.
The displacement of [3H]GABA binding to GABA receptors of bovine brain cortical membranes by some sulfur-containing compounds (homothiotaurine, thiotaurine and carboxymethylcysteamine) was investigated and their potency was compared to that of other known sulfur-containing analogues of GABA, such as homotaurine, homohypotaurine and taurine. Displacement studies showed homotaurine to be more effective as a GABA displacer than homohypotaurine and homothiotaurine (IC50: 3.9 × 10−8, 6.7 × 10−7 and 6.8 × 10−7 M, respectively). Saturation experiments showed that the effect of taurine, homothiotaurine, homotaurine and homohypotaurine was due to a loss of high-affinity GABA sites (Kd = 10.7 nM). Homotaurine seems also to interact with low-affinity sites, decreasing the affinity constant, whereas the number of binding sites remains unchanged.  相似文献   

6.
[3H]Lysergic acid diethylamide (LSD) in the presence of 40 nM ketanserin labeled the 5-HT1A receptor subtype in rat hippocampal membranes. In the presence of guanosine triphosphate (GTP), the Bmax and affinity of [3H]LSD binding to the 5-HT1A binding site were significantly decreased. [3H]LSD in the presence of 40 nM WB4101 labeled the 5-HT2 receptor subtype in homogenates of rat frontal cortex. In contrast to the effect on [3H]LSD binding to the 5-HT1A binding site, GTP produced no significant effect on either the Bmax or the KD of [3H]LSD binding to the 5-HT2 binding site. Competition of 5-HT for [3H]LSD binding to the 5-HT2 binding site was best described by a computer-derived model assuming two binding sites. In the presence of GTP, the 5-HT competition curve was shifted significantly to the right with an approx. 3-fold increase in the IC50. These binding characteristics are consistent with [3H]LSD acting as an antagonist at the 5-HT2 receptor which has multiple affinity states for agonists and is coupled to a guanine nucleotide regulatory subunit. Thus, [3H]LSD has binding characteristics consistent with it acting as an agonist at the 5-HT1A receptor subtype but as an antagonist at the 5-HT2 receptor subtype in rat brain.  相似文献   

7.
The selective antagonist radioligand [3H]2-propylthioadenosine-5′-adenylic acid (1,1-dichloro-1-phosphonomethyl-1-phosphonyl) anhydride ([3H]PSB-0413) was prepared by catalytic hydrogenation of its propargyl precursor with a high specific radioactivity of 74 Ci/mmol. In preliminary saturation binding studies, [3H]PSB-0413 showed high affinity for platelet P2Y12 receptors with a KD value of 4.57 nM. Human platelets had a high density of P2Y12 receptors exhibiting a Bmax value of 7.66 pmol/mg of protein.  相似文献   

8.
Inhibitory effects of zotepine (Zot) on D-1, D-2, D-3 and D-4 subtypes of dopamine (DA) receptors were investigated in crude synaptic membranes of rat striatum and bovine caudate nucleus and compared to those of chlorpromazine (CPZ) and haloperidol (HAL). From the IC50-values of Zot, CPZ and HAL, the K-values of each drug are estimated as follows: 34.4, 152 and 244 nM (D-1, 3H-labeled cis-flupenthixol binding (1.0 nM) to rat membranes); 37.4, 7.1 and 2.4 nM (D-2, [3H]spiperone (Spi) binding (0.5 nM) to rat membranes in the presence of 0.1 μM ketanserin); 73.1, 15.2 and 22.4 nM (D-3, 3H-labeled N-propylapomorphine (NPA) binding (0.29 nM) to bovine membranes in the presence of 0.1 μM Spi); 9.5, 65.3 and 3.1 nM (D-4, [3H]NPA binding (0.29 nM) bovine membranes in the presence of 25 nM DA), respectively. Zot binds with higher affinity to D-4 but lower affinity to D-3 than to other subtypes. It is also presumed that Zot binds to D-1 with high affinity and D-2 and D-3 with low affinity compared to CPZ and HAL.  相似文献   

