首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract A constitutive NAD+-dependent glycerol dehydrogenase activity was detected in Halobacterium salinarium and Halobacterium cutirubrum . Optimal activity was found at 3 M KCl and pH 8–10. No glycerol dehydrogenase activity could be demonstrated in representatives of the genera Haloferax and Haloarcula , even when grown in the presence of glycerol, or in Halobacterium saccharovorum and Halobacterium sodomense . Glycerol kinase activity was shown to be present constitutively in all halophilic archaea examined. The finding that glycerol dehydrogenase is found only in part of the halophilic arachaea makes dihydroxyacetone an improbable candidate as the precursor for the glycerol moiety of halobacterial lipids.  相似文献   

2.
Abstract Eight species of halophilic Archaea were tested for the presence of isocitrate lyase activity. High activities (up to 100 nmol min−1 mg protein−1) were detected in Haloferax mediterranei and Haloferax volcanii when grown in medium containing acetate as the principal carbon source. Little activity was found in representatives of the genera Halobacterium and Haloarcula . Isocitrate lyase from Haloferax mediterranei required high potassium chloride concentrations, optimal activity being found at 1.5–3 M potassium chloride and pH 7.0. Replacement of potassium chloride by sodium chloride resulted in much lower activities. Sulfhydryl compounds (cysteine, glutathione) were not stimulatory. In other properties (stimulation by magnesium ions, sensitivity to different inhibitors) the enzyme resembled isocitrate lyases from representatives of the Bacteria and Eucarya.  相似文献   

3.
The extremely halophilic bacterium Salinibacter ruber was previously shown to have a high intracellular potassium content, comparable to that of halophilic Archaea of the family Halobacteriaceae. The amino acid composition of its bulk protein showed a high content of acidic amino acids, a low abundance of basic amino acids, a low content of hydrophobic amino acids, and a high abundance of serine. We tested the level of four cytoplasmic enzymatic activities at different KCl and NaCl concentrations. Nicotinamide adenine dinucleotide (NAD)-dependent isocitrate dehydrogenase functioned optimally at 0.5-2 M KCl, with rates of 60% of the optimum value at 3.3 M. NaCl provided less activation: 70% of the optimum rates in KCl were found at 0.2-1.2 M NaCl, and above 3 M NaCl, activity was low. We also detected nicotinamide adenine dinucleotide phosphate (NADP)-dependent isocitrate activity, which remained approximately constant between 0-3.2 M NaCl and increased with increasing KCl concentration. NAD-dependent malate dehydrogenase functioned best in the absence of salt, but rates as high as 25% of the optimal values were measured in 3-3.5 M KCl or NaCl. NAD-dependent glutamate dehydrogenase, assayed by the reductive amination of 2-oxoglutarate, showed low activity in the absence of salt. NaCl was stimulatory with optimum activity at 3-3.5 M. However, no activity was found above 2.5 M KCl. Although the four activities examined all function at high salt concentrations, the behavior of individual enzymes toward salt varied considerably. The results presented show that Salinibacter enzymes are adapted to function in the presence of high salt concentrations.  相似文献   

4.
Halobacterium sodomense, a halophilic bacterium from the Dead Sea, degraded starch to glucose by means of an extracellular amyloglucosidase with a temperature optimum of around 65°C in the presence of 1.4 M NaCl, and around 75°C in the presence of 3.9 M NaCl. The enzyme required salt concentrations higher than 1 M for optimal activity, NaCl, KCl, and MgCl2 being equally suitable as activators. The optimum pH was 7.5.H. sodomense culture supernatants showed only a very low maltose degrading activity. H. sodomense excreted amyloglucosidase constitutively, and relatively high activities were found in cultures grown in the absence of starch; when glucose was added to the growth medium, the amount of enzyme excreted into the medium decreased.  相似文献   

5.
Halobacterium volcanii mutants that are resistant to the dihydrofolate reductase inhibitor trimethoprim contain DNA sequence amplifications. This paper describes the cloning and nucleic acid sequencing of the amplified DNA sequence of the H. volcanii mutant WR215. This sequence contains an open reading frame that codes for an amino acid sequence that is homologous to the amino acid sequences of dihydrofolate reductases from different sources. As a result of the gene amplification, the trimethoprim-resistant mutant overproduces dihydrofolate reductase. This enzyme was purified to homogeneity using ammonium sulfate-mediated chromatographies. It is shown that the enzyme comprises 5% of the cell protein. The amino acid sequence of the first 15 amino acids of the enzyme fits the coding sequence of the gene. Preliminary biochemical characterization shows that the enzyme is unstable at salt concentrations lower than 2 M and that its activity increases with increase in the KCl or NaCl concentrations.  相似文献   