9.
Batrachotoxinin-A [3H]benzoate ([3H]BTX-B) binds specifically and with high affinity (KD 48 nM) to sites (Bmax 2.1 pmol/mg protein) associated with voltage-dependent sodium channels in rodent brain vesicular preparations. High affinity binding requires the presence of scorpion (Leiurus) venom and a membrane potential. Local anesthetics antagonize the binding. Nonspecific binding is defined in the presence of veratridine. In particulate preparations from electroplax of the eel Electrophorus electricus, [3H]BTX-B binds with a KD of about 140 nM and a Bmax of 2.5 pmol/mg protein in the presence of scorpion venom. Higher concentrations of scorpion venom are required to enhance binding in Electrophorus preparations than in brain preparations. Local anesthetics antagonize binding in Electrophorus preparations with potencies similar to those in brain preparations. Veratridine and batrachotoxin are less potent in blocking binding in Electrophorus than in brain preparations. It appears likely that binding in Electrophorus preparations is primarily to membrane fragments rather than vesicular entities as in brain. Binding of [3H]BTX-B to particulate preparations from electroplax of the ray Torpedo californica and the catfish Malapterurus electricus is mainly nonspecific. Scorpion venom does not enhance total binding and local anesthetics are not effective in antagonizing binding.  相似文献   

10.
The interaction of the nicotinic agonist (R,S)-3-pyridyl-1-methyl-2-(3-pyridyl)-azetidine (MPA) with different nicotinic acetylcholine receptor (nAChR) subtypes was studied in cell lines and rat cortex. MPA showed an affinity (Ki = 1.21 nM) which was higher than anatoxin-a > (−)-nicotine > (+)-[R]nornicotine > (−)-[S]nornicotine > and (+)-nicotine, but lower than cytisine (Ki = 0.46 nM) in competing for (−)-[3H]nicotine binding in M10 cells, which stably express the recombinant 4β2 nAChR subtype. A one-binding site model was observed in all competing experiments between (−)-[3H]nicotine binding and each of the agonists studied in M10 cells. MPA showed a 13-fold higher affinity for (−)-[3H]nicotine binding sites compared to the [3H]epibatidine binding sites in rat cortical membranes. In human neuroblastoma SH-SY5Y cells, which predominantly express the 3 nAChR subunit mRNA, MPA displaced [3H]epibatidine binding from a single population of the binding sites with an affinity in the same nM range as that observed MPA in displacing [3H]epibatidine binding in rat cortical membranes. Chronic treatment of M10 cells with MPA significantly up-regulated the number of (−)-[3H]nicotine binding sites in a concentration dependent manner. Thus MPA appears to have higher affinity to 4-subunit containing receptor subtype than 3-subunit containing receptor subtype of nAChRs. Furthermore MPA binds to 4β2 receptor subtype with higher affinity than (−)-nicotine and behaves, opposite to cytisine, as a full agonist in up-regulating the number of nAChRs. © 1998 Elsevier Science Ltd. All rights reserved.  相似文献   

11.
Two functional isoforms (1) and + (3) of the Na,K-ATPase catalytic subunit coexist in canine cardiac myocytes [J. Biol. Chem. (1987) 262, 8941-8943]. The in vitro turnover rates of ATP hydrolysis have been determined in sarcolemma preparations by comparing [3H]ouabain-binding and Na,K-ATPase activity at various doses of ouabain (0.3–300 nM). The correlation between the occupancy of the ouabain-binding sites and the degree of Na,K-ATPase inhibition was not linear. The results showed that the form of low-affinity for ouabain (Kd = 300–700 nM) exhibited a lower turnover rate (88 ± 10 vs. 147 ± 15 molecules of ATP hydrolyzed per second per ouabain-binding site) than the high affinity form (Kd = 1–8 nM). Thus our results indicate this specific isoform kinetic difference could contribute to differences in the cardiac cellular function.  相似文献   

12.
Dihydropyridine-sensitive Ca2+ channels and the relationship between binding of dihydropyridine derivatives and depolarization-induced Ca2+ uptake have been studied in aneurally cultured human muscle. Analysis of the equilibrium binding of the 1,4-dihydropyridine derivative (+)-PN200-110 revealed a single high-affinity binding site with a Kd of 0.15±0.05 nM and a Bmax of 87±12 fmol/mg protein. Inhibition of (+)-[3H]PN200-110 binding by nitrendipine revealed a Ki of 0.8 nM for the nitrendipine-receptor complex. Depolarization of cultured human muscle achieved by elevating the K+ concentration increased the uptake 45Ca2+ which was inhibited by nitrendipine with an IC50 of 1.1 nM. This study demonstrates that aneurally cultured human muscle has dihydropyridine-sensitive voltage-dependent Ca2+ channels which are functional when the fibers are depolarized.  相似文献   

13.
Met-enkephalin-Gly-Tyr (MEGY) is an endogenous peptide that binds to opioid sites in zebrafish and in rat brain homogenates. The aim of this work is to characterize the binding profile of this opioid ligand on two duplicate delta receptors from zebrafish, ZFOR1 and ZFOR4. Our results show that, while ZFOR1 presents one single binding site for [3H]-MEGY (KD = 4.0 ± 0.4 nM), the experimental data from ZFOR4 fit better to the two-site binding model (KD1 = 0.8 ± 0.2 nM and KD2 = 30.2 ± 10.2 nM). Two other MEGY synthetic analogues, (D-Ala2)-MEGY and (D-Ala2, Val5)-MEGY were also prepared and tested, together with the original peptide MEGY and other opioid ligands, in competition binding assays. While these peptides presented Ki values on the nanomolar range when using [3H]-MEGY as radioligand, these parameters were two orders higher in competition binding assays with the antagonist [3H]-diprenorphine. Functional [35S]GTPγS stimulation analysis has revealed that these two receptors can be activated by several opioid agonists. Our results prove that although the MEGY peptide acts as an agonist on ZFOR1 and ZFOR4, there are subtle pharmacological differences between these two delta opioid receptors from zebrafish.  相似文献   

14.
The formation of three [Tl(en)n]3+ complexes (n=1–3) in a pyridine solvent has been established by means of 205Tl and 1H NMR. Their stepwise stability constants based on concentrations, Kn=[Tl(en)n 3+]/{[Tl(en)n−1 3+]·[en]}, at 298 K in 0.5 M NaClO4 ionic medium in pyridine, were calculated from 205Tl NMR integrals: log K1=7.6±0.7; log K2=5.2±0.5 and log K3=2.64±0.05. Linear correlation between both the 205Tl NMR shifts and spin–spin coupling 205Tl–1H versus the stability constants has been found and discussed. A single crystal with the composition [Tl(en)3](ClO4)3 was synthesized and its structure determined by X-ray diffraction. The Tl3+ ion is coordinated by three ethylenediamine ligands via six N-donor atoms in a distorted octahedral fashion.  相似文献   

15.
The distribution and the pharmacological properties of the binding of the benzodiazepine receptor antagonist [3H]-Ro 15–1788 (8-fluoro-3-carboethoxy-5,6-dihydro-5-methyl-6-oxo-4H imidazol [1,5-a] 1,4 benzodiazepine) were compared in some brain membranes of the saltwater teleost fish, Mullus surmuletus: only a single population of [3H]-Ro 15–1788 binding sites was detected. The binding was saturable and reversible with a high affinity, revealing a significant population of binding sites (Kd value of 2.1 ± 0.2 nM and Bmax value of 1400-900 fmol mg−1 of protein, depending on fish length). The highest concentration of benzodiazepine recognition sites labelled with [3H]-Ro 15–1788 was present in the optic lobe and the olfactory bulb and the lowest concentration was found in the medulla oblongata, cerebellum and spinal cord. In order to explore behavioural selectivity as a consequence of multiple receptor subtypes, six benzodiazepine receptor ligands, flunitrazepam (5-(2-fluoro-phenyl)-1,3,dihydro-1-methyl-7-nitro-2H-1,4-benzodiazepine-2-one), alpidem, (N,N-dipropyl-6-chloro-2-(4-chlorophenyl) imidazo [1,2-a] pyridine-3-acetamide) zolpidem {N,N,6, trimethyl-2-(4-methyl-phenyl) imidazo [1,2-a] pyridine-3-acetamide hemitartrate}, methyl β carboline-3-carboxylate (βCCM), Ro 15–1788 and Ro 5–4864 (4′-chlorodiazepam), were tested in vitro by binding of [3H]-Ro 15–1788 to membrane preparations from various brain areas of Mullus surmuletus. Displacement studies showed a similar rank order of efficacy of various unlabelled ligands. In all regions of the brain and in the spinal cord, GABA potentiate [3H]-flunitrazepam binding in a similar order, suggesting that the BDZ recognition sites are part of the GABAA receptor structure. These results suggest that central-type benzodiazepine receptors are present in one class of benzodiazepine binding sites in the saltwater teleost fish brain of Mullus surmuletus (type I-like). Here we report initial evidence of homogeneity of subtypes of central benzodiazepine receptors in the spinal cord of the saltwater teleost fish, Mullus surmuletus.  相似文献   