6.
1. Citrate synthase [citrate oxaloacetate-lyase (CoA-acetylating), EC 4.1.3.7] was purified about 400-fold from the extreme halophile, Halobacterium cutirubrum, by a method involving (NH4)2SO4 fractionation, chromatography on DEAE-cellulose and hydroxyapatite and gel filtration on Sephadex G-200. 2. The purified enzyme was best activated by high concentrations of KCl (3M); the chlorides of other cations and K+ salts of other anions (Br-, NO3-, SCN-) were less effective than KCl as activators. The enzyme was best stabilized by high concentrations of NaCl or KCl. Cold-lability was found in the presence of 3M-KCl, but not in the presence of NaCl at concentrations up to 5M. The results suggest that both the shielding of negative charges on the enzyme molecule and the stabilization of hydrophobic bonds by high KCl concentrations were required for maximum activity of the enzyme. 3. The double-reciprocal plots for acetyl-CoA or oxaloacetate at several concentrations of the co-substrate intersected at the abscissa in the presence of either KCl or NaCl, at either 1 or 3M. The Km for oxaloacetate increased about fivefold with the salt concentration, from 1 to 3M.  相似文献   

7.
Park SJ  Joo WA  Choi J  Lee SH  Kim CW 《Proteomics》2004,4(11):3632-3641
Extremely halophilic Archaea, Halobacterium salinarum live in hypersaline habitats and maintain an osmotic balance of their cytoplasm by accumulating high concentrations of salt (mainly KCl). Therefore, their enzymes adapted to high NaCl concentrations offer a multitude of acutal or potential applications such as biocatalysts in the presence of high salt concentrations. In this study, the protein expression profile of H. salinarum cultured under different NaCl concentrations (3.5 M, 4.3 M, and 6.0 M) was investigated using two-dimensional gel electrophoresis (2-DE). As a result of 2-DE, the protein spots concentrated in acidic range at pH 3-10 were separated effectively using pH 3.5-4.5 ultrazoom IPG DryStrips. The proteins which proved to be upregulated or downregulated in 2-DE gel were digested with trypsin and identified with matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and electrospray ionization quadrupole (ESI-Q) TOF-mass spectrometry. Most proteins were identified as known annotated proteins based on sequence homology and few as unknown hypothetical proteins. Among proteins identified, an enzyme named inosine monophosphate dehydrogenase (IMPDH) was selected based on the possibility of its industrial application. IMPDH gene (1.6 kb fragment) expected to exist in H. salinarum was amplified by polymerase chain reaction (PCR) and expressed in Escherichia coli strain, BL21 (DE3) using a pGEX-KG vector. Recombinant IMPDH purified from H. salinarum has a higher activity in the presence of salt than in the absence of salt.  相似文献   

8.
Enzymes from extreme halophiles have potential as catalysts in biotransformations. We have developed methods for the expression in Escherichia coli and purification of two enzymes from Haloferax volcanii: dihydrolipoamide dehydrogenase and citrate synthase. Both enzymes were expressed in E. coli using the cytoplasmic expression vectors, pET3a and pET3d. Citrate synthase was soluble and inactive, whereas dihydrolipoamide dehydrogenase was expressed as inclusion bodies. Citrate synthase was reactivated following overnight incubation in 2 M KCl, and dihydrolipoamide dehydrogenase was refolded by solubilisation in 8 M urea followed by dilution into a buffer containing 2 M KCl, 10 microM FAD, 1 mM NAD, and 0.3 mM GSSG/3 mM GSH. Maximal activity was obtained after 3 days incubation at 4 degrees C. Purification of the two active enzymes was carried out using high-resolution methods. Dihydrolipoamide dehydrogenase was purified using copper-based metal ion affinity chromatography in the presence of 2 M KCl. Citrate synthase was recovered using dye-affinity chromatography in the presence of salt. A high yield of active enzyme was obtained in both cases. Following purification, characterisation of both recombinant proteins showed that their kinetics and salt-dependence were comparable to those of the native enzymes. Expression of active protein was attempted both by growth of E. coli in the presence of salt and betaine, and also by using periplasmic expression vectors in combination with a high salt growth media. Neither strategy was successful.  相似文献   