16.
The diverse function of human placental aromatase including estradiol 6-hydroxylase and cocaine N-demethylase activity are described, and the mechanism for the simultaneous metabolism of estradiol to 2-hydroxy- and 6-hydroxyestradiol at the same active site of aromatase is postulated. Comparison of aromatase activity is also made among the wild type and N-terminal sequence deleted forms of human aromatase which are recombinantly expressed in Escherichia coli. Aromatase cytochrome P450 was reconstituted and incubated with [6,7-3H2,4-14C]estradiol, 7-ethoxycoumarin, and [N-methyl-3H3]cocaine. 6-Hydroxy[7-3H,4-14C]estradiol was isolated as the metabolite of estradiol and the 3H-water release method based on the 6-3H label was established. The initial rate kinetics of the 6-hydroxylation gave Km of 4.3 μM, Vmax of 4.02 nmol min−1mg−1, and turnover rate of 0.27 min−1. Testosterone competed dose-dependently with the 6-hydroxylation and showed the Ki of 0.15 μM, suggesting that they occupy the same binding site of aromatase. The deethylation of 7-ethoxycoumarin showed Km of 200 μM, Vmax of 12.5 nmol min−1mg−1 and turnover rate of 1.06 min−1. The N-demethylation of cocaine was analysed by the 3H-release method, giving Km of 670 μM, Vmax of 4.76 nmol min−1mg−1, and turnover rate of 0.49 min−1. All activity was dose-responsively suppressed by anti-aromatase P450 monoclonal antibody MAb3-2C2. The N-terminal 38 amino acid residue deleted form of aromatase P450 was expressed in particularly high yield giving a specific activity of 397 ± 83 pmol min−1mg−1 (n = 12) of crude membrane-bound particulates with a turnover rate of 2.6 min−1.  相似文献   

17.
The binding kinetics of the specific dopamine D2 antagonist [3H]raclopride to dopamine D2 receptors in rat neostriatum were studied. The pseudo-first-order rate constants of [3H]raclopride binding with these membranes revealed a hyperbolic dependence upon the antagonist concentration, indicating that the reaction had at least two consecutive and kinetically distinguished steps. The first step was fast binding equilibrium, characterized by the dissociation constant KA = 12 ± 2 nM. The following step corresponded to a slow isomerization of the receptor-antagonist complex, characterized by the isomerization equilibrium constant Ki = 0.11. The dissociation constant Kd = 1.3 nM, calculated from these kinetic data, was similar to Kd = 2.4 nM, determined from equilibrium binding isotherm for the radioligand. Implications of the complex reaction mechanism on dopamine D2 receptor assay by [3H]raclopride were discussed.  相似文献   