9.
M Sumper  E Berg  R Mengele    I Strobel 《Journal of bacteriology》1990,172(12):7111-7118
The outer surface of the archaebacterium Haloferax volcanii (formerly named Halobacterium volcanii) is covered with a hexagonally packed surface (S) layer. The gene coding for the S-layer protein was cloned and sequenced. The mature polypeptide is composed of 794 amino acids and is preceded by a typical signal sequence of 34 amino acid residues. A highly hydrophobic stretch of 20 amino acids at the C-terminal end probably serves as a transmembrane domain. Clusters of threonine residues are located adjacent to this membrane anchor. The S-layer protein is a glycoprotein containing both N- and O-glycosidic bonds. Glucosyl-(1----2)-galactose disaccharides are linked to threonine residues. The primary structure and the glycosylation pattern of the S-layer glycoproteins from Haloferax volcanii and from Halobacterium halobium were compared and found to exhibit distinct differences, despite the fact that three-dimensional reconstructions from electron micrographs revealed no structural differences at least to the 2.5-nm level attained so far (M. Kessel, I. Wildhaber, S. Cohe, and W. Baumeister, EMBO J. 7:1549-1554, 1988).  相似文献   

10.
Debaryomyces nepalensis, a halotolerant food-spoiling yeast could grow in complex (YEPD) medium at different pHs ranging between 3.0 and 11.0 in the absence of salt and at pH 3.0–9.0 in the presence of different concentrations of NaCl and KCl. The specific growth rate of D. nepalensis was not affected by the initial pH of the medium in the absence of salts, whereas it was affected in the presence of salts. At 2 M NaCl and KCl, the organism exhibited a synergistic effect on pH and salt stress, which was unique in the Debaryomyces species. Irrespective of the initial pH and salt, the intracellular pH of D. nepalensis was ~7.0. Significant organic acid was produced at neutral and alkaline pH and organic acid production increased with the increase in pH and salt. Very specific organic acids are produced in the presence of NaCl and KCl. Our observation would contribute to a better understanding of the physiological phenomenon of halotolerance in D. nepalensis.  相似文献   

11.
Prior work from this laboratory characterized eukaryotic (hamster) and eubacterial (Pseudomonas mevalonii) 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductases. We report here the characterization of an HMG-CoA reductase from the third domain, the archaea. HMG-CoA reductase of the halobacterium Haloferax volcanii was initially partially purified from extracts of H. volcanii. Subsequently, a portion of the H. volcanii lovastatin (formerly called mevinolin) resistance marker mev was subcloned into the Escherichia coli expression vector pT7-7. While no HMG-CoA reductase activity was detectable following expression in E. coli, activity could be recovered after extracts were exposed to 3 M KCl. Following purification to electrophoretic homogeneity, the specific activity of the expressed enzyme, 24 microU/mg, equaled that of homogeneous hamster or P. mevalonii HMG-CoA reductase. Activity was optimal at pH 7.3. Kms were 66 microM (NADPH) and 60 microM [(S)-HMG-CoA]. (R)-HMG-CoA and lovastatin inhibited competitively with (S)-HMG-CoA. H. volcanii HMG-CoA reductase also catalyzed the reduction of mevaldehyde [optimal activity at pH 6.0; Vmax 11 microU/mg; Kms 32 microM (NADPH), 550 microM [(R,S)-mevaldehyde]] and the oxidative acylation of mevaldehyde [optimal activity at pH 8.0; Vmax 2.1 microU/mg; Kms 350 microM (NADP+), 300 microM (CoA), 470 microM [(R,S)-mevaldehyde]]. These properties are comparable to those of hamster and P. mevalonii HMG-CoA reductases, suggesting a similar catalytic mechanism.  相似文献   

12.
In studies at 5 degrees C and pH 9.0, poliovirus 1 was inactivated about 15 times more rapidly by free chlorine (FC) in purified water in the presence of 1,262 mg of KCl per liter (approximately 0.0169 M) than in the absence of KCl. In the presence of 526 mg of KCl per liter, the virus was inactivated about seven times more rapidly by FC than in the absence of KCl. At a level of 21 mg/liter, KCl did not significantly potentiate the virucidal activity of FC in purified water. Although poliovirus 1 was inactivated almost three times more rapidly by FC in borate-buffered purified water than in purified water, the presence of the buffer did not alter the extent of potentiation by KCl. Most of FC exists as OCl- at pH 9.0. Tap water has been shown to markedly potentiate the polivirucidal effectiveness of FC at pH 9.0. For the same degree of virucidal potentiation of FC at this pH, a considerably greater quantity of KCl was required in purified water than the total salt content that appeared to be present in the tap water.  相似文献   

13.
The effects of pH on salt stimulation of the rates of hydrolysis of three substrates by human leukocyte elastase were studied. The enzyme was most active at pH 10.5, 8.0-8.5, and 9.5 for the hydrolyses of fluorescein isothiocyanate-labeled S-carboxymethylated bovine serum albumin (FITC-CM-BSA), succinyl-L-Ala-L-Pro-L-Ala-7-methylcoumaryl-4-amide (Suc-APA-MCA), and succinyl-L-Ala3-p-nitroanilide (Suc-Ala3-pNA), respectively, in the absence of NaCl. The enzyme was activated by 0.5 M NaCl similarly at all pHs tested for the hydrolysis of Suc-Ala3-pNA, but more at neutral and alkaline pH values, respectively, for the hydrolyses of FITC-CM-BSA and Suc-APA-MCA. Thus, in the presence of 0.5 M NaCl, the enzyme was most active at pH 8.0 and 10.0 with FITC-CM-BSA and Suc-APA-MCA, respectively. In contrast, the proteolytic activity of porcine pancreatic elastase was somewhat inhibited by 0.5 M NaCl.  相似文献   

14.
DEAE-cellulose chromatography, with or without dithiothreitol and over a pH range of 6.0 to 8.5, resolved two phosphodiesterase activities (peaks I and II) from the soluble fraction of pig coronary arteries. The activity of peak I was increased by calmodulin (3-7-fold), whereas that of peak II was not. Chromatography of peak I on Biol-Gel A-0.5 m columns resolved two peaks of phosphodiesterase activity (peaks Ia and Ib). Peak Ia was eluted in the presence or absence of 0.1 M KCl and was relatively insensitive to calmodulin. Peak Ib was eluted only in the presence of KCl and was sensitive to calmodulin. The substrate specificity and kinetic behavior were the same for peaks I, Ia, and Ib. Repeated gel chromatography of either peak Ia or Ib, under appropriate conditions, yielded a mixture of peaks Ia and Ib. Peak Ia appears to be a reversible aggregate of peak Ib. Gel chromatography of peak II resolved only one phosphodiesterase activity, which was eluted without KCl, was highly specific for cyclic AMP, was not sensitive to calmodulin and migrated differently on the gel column than either peak Ia or Ib. Sucrose density gradient centrifugation of the soluble fraction from pig coronary arteries in the presence or absence of dithiothreitol resolved two peaks of phosphodiesterase activity (6.6 S and 3.6 S) which were similar to peaks I and II separated by DEAE-cellulose chromatography with regard to their substrate specificity and their sensitivity to calmodulin. Upon recentrifugation, each of the two peaks of phosphodiesterase activity gave a single peak of activity which migrated with the same S value as did its parent. These results indicate that the two major forms of phosphodiesterase of pig coronary arteries, which are representative of those found in many tissues, are not interconvertible in cell-free systems.  相似文献   

15.
16.
The extremely halophilic Archae require near-saturating concentrations of salt in the external environment and in their cytoplasm, potassium being the predominant intracellular cation. The proteins of these organisms have evolved to function in concentrations of salt that inactivate or precipitate homologous proteins from non-halophilic species. It has been proposed that haloadaptation is primarily due to clustering of acidic residues on the surface of the protein, and that these clusters bind networks of hydrated ions. The dihydrofolate reductases from Escherichia coli (ecDHFR) and two DHFR isozymes from Haloferax volcanii (hvDHFR1 and hvDHFR2) have been used as a model system to compare the effect of salts on a mesophilic and halophilic enzyme. The KCl-dependence of the activity and substrate affinity was investigated. ecDHFR is largely inactivated above 1M KCl, with no major effect on substrate affinity. hvDHFR1 and hvDHFR2 unfold at KCl concentrations below approximately 0.5M. Above approximately 1M, the KCl dependence of the hvDHFR activities can be attributed to the effect of salt on substrate affinity. The abilities of NaCl, KCl, and CsCl to enhance the stability to urea denaturation were determined, and similar efficacies of stabilization were observed for all three DHFR variants. The DeltaG degrees (H(2)O) values increased linearly with increasing KCl and CsCl concentrations. The increase of DeltaG degrees (H(2)O) as a function of the smallest cation, NaCl, is slightly curved, suggesting a minor stabilization from cation binding or screening of electrostatic repulsion. At their respective physiological ionic strengths, the DHFR variants exhibit similar stabilities. Salts stabilize ecDHFR and the hvDHFRs by a common mechanism, not a halophile-specific mechanism, such as the binding of hydrated salt networks. The primary mode of salt stabilization of the mesophilic and halophilic DHFRs appears to be through preferential hydration and the Hofmeister effect of salt on the activity and entropy of the aqueous solvent. In support of this conclusion, all three DHFRs are similarly stabilized by the non-ionic cosolute, sucrose.  相似文献   