18.
WAY–100635 is the first selective, silent 5–HT1A (5-hydroxytryptamine1A, serotonin-1A) receptor antagonist. We have investigated the use of [3H]WAY–100635 as a quantitative autoradiographic ligand in post-mortem human hippocampus, raphe and four cortical regions, and compared it with the 5–HT1A receptor agonist, [3H]8–OH–DPAT. Saturation studies showed an average Kd for [3H]WAY–100635 binding in hippocampus of 1.1 nM. The regional and laminar distributions of [3H]WAY–100635 binding and [3H]8–OH–DPAT binding were similar. The density of [3H]WAY–100635 binding sites was 60–70% more than that of [3H]8–OH–DPAT in all areas examined except the cingulate gyrus where it was 165% higher. [3H]WAY–100635 binding was robust and was not affected by the post-mortem interval, freezer storage time or brain pH (agonal state). Using [3H]WAY–100635, we confirmed an increase of 5–HT1A receptor binding sites in the frontal cortex in schizophrenia, previously demonstrated with [3H]8–OH–DPAT. Compared to [3H]8–OH–DPAT, [3H]WAY–100635 has two advantages: it has a higher selectivity and affinity for the 5–HT1A receptor, and it recognizes 5–HT1A receptors whether or not they are coupled to a G-protein, whereas [3H]8–OH–DPAT primarily detects coupled receptors. Given these considerations, the [3H]WAY–100635 binding data in schizophrenia clarify two points. First, they indicate that the elevated [3H]8–OH–DPAT binding seen in the same cases is attributable to an increase of 5–HT1A receptors rather than any other binding site. Second, the enhanced [3H]8–OH–DPAT binding in schizophrenia reflects an increased density of 5–HT1A receptors, not an increased percentage of 5–HT1A receptors which are G-protein-coupled. We conclude that [3H]WAY–100635 is a valuable autoradiographic ligand for the qualitative and quantitative study of 5–HT1A receptors in the human brain.  相似文献   

19.
The present study was undertaken to characterize the binding activities of propiverine and its N-oxide metabolites (1-methyl-4-piperidyl diphenylpropoxyacetate N-oxide: P-4(N → O), 1-methyl-4-piperidyl benzilate N-oxide: DPr-P-4(N → O)) toward L-type calcium channel antagonist receptors in the rat bladder and brain. Propiverine and P-4(N → O) inhibited specific (+)-[3H]PN 200–110 binding in the rat bladder in a concentration-dependent manner. Compared with that for propiverine, the Ki value for P-4(N → O) in the bladder was significantly greater. Scatchard analysis has revealed that propiverine increased significantly Kd values for bladder (+)-[3H]PN 200–110 binding. DPr-P-4(N → O) had little inhibitory effects on the bladder (+)-[3H]PN 200–110 binding. Oxybutynin and N-desethyl-oxybutynin (DEOB) also inhibited specific (+)-[3H]PN 200–110 binding in the rat bladder. Propiverine, oxybutynin and their metabolites inhibited specific [N-methyl-3H]scopolamine methyl chloride ([3H]NMS) binding in the rat bladder. The ratios of Ki values for (+)-[3H]PN 200–110 to [3H]NMS were markedly smaller for propiverine and P-4(N → O) than oxybutynin and DEOB. Propiverine and P-4(N → O) inhibited specific binding of (+)-[3H]PN 200–110, [3H]diltiazem and [3H]verapamil in the rat cerebral cortex in a concentration-dependent manner. The Ki values of propiverine and P-4(N → O) for [3H]diltiazem were significantly smaller than those for (+)-[3H]PN 200–110 and [3H]verapamil. Further, their Ki values for [3H]verapamil were significantly smaller than those for (+)-[3H]PN 200–110. The Ki values of propiverine for each radioligand in the cerebral cortex were significantly (P < 0.05) smaller than those of P-4(N → O). In conclusion, the present study has shown that propiverine and P-4(N → O) exert a significant binding activity of L-type calcium channel antagonist receptors in the bladder and these effects may be pharmacologically relevant in the treatment of overactive bladder after oral administration of propiverine.  相似文献   

20.
The binding of [3H]proctolin to oviduct membranes has been analyzed to investigate the nature of proctolin binding sites in the oviduct. Proctolin binding was found to be time dependent, proportional to concentration of membrane protein, saturable, specific and reversible. Two apparent proctolin binding sites were recognized. The first had a Kd of 400 ± 82 nM and a Bmax of 23.7 ± 6.7 pmol/mg protein. The second had a Kd of 2.4 ± 0.2 μM and a Bmax of 96.3 ± 16.7 pmo/mg protein.

Binding was specific in thatcompetition experiments with a wide range of peptides showed that only Arg-Tyr-Leu-Pro-Ala was an effective competitor at μM concentrations. All other peptides examined weekly reduced proctolin binding at concentrations above 50 μM. Certain peptides were found to potentiate [3]pproctolin binding at low μM concentrations (1–10 μM) and to inhibit proctolin binding at higher concentrations. The significance of these findings is discussed.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号