17.
Abstract Cell extracts of the extreme halophile Halobacterium cutirubrum were found to contain 8-hydroxy-5-deazaflavin as well as 8-OH-5-deazaflavin: NADPH oxidoreductase activity. The oxidoreductase was partially purified and showed maximum activity at pH 5.4, which is unusually low for halobacteria, and 5.3 M NaCl, close to the intracellular salt concentration. The results indicate the presence of an 8-OH-5-deazaflavin-dependent electron transfer system in a nonmethanogenic organism.  相似文献   

18.
The lysate of the glycogen-induced macrophages in rat peritoneal exudate was fractionated by centrifugation and extraction into a water extract, 1 M KCl extract and residue fractions. Approximately 50% of the neutral protease activity toward casein in the lysate was recovered in the KCl extract fraction, which was practically devoid of acid protease, cathepsin D. The pH optimum of the neutral protease toward casein and urea-denatured hemoglobin was pH 8.5. The activity was inhibited strongly by DFP or chymostatin and only partially by HgCl2 or PCMB. Addition of a salt to the reaction medium caused enhancement of the activity with an optimum concentration of 0.25 M: KCl, KBr, KI, NaCl, NaBr, NaI, and MgCl2 were all almost equally effective. When the enzyme preparation was filtered through a column of Sephadex G-75 gel in the presence of 1 M KCl, a larger molecular weight fraction at the void volume was obtained in addition to a smaller molecular weight fraction showing a caseinolytic activity insensitive to KCl concentration. The former was found to have a specific inhibitory effect on the latter activity.  相似文献   

19.
The influence of pH and the salt concentration on the proton and sodium ion permeability of liposomes formed from lipids of the halophile Halobacterium salinarum and the haloalkaliphile Halorubrum vacuolatum were studied. In contrast with liposomes formed from Escherichia coli lipids, liposomes formed from halophilic lipids remained stable up to 4 M of NaCl and KCl. The proton permeability of the liposomes from lipids of halophiles was independent of the salt concentration and was essentially constant between pH 7 and pH 9. The sodium ion permeability increased with the salt concentration but was 10- to 100 fold lower than the proton permeability. It is concluded that the membranes of halophiles are stable over a wide range of salt concentrations and at elevated pH values and are well adapted to the halophilic conditions. Received: February 25, 1999 / Accepted: June 11, 1999  相似文献   

20.
The 3-methyladenine-DNA glycosylase from calf thymus has been purified and characterized. Two species of Mr = 42,000 and 27,000 +/- 5% and Stokes radius of 27.5 and 22.4 A, respectively, were found. Only the lower molecular weight species were present in the nucleus; it was bound to chromatin and could be dissociated in the presence of 0.25 M KCl. The enzymatic properties of the two species appeared to be identical. Both enzyme species released 3-methyladenine, 7-methylguanine, and 3-methylguanine, listed in the order of decreasing activity. The chromatin-associated enzyme was purified to apparent homogeneity and found to be a basic protein having a pI greater than 9. It was completely inhibited by p-hydroxymercuribenzoate, but this inhibition could be fully reversed by addition of excess 2-mercaptoethanol. Kinetic studies, heat inactivation, and inhibition experiments demonstrated that the 3-methyladenine and 7-methylguanine releasing activities were located on the same protein molecule. The enzymes showed no activity on methylated single-stranded DNA. No product inhibition was observed for any of the enzyme species, and the enzyme activity was optimal when the incubation was performed in the presence of 50 mM NaCl or KCl at pH values between 8 and 9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